code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import functools def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE__ ) , 1 + min_distance(SCREAMING_SNAKE_CASE__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
20
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): _a : Optional[int]= MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : List[str] = VideoClassificationPipeline(model=snake_case ,image_processor=snake_case ,top_k=2 ) lowercase : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' for example in examples: lowercase : int = video_classifier(snake_case ) self.assertEqual( snake_case ,[ {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase : str = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) lowercase : List[Any] = pipeline( """video-classification""" ,model=snake_case ,feature_extractor=snake_case ,frame_sampling_rate=4 ) lowercase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : Any = video_classifier(snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] ,) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
1
lowercase : Optional[int] = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: lowercase : str = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} lowercase : List[Any] = 0 lowercase : str = 0 while place < len(SCREAMING_SNAKE_CASE__ ): if (place + 1 < len(SCREAMING_SNAKE_CASE__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: lowercase : str = [] for arabic, roman in ROMAN: ((lowercase) , (lowercase)) : Any = divmod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowercase : Dict = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] lowercase : Tuple = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def _snake_case( ) -> int: lowercase : Union[str, Any] = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def _snake_case( ) -> Dict: lowercase : List[Any] = """rougeLsum""" lowercase : List[Any] = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=[k] )[k] lowercase : int = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=[k] )[k] assert score > score_no_sep def _snake_case( ) -> Tuple: lowercase : List[str] = ["""rouge1""", """rouge2""", """rougeL"""] lowercase : Dict = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=SCREAMING_SNAKE_CASE__ ) assert score_sep == score_no_sep def _snake_case( ) -> Union[str, Any]: lowercase : str = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowercase : str = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ ) == calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Any: lowercase : Tuple = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowercase : List[str] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowercase : Tuple = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rouge_keys=["""rougeLsum"""] , newline_sep=SCREAMING_SNAKE_CASE__ )["""rougeLsum"""] lowercase : int = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def _snake_case( ) -> Union[str, Any]: lowercase : List[Any] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowercase : Dict = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
20
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
from __future__ import annotations import numpy as np def _snake_case( SCREAMING_SNAKE_CASE__ ) -> tuple[np.ndarray, np.ndarray]: lowercase , lowercase : Optional[int] = np.shape(SCREAMING_SNAKE_CASE__ ) if rows != columns: lowercase : Dict = ( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = np.zeros((rows, columns) ) lowercase : int = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE__ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase : int = (table[i][j] - total) / upper[j][j] lowercase : int = 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE__ ) ) lowercase : Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
20
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) lowercase : int = max(SCREAMING_SNAKE_CASE__ ) lowercase : int = min(SCREAMING_SNAKE_CASE__ ) # create the counting array lowercase : Dict = coll_max + 1 - coll_min lowercase : Tuple = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , SCREAMING_SNAKE_CASE__ ) ): lowercase : Tuple = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: return "".join([chr(SCREAMING_SNAKE_CASE__ ) for i in counting_sort([ord(SCREAMING_SNAKE_CASE__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowercase : List[str] = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
20
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ = 4_000_000 ) -> int: lowercase : Dict = [0, 1] lowercase : Dict = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowercase : int = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
20
import os import numpy import onnx def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : int = a.name lowercase : Any = b.name lowercase : Optional[Any] = """""" lowercase : Dict = """""" lowercase : int = a == b lowercase : int = name_a lowercase : List[str] = name_b return res def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Any = list(model.graph.initializer ) lowercase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : Union[str, Any] = inits[i].name lowercase : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : str = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[str] = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : int = {} lowercase : Optional[Any] = [] lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : int = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowercase : Tuple = inits[i].name lowercase : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) lowercase : str = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """optimized_""" + model_file_name lowercase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
20
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : str = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = ["""MaskFormerFeatureExtractor"""] lowercase : int = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] lowercase : Union[str, Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """""" for word_or_phrase in separated: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase : Tuple = logging.getLogger(__name__) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case=-1 ): '''simple docstring''' lowercase : List[str] = label_idx def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : int = mode.value lowercase : Any = os.path.join(snake_case ,f"{mode}.txt" ) lowercase : int = 1 lowercase : List[Any] = [] with open(snake_case ,encoding="""utf-8""" ) as f: lowercase : Dict = [] lowercase : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=snake_case ,labels=snake_case ) ) guid_index += 1 lowercase : str = [] lowercase : Union[str, Any] = [] else: lowercase : str = line.split(""" """ ) words.append(splits[0] ) if len(snake_case ) > 1: labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=snake_case ,labels=snake_case ) ) return examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(snake_case ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(snake_case ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" ,line.split()[0] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if path: with open(snake_case ,"""r""" ) as f: lowercase : str = f.read().splitlines() if "O" not in labels: lowercase : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __snake_case ( lowerCAmelCase ): def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if path: with open(snake_case ,"""r""" ) as f: lowercase : List[str] = f.read().splitlines() if "O" not in labels: lowercase : Any = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : Optional[Any] = mode.value lowercase : int = os.path.join(snake_case ,f"{mode}.txt" ) lowercase : List[Any] = 1 lowercase : Optional[Any] = [] with open(snake_case ,encoding="""utf-8""" ) as f: for sentence in parse_incr(snake_case ): lowercase : Optional[int] = [] lowercase : str = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(snake_case ) == len(snake_case ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=snake_case ,labels=snake_case ) ) guid_index += 1 return examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = 0 for sentence in parse_incr(snake_case ): lowercase : str = preds_list[example_id] lowercase : int = """""" for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(snake_case ) example_id += 1 def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if path: with open(snake_case ,"""r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase : Tuple = logging.getLogger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__ = 10 , SCREAMING_SNAKE_CASE__ = 2 ) -> Union[str, Any]: def get_dataset(SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase : Dict = get_dataset(SCREAMING_SNAKE_CASE__ ) lowercase : str = get_dataset(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) lowercase : str = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> int: lowercase : Dict = [] for epoch in range(SCREAMING_SNAKE_CASE__ ): # Train quickly model.train() for batch in dataloader: lowercase , lowercase : Tuple = batch lowercase : str = model(SCREAMING_SNAKE_CASE__ ) lowercase : int = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __snake_case ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() lowercase : Optional[int] = nn.Parameter(torch.randn(1 ) ) lowercase : List[str] = nn.Parameter(torch.randn(1 ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return x * self.a + self.b class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Any = DummyModel() lowercase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : int = dummy_dataloaders() lowercase : List[str] = ProjectConfiguration(total_limit=1 ,project_dir=snake_case ,automatic_checkpoint_naming=snake_case ) # Train baseline lowercase : Tuple = Accelerator(project_config=snake_case ) lowercase , lowercase , lowercase , lowercase : List[Any] = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Optional[Any] = DummyModel() lowercase : Any = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Optional[Any] = dummy_dataloaders() # Train baseline lowercase : Tuple = Accelerator() lowercase , lowercase , lowercase , lowercase : List[str] = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) # Save initial lowercase : List[str] = os.path.join(snake_case ,"""initial""" ) accelerator.save_state(snake_case ) ((lowercase) , (lowercase)) : Optional[Any] = model.a.item(), model.b.item() lowercase : Optional[int] = optimizer.state_dict() lowercase : Tuple = train(3 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : List[str] = model.a.item(), model.b.item() lowercase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase : Tuple = DummyModel() lowercase : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Union[str, Any] = dummy_dataloaders() lowercase : Union[str, Any] = Accelerator() lowercase , lowercase , lowercase , lowercase : int = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) accelerator.load_state(snake_case ) ((lowercase) , (lowercase)) : int = model.a.item(), model.b.item() lowercase : Optional[Any] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) lowercase : Any = train(2 ,snake_case ,snake_case ,snake_case ,snake_case ) # Save everything lowercase : List[Any] = os.path.join(snake_case ,"""checkpoint""" ) accelerator.save_state(snake_case ) # Load everything back in and make sure all states work accelerator.load_state(snake_case ) test_rands += train(1 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : int = model.a.item(), model.b.item() lowercase : List[str] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Dict = DummyModel() lowercase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Union[str, Any] = dummy_dataloaders() lowercase : Any = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline lowercase : int = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase , lowercase , lowercase , lowercase : Tuple = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) # Save initial accelerator.save_state() ((lowercase) , (lowercase)) : Union[str, Any] = model.a.item(), model.b.item() lowercase : int = optimizer.state_dict() lowercase : Optional[Any] = train(3 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : Any = model.a.item(), model.b.item() lowercase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase : Optional[int] = DummyModel() lowercase : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase , lowercase : Any = dummy_dataloaders() lowercase : Tuple = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=snake_case ) lowercase : Tuple = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase , lowercase , lowercase , lowercase : List[Any] = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ) accelerator.load_state(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_0""" ) ) ((lowercase) , (lowercase)) : Optional[int] = model.a.item(), model.b.item() lowercase : List[Any] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) lowercase : int = train(2 ,snake_case ,snake_case ,snake_case ,snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_1""" ) ) test_rands += train(1 ,snake_case ,snake_case ,snake_case ,snake_case ) ((lowercase) , (lowercase)) : Tuple = model.a.item(), model.b.item() lowercase : Optional[int] = optimizer.state_dict() self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = torch.tensor([1, 2, 3] ) lowercase : int = torch.tensor([2, 3, 4] ) lowercase : str = DummyModel() lowercase : Optional[Any] = torch.optim.Adam(net.parameters() ) lowercase : Any = Accelerator() with self.assertRaises(snake_case ) as ve: accelerator.register_for_checkpointing(snake_case ,snake_case ,snake_case ,snake_case ) lowercase : int = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Dict = DummyModel() lowercase : Optional[int] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) lowercase : Union[str, Any] = torch.optim.lr_scheduler.StepLR(snake_case ,step_size=1 ,gamma=0.99 ) lowercase , lowercase : List[Any] = dummy_dataloaders() lowercase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline lowercase : List[str] = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = accelerator.prepare( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) # Save initial accelerator.save_state() lowercase : Optional[int] = scheduler.state_dict() train(3 ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) self.assertNotEqual(snake_case ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_0""" ) ) self.assertEqual(snake_case ,scheduler.state_dict() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase : Union[str, Any] = DummyModel() lowercase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ,total_limit=2 ) # Train baseline lowercase : Dict = Accelerator(project_dir=snake_case ,project_config=snake_case ) lowercase : Any = accelerator.prepare(snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case ,"""checkpoints""" ,"""checkpoint_10""" ) ) ) @require_cuda def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case ,env=os.environ.copy() ) if __name__ == "__main__": lowercase : int = """/tmp/accelerate/state_checkpointing""" lowercase : List[str] = DummyModel() lowercase : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase : List[str] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) lowercase , lowercase : str = dummy_dataloaders() lowercase : str = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase : Tuple = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase , lowercase : Union[str, Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase : Dict = group["""params"""][0].device break assert param_device.type == accelerator.device.type lowercase : int = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: lowercase : Tuple = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: lowercase : List[str] = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = tempfile.mkdtemp() # fmt: off lowercase : Optional[Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowercase : Union[str, Any] = dict(zip(snake_case ,range(len(snake_case ) ) ) ) lowercase : Tuple = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowercase : Dict = {"""unk_token""": """<unk>"""} lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case ) ) lowercase : List[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase : Optional[Any] = os.path.join(self.tmpdirname ,snake_case ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token="""!""" ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token="""!""" ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase : Optional[int] = [Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.get_tokenizer() lowercase : Optional[Any] = self.get_rust_tokenizer() lowercase : Tuple = self.get_image_processor() lowercase : str = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case ) lowercase : int = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case ) self.assertIsInstance(processor_fast.tokenizer ,snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case ) self.assertIsInstance(processor_fast.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowercase : Union[str, Any] = self.get_image_processor(do_normalize=snake_case ) lowercase : Dict = OwlViTProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.get_image_processor() lowercase : Tuple = self.get_tokenizer() lowercase : Dict = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Optional[Any] = self.prepare_image_inputs() lowercase : Union[str, Any] = image_processor(snake_case ,return_tensors="""np""" ) lowercase : Union[str, Any] = processor(images=snake_case ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.get_image_processor() lowercase : Optional[int] = self.get_tokenizer() lowercase : Optional[Any] = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = """lower newer""" lowercase : Optional[Any] = processor(text=snake_case ,return_tensors="""np""" ) lowercase : List[str] = tokenizer(snake_case ,return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.get_image_processor() lowercase : List[str] = self.get_tokenizer() lowercase : Optional[Any] = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Optional[Any] = """lower newer""" lowercase : List[Any] = self.prepare_image_inputs() lowercase : List[Any] = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = """google/owlvit-base-patch32""" lowercase : Union[str, Any] = OwlViTProcessor.from_pretrained(snake_case ) lowercase : List[Any] = ["""cat""", """nasa badge"""] lowercase : Union[str, Any] = processor(text=snake_case ) lowercase : List[Any] = 16 self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape ,(2, seq_length) ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = """google/owlvit-base-patch32""" lowercase : str = OwlViTProcessor.from_pretrained(snake_case ) lowercase : str = [["""cat""", """nasa badge"""], ["""person"""]] lowercase : int = processor(text=snake_case ) lowercase : Union[str, Any] = 16 lowercase : Union[str, Any] = len(snake_case ) lowercase : Optional[int] = max([len(snake_case ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape ,(batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = """google/owlvit-base-patch32""" lowercase : Optional[int] = OwlViTProcessor.from_pretrained(snake_case ) lowercase : Dict = ["""cat""", """nasa badge"""] lowercase : Tuple = processor(text=snake_case ) lowercase : List[Any] = 16 lowercase : List[str] = inputs["""input_ids"""] lowercase : List[str] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape ,(2, seq_length) ) self.assertListEqual(list(input_ids[0] ) ,predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) ,predicted_ids[1] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : int = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : int = self.prepare_image_inputs() lowercase : Optional[int] = self.prepare_image_inputs() lowercase : List[Any] = processor(images=snake_case ,query_images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.get_image_processor() lowercase : Optional[int] = self.get_tokenizer() lowercase : Any = OwlViTProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : List[Any] = processor.batch_decode(snake_case ) lowercase : Dict = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case )
20
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( lowerCAmelCase ): _a : str= "gpt_neo" _a : Optional[int]= ["past_key_values"] _a : Dict= {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,snake_case=50257 ,snake_case=2048 ,snake_case=2048 ,snake_case=24 ,snake_case=[[["global", "local"], 12]] ,snake_case=16 ,snake_case=None ,snake_case=256 ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Union[str, Any] = num_layers lowercase : Union[str, Any] = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Optional[int] = activation_function lowercase : List[str] = resid_dropout lowercase : int = embed_dropout lowercase : Optional[int] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : List[str] = use_cache lowercase : Optional[int] = bos_token_id lowercase : int = eos_token_id lowercase : Union[str, Any] = attention_types lowercase : Dict = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: import torch lowercase : Tuple = input.size() lowercase : int = len(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = shape[dimension] lowercase : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 lowercase : Dict = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] lowercase : Union[str, Any] = [slice(SCREAMING_SNAKE_CASE__ )] * rank lowercase : Optional[Any] = indices lowercase : List[str] = input[s] lowercase : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: import torch lowercase : Union[str, Any] = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = remainders == 0 lowercase : Optional[int] = candidates[divisor_indices] lowercase : List[Any] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Any = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Any = ordered_inputs["""attention_mask"""].dtype lowercase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
1
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
1
from collections.abc import Sequence def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ) -> float: if not arr: return 0 lowercase : Any = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase : List[str] = 0.0 for num in arr: lowercase : str = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase : List[Any] = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowercase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
20
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Optional[Any] = logging.getLogger(__name__) @dataclass class __snake_case : _a : str= field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a : Optional[str]= field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __snake_case : _a : str= field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) _a : int= field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) lowercase : List[str] = import_module("""tasks""" ) try: lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , model_args.task_type ) lowercase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase : List[Any] = token_classification_task.get_labels(data_args.labels ) lowercase : Dict[int, str] = dict(enumerate(SCREAMING_SNAKE_CASE__ ) ) lowercase : Tuple = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} , cache_dir=model_args.cache_dir , ) lowercase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase : Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase : List[Any] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase : Tuple = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple[List[int], List[int]]: lowercase : str = np.argmax(SCREAMING_SNAKE_CASE__ , axis=2 ) lowercase , lowercase : int = preds.shape lowercase : str = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] lowercase : Optional[Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase , lowercase : List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "precision": precision_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "recall": recall_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "f1": fa_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), } # Data collator lowercase : str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase : Dict = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase : List[Any] = trainer.evaluate() lowercase : Optional[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) # Predict if training_args.do_predict: lowercase : Any = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase , lowercase , lowercase : List[str] = trainer.predict(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : List[Any] = align_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions lowercase : List[Any] = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
20
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
1
import random def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple: lowercase , lowercase , lowercase : List[Any] = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE__ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE__ ) else: equal.append(SCREAMING_SNAKE_CASE__ ) return less, equal, greater def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE__ ) or index < 0: return None lowercase : str = items[random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] lowercase : int = 0 lowercase , lowercase , lowercase : Dict = _partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = len(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE__ , index - (m + count) )
20
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Any: lowercase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowercase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: lowercase : Any = """""" else: lowercase : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowercase : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase : Dict = in_proj_weight[ : config.hidden_size, : ] lowercase : Optional[Any] = in_proj_bias[: config.hidden_size] lowercase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : str = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : List[Any] = dct.pop(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = val def _snake_case( ) -> str: lowercase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : str = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Tuple = DeiTConfig() # all deit models have fine-tuned heads lowercase : int = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowercase : Optional[Any] = 1_000 lowercase : Any = """huggingface/label-files""" lowercase : List[str] = """imagenet-1k-id2label.json""" lowercase : Optional[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) lowercase : Tuple = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : str = {v: k for k, v in idalabel.items()} lowercase : List[Any] = int(deit_name[-6:-4] ) lowercase : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): lowercase : Union[str, Any] = 192 lowercase : List[Any] = 768 lowercase : List[Any] = 12 lowercase : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): lowercase : Optional[int] = 384 lowercase : str = 1_536 lowercase : Optional[int] = 12 lowercase : Tuple = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): lowercase : List[str] = 1_024 lowercase : List[str] = 4_096 lowercase : List[str] = 24 lowercase : List[str] = 16 # load original model from timm lowercase : List[str] = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase : Optional[int] = timm_model.state_dict() lowercase : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model lowercase : Tuple = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by DeiTImageProcessor lowercase : Optional[int] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowercase : Optional[Any] = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE__ , crop_size=config.image_size ) lowercase : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase : int = encoding["""pixel_values"""] lowercase : List[Any] = model(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = timm_model(SCREAMING_SNAKE_CASE__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
20
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase : Tuple = """pt""" elif is_tf_available(): lowercase : List[str] = """tf""" else: lowercase : str = """jax""" class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : List[str]= ByTaTokenizer _a : List[str]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=False ,snake_case=20 ,snake_case=5 ): '''simple docstring''' lowercase : Optional[int] = [] for i in range(len(snake_case ) ): try: lowercase : Union[str, Any] = tokenizer.decode([i] ,clean_up_tokenization_spaces=snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase : Optional[int] = list(filter(lambda snake_case : re.match(r"""^[ a-zA-Z]+$""" ,t[1] ) ,snake_case ) ) lowercase : int = list(filter(lambda snake_case : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=snake_case ) ,snake_case ) ) if max_length is not None and len(snake_case ) > max_length: lowercase : Optional[Any] = toks[:max_length] if min_length is not None and len(snake_case ) < min_length and len(snake_case ) > 0: while len(snake_case ) < min_length: lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] lowercase : Dict = [t[0] for t in toks] # Ensure consistency lowercase : int = tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) if " " not in output_txt and len(snake_case ) > 1: lowercase : int = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=snake_case ) + """ """ + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=snake_case ) ) if with_prefix_space: lowercase : Optional[int] = """ """ + output_txt lowercase : int = tokenizer.encode(snake_case ,add_special_tokens=snake_case ) return output_txt, output_ids def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.ta_base_tokenizer lowercase : Tuple = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowercase : List[str] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] ,batch_without_eos_added["""input_ids"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.ta_base_tokenizer lowercase : Union[str, Any] = """Unicode €.""" lowercase : int = tokenizer(snake_case ) lowercase : Optional[int] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] ,snake_case ) # decoding lowercase : str = tokenizer.decode(snake_case ) self.assertEqual(snake_case ,"""Unicode €.</s>""" ) lowercase : str = tokenizer("""e è é ê ë""" ) lowercase : Any = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] ,snake_case ) # decoding lowercase : str = tokenizer.decode(snake_case ) self.assertEqual(snake_case ,"""e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) ,"""e è é ê ë</s>""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.ta_base_tokenizer lowercase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowercase : str = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase : Optional[Any] = tokenizer(snake_case ,padding=snake_case ,return_tensors=snake_case ) self.assertIsInstance(snake_case ,snake_case ) if FRAMEWORK != "jax": lowercase : int = list(batch.input_ids.numpy()[0] ) else: lowercase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case ,snake_case ) self.assertEqual((2, 37) ,batch.input_ids.shape ) self.assertEqual((2, 37) ,batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.ta_base_tokenizer lowercase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase : str = tokenizer(snake_case ,padding=snake_case ,return_tensors=snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" ,snake_case ) self.assertIn("""attention_mask""" ,snake_case ) self.assertNotIn("""decoder_input_ids""" ,snake_case ) self.assertNotIn("""decoder_attention_mask""" ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.ta_base_tokenizer lowercase : Tuple = [ """Summary of the text.""", """Another summary.""", ] lowercase : List[str] = tokenizer( text_target=snake_case ,max_length=32 ,padding="""max_length""" ,truncation=snake_case ,return_tensors=snake_case ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.ta_base_tokenizer lowercase : str = ["""A long paragraph for summarization. </s>"""] lowercase : Optional[Any] = ["""Summary of the text. </s>"""] # fmt: off lowercase : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase : str = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase : int = tokenizer(snake_case ,text_target=snake_case ) self.assertEqual(snake_case ,batch["""input_ids"""][0] ) self.assertEqual(snake_case ,batch["""labels"""][0] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test lowercase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowercase : int = tempfile.mkdtemp() lowercase : Optional[int] = """ He is very happy, UNwant\u00E9d,running""" lowercase : Any = tokenizer.encode(snake_case ,add_special_tokens=snake_case ) tokenizer.save_pretrained(snake_case ) lowercase : str = tokenizer.__class__.from_pretrained(snake_case ) lowercase : Optional[int] = after_tokenizer.encode(snake_case ,add_special_tokens=snake_case ) self.assertListEqual(snake_case ,snake_case ) shutil.rmtree(snake_case ) lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Tuple = tempfile.mkdtemp() lowercase : str = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowercase : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowercase : Any = tokenizer.encode(snake_case ,add_special_tokens=snake_case ) tokenizer.save_pretrained(snake_case ) lowercase : Optional[int] = tokenizer.__class__.from_pretrained(snake_case ) lowercase : Union[str, Any] = after_tokenizer.encode(snake_case ,add_special_tokens=snake_case ) self.assertListEqual(snake_case ,snake_case ) self.assertIn("""new_additional_special_token""" ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) lowercase : Union[str, Any] = tokenizer.__class__.from_pretrained(snake_case ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case ) with open(os.path.join(snake_case ,"""special_tokens_map.json""" ) ,encoding="""utf-8""" ) as json_file: lowercase : Dict = json.load(snake_case ) with open(os.path.join(snake_case ,"""tokenizer_config.json""" ) ,encoding="""utf-8""" ) as json_file: lowercase : List[Any] = json.load(snake_case ) lowercase : List[Any] = [f"<extra_id_{i}>" for i in range(125 )] lowercase : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowercase : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(snake_case ,"""special_tokens_map.json""" ) ,"""w""" ,encoding="""utf-8""" ) as outfile: json.dump(snake_case ,snake_case ) with open(os.path.join(snake_case ,"""tokenizer_config.json""" ) ,"""w""" ,encoding="""utf-8""" ) as outfile: json.dump(snake_case ,snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase : Any = tokenizer_class.from_pretrained( snake_case ,) self.assertIn( """an_additional_special_token""" ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" ,lstrip=snake_case )] lowercase : Union[str, Any] = tokenizer_class.from_pretrained( snake_case ,additional_special_tokens=snake_case ,) self.assertIn("""a_new_additional_special_token""" ,tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case ) lowercase : Any = tokenizer_class.from_pretrained(snake_case ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.get_tokenizers(fast=snake_case ,do_lower_case=snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowercase : Any = tokenizer.convert_tokens_to_string(snake_case ) self.assertIsInstance(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase : Optional[Any] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowercase : str = 0 lowercase : int = tokenizer.convert_ids_to_tokens( snake_case ,skip_special_tokens=snake_case ) for attr in attributes_list: setattr(snake_case ,attr + """_id""" ,snake_case ) self.assertEqual(getattr(snake_case ,snake_case ) ,snake_case ) self.assertEqual(getattr(snake_case ,attr + """_id""" ) ,snake_case ) setattr(snake_case ,attr + """_id""" ,snake_case ) self.assertEqual(getattr(snake_case ,snake_case ) ,snake_case ) self.assertEqual(getattr(snake_case ,attr + """_id""" ) ,snake_case ) setattr(snake_case ,"""additional_special_tokens_ids""" ,[] ) self.assertListEqual(getattr(snake_case ,"""additional_special_tokens""" ) ,[] ) self.assertListEqual(getattr(snake_case ,"""additional_special_tokens_ids""" ) ,[] ) setattr(snake_case ,"""additional_special_tokens_ids""" ,[token_id_to_test_setters] ) self.assertListEqual(getattr(snake_case ,"""additional_special_tokens""" ) ,[token_to_test_setters] ) self.assertListEqual(getattr(snake_case ,"""additional_special_tokens_ids""" ) ,[token_id_to_test_setters] )
20
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase : Dict = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): _a : Optional[int]= MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : List[str] = VideoClassificationPipeline(model=snake_case ,image_processor=snake_case ,top_k=2 ) lowercase : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' for example in examples: lowercase : int = video_classifier(snake_case ) self.assertEqual( snake_case ,[ {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase : str = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) lowercase : List[Any] = pipeline( """video-classification""" ,model=snake_case ,feature_extractor=snake_case ,frame_sampling_rate=4 ) lowercase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : Any = video_classifier(snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] ,) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Optional[int] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowercase : List[Any] = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowercase : Tuple = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class __snake_case ( lowerCAmelCase ): _a : str= VOCAB_FILES_NAMES _a : Union[str, Any]= PRETRAINED_VOCAB_FILES_MAP _a : Tuple= PRETRAINED_INIT_CONFIGURATION _a : Optional[int]= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[Any]= RealmTokenizer def __init__( self ,snake_case=None ,snake_case=None ,snake_case=True ,snake_case="[UNK]" ,snake_case="[SEP]" ,snake_case="[PAD]" ,snake_case="[CLS]" ,snake_case="[MASK]" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__( snake_case ,tokenizer_file=snake_case ,do_lower_case=snake_case ,unk_token=snake_case ,sep_token=snake_case ,pad_token=snake_case ,cls_token=snake_case ,mask_token=snake_case ,tokenize_chinese_chars=snake_case ,strip_accents=snake_case ,**snake_case ,) lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,snake_case ) != do_lower_case or normalizer_state.get("""strip_accents""" ,snake_case ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,snake_case ) != tokenize_chinese_chars ): lowercase : Union[str, Any] = getattr(snake_case ,normalizer_state.pop("""type""" ) ) lowercase : str = do_lower_case lowercase : str = strip_accents lowercase : Optional[Any] = tokenize_chinese_chars lowercase : Tuple = normalizer_class(**snake_case ) lowercase : List[str] = do_lower_case def _SCREAMING_SNAKE_CASE ( self ,snake_case ,**snake_case ): '''simple docstring''' lowercase : Dict = PaddingStrategy.MAX_LENGTH lowercase : int = text lowercase : int = kwargs.pop("""text_pair""" ,snake_case ) lowercase : List[str] = kwargs.pop("""return_tensors""" ,snake_case ) lowercase : Optional[int] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(snake_case ): if batch_text_pair is not None: lowercase : str = batch_text_pair[idx] else: lowercase : Optional[Any] = None lowercase : Any = super().__call__(snake_case ,snake_case ,return_tensors=snake_case ,**snake_case ) lowercase : Tuple = encoded_candidates.get("""input_ids""" ) lowercase : Optional[int] = encoded_candidates.get("""attention_mask""" ) lowercase : Tuple = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case ) lowercase : Tuple = {key: item for key, item in output_data.items() if len(snake_case ) != 0} return BatchEncoding(snake_case ,tensor_type=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : str = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Any = self._tokenizer.model.save(snake_case ,name=snake_case ) return tuple(snake_case )
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowercase : int = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" lowercase : Tuple = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" lowercase : Optional[int] = max(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ) , b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
20
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase : Any = None lowercase : str = logging.get_logger(__name__) lowercase : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase : Tuple = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowercase : Union[str, Any] = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off lowercase : Tuple = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __snake_case ( lowerCAmelCase ): _a : Dict= VOCAB_FILES_NAMES _a : Dict= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : str= PRETRAINED_VOCAB_FILES_MAP _a : Tuple= ["input_ids", "attention_mask"] _a : int= NllbTokenizer _a : List[int]= [] _a : List[int]= [] def __init__( self ,snake_case=None ,snake_case=None ,snake_case="<s>" ,snake_case="</s>" ,snake_case="</s>" ,snake_case="<s>" ,snake_case="<unk>" ,snake_case="<pad>" ,snake_case="<mask>" ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=False ,**snake_case ,): '''simple docstring''' lowercase : int = AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token lowercase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case ,tokenizer_file=snake_case ,bos_token=snake_case ,eos_token=snake_case ,sep_token=snake_case ,cls_token=snake_case ,unk_token=snake_case ,pad_token=snake_case ,mask_token=snake_case ,src_lang=snake_case ,tgt_lang=snake_case ,additional_special_tokens=snake_case ,legacy_behaviour=snake_case ,**snake_case ,) lowercase : Union[str, Any] = vocab_file lowercase : int = False if not self.vocab_file else True lowercase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowercase : List[Any] = { lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase : Tuple = src_lang if src_lang is not None else """eng_Latn""" lowercase : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) lowercase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : List[Any] = [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,**snake_case ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowercase : List[Any] = src_lang lowercase : Dict = self(snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,**snake_case ) lowercase : Optional[int] = self.convert_tokens_to_ids(snake_case ) lowercase : Optional[Any] = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = "eng_Latn" ,snake_case = None ,snake_case = "fra_Latn" ,**snake_case ,): '''simple docstring''' lowercase : Tuple = src_lang lowercase : List[Any] = tgt_lang return super().prepare_seqaseq_batch(snake_case ,snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: lowercase : Optional[int] = [] lowercase : int = [self.eos_token_id, self.cur_lang_code] else: lowercase : Union[str, Any] = [self.cur_lang_code] lowercase : Any = [self.eos_token_id] lowercase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str ,pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: lowercase : Union[str, Any] = [] lowercase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowercase : Optional[Any] = [self.cur_lang_code] lowercase : List[Any] = [self.eos_token_id] lowercase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str ,pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return lowercase : Tuple = os.path.join( snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file ,snake_case ) return (out_vocab_file,)
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase : List[Any] = sys.version_info >= (3, 10) def _snake_case( SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Tuple: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class __snake_case : _a : int _a : float _a : str _a : bool @dataclass class __snake_case : _a : int= 42 _a : str= field(default="toto" , metadata={"help": "help message"} ) @dataclass class __snake_case : _a : bool= False _a : bool= True _a : Optional[bool]= None class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= "titi" _a : Dict= "toto" class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= "titi" _a : str= "toto" _a : Tuple= 42 @dataclass class __snake_case : _a : BasicEnum= "toto" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = BasicEnum(self.foo ) @dataclass class __snake_case : _a : MixedTypeEnum= "toto" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MixedTypeEnum(self.foo ) @dataclass class __snake_case : _a : Optional[int]= None _a : Optional[float]= field(default=lowerCAmelCase , metadata={"help": "help message"} ) _a : Optional[str]= None _a : Optional[List[str]]= list_field(default=[] ) _a : Optional[List[int]]= list_field(default=[] ) @dataclass class __snake_case : _a : List[int]= list_field(default=[] ) _a : List[int]= list_field(default=[1, 2, 3] ) _a : List[str]= list_field(default=["Hallo", "Bonjour", "Hello"] ) _a : List[float]= list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __snake_case : _a : List[int]= field() _a : str= field() _a : BasicEnum= field() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = BasicEnum(self.required_enum ) @dataclass class __snake_case : _a : int _a : "BasicEnum"= field() _a : "Optional[bool]"= None _a : "str"= field(default="toto" , metadata={"help": "help message"} ) _a : "List[str]"= list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __snake_case : _a : bool= False _a : bool= True _a : bool | None= None @dataclass class __snake_case : _a : int | None= None _a : float | None= field(default=lowerCAmelCase , metadata={"help": "help message"} ) _a : str | None= None _a : list[str] | None= list_field(default=[] ) _a : list[int] | None= list_field(default=[] ) class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' self.assertEqual(len(a._actions ) ,len(b._actions ) ) for x, y in zip(a._actions ,b._actions ): lowercase : Any = {k: v for k, v in vars(snake_case ).items() if k != """container"""} lowercase : str = {k: v for k, v in vars(snake_case ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" ,snake_case ) and yy.get("""choices""" ,snake_case ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](snake_case ) ,yy["""type"""](snake_case ) ) del xx["type"], yy["type"] self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = HfArgumentParser(snake_case ) lowercase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" ,type=snake_case ,required=snake_case ) expected.add_argument("""--bar""" ,type=snake_case ,required=snake_case ) expected.add_argument("""--baz""" ,type=snake_case ,required=snake_case ) expected.add_argument("""--flag""" ,type=snake_case ,default=snake_case ,const=snake_case ,nargs="""?""" ) self.argparsersEqual(snake_case ,snake_case ) lowercase : List[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((lowercase) , ) : Union[str, Any] = parser.parse_args_into_dataclasses(snake_case ,look_for_args_file=snake_case ) self.assertFalse(example.flag ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = HfArgumentParser(snake_case ) lowercase : int = argparse.ArgumentParser() expected.add_argument("""--foo""" ,default=42 ,type=snake_case ) expected.add_argument("""--baz""" ,default="""toto""" ,type=snake_case ,help="""help message""" ) self.argparsersEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = argparse.ArgumentParser() expected.add_argument("""--foo""" ,type=snake_case ,default=snake_case ,const=snake_case ,nargs="""?""" ) expected.add_argument("""--baz""" ,type=snake_case ,default=snake_case ,const=snake_case ,nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" ,action="""store_false""" ,default=snake_case ,dest="""baz""" ) expected.add_argument("""--opt""" ,type=snake_case ,default=snake_case ) lowercase : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case ) for dataclass_type in dataclass_types: lowercase : Optional[Any] = HfArgumentParser(snake_case ) self.argparsersEqual(snake_case ,snake_case ) lowercase : Dict = parser.parse_args([] ) self.assertEqual(snake_case ,Namespace(foo=snake_case ,baz=snake_case ,opt=snake_case ) ) lowercase : int = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(snake_case ,Namespace(foo=snake_case ,baz=snake_case ,opt=snake_case ) ) lowercase : Optional[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(snake_case ,Namespace(foo=snake_case ,baz=snake_case ,opt=snake_case ) ) lowercase : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(snake_case ,Namespace(foo=snake_case ,baz=snake_case ,opt=snake_case ) ) lowercase : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(snake_case ,Namespace(foo=snake_case ,baz=snake_case ,opt=snake_case ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = HfArgumentParser(snake_case ) lowercase : List[Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" ,default="""toto""" ,choices=["""titi""", """toto""", 42] ,type=make_choice_type_function(["""titi""", """toto""", 42] ) ,) self.argparsersEqual(snake_case ,snake_case ) lowercase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo ,"""toto""" ) lowercase : Optional[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.toto ) lowercase : int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo ,"""titi""" ) lowercase : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.titi ) lowercase : Tuple = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo ,42 ) lowercase : str = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.fourtytwo ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' @dataclass class __snake_case : _a : Literal["titi", "toto", 42]= "toto" lowercase : Union[str, Any] = HfArgumentParser(snake_case ) lowercase : Any = argparse.ArgumentParser() expected.add_argument( """--foo""" ,default="""toto""" ,choices=("""titi""", """toto""", 42) ,type=make_choice_type_function(["""titi""", """toto""", 42] ) ,) self.argparsersEqual(snake_case ,snake_case ) lowercase : Any = parser.parse_args([] ) self.assertEqual(args.foo ,"""toto""" ) lowercase : str = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo ,"""titi""" ) lowercase : Optional[Any] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo ,42 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = HfArgumentParser(snake_case ) lowercase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" ,nargs="""+""" ,default=[] ,type=snake_case ) expected.add_argument("""--bar_int""" ,nargs="""+""" ,default=[1, 2, 3] ,type=snake_case ) expected.add_argument("""--foo_str""" ,nargs="""+""" ,default=["""Hallo""", """Bonjour""", """Hello"""] ,type=snake_case ) expected.add_argument("""--foo_float""" ,nargs="""+""" ,default=[0.1, 0.2, 0.3] ,type=snake_case ) self.argparsersEqual(snake_case ,snake_case ) lowercase : int = parser.parse_args([] ) self.assertEqual( snake_case ,Namespace(foo_int=[] ,bar_int=[1, 2, 3] ,foo_str=["""Hallo""", """Bonjour""", """Hello"""] ,foo_float=[0.1, 0.2, 0.3] ) ,) lowercase : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(snake_case ,Namespace(foo_int=[1] ,bar_int=[2, 3] ,foo_str=["""a""", """b""", """c"""] ,foo_float=[0.1, 0.7] ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" ,default=snake_case ,type=snake_case ) expected.add_argument("""--bar""" ,default=snake_case ,type=snake_case ,help="""help message""" ) expected.add_argument("""--baz""" ,default=snake_case ,type=snake_case ) expected.add_argument("""--ces""" ,nargs="""+""" ,default=[] ,type=snake_case ) expected.add_argument("""--des""" ,nargs="""+""" ,default=[] ,type=snake_case ) lowercase : List[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(snake_case ) for dataclass_type in dataclass_types: lowercase : Union[str, Any] = HfArgumentParser(snake_case ) self.argparsersEqual(snake_case ,snake_case ) lowercase : Optional[int] = parser.parse_args([] ) self.assertEqual(snake_case ,Namespace(foo=snake_case ,bar=snake_case ,baz=snake_case ,ces=[] ,des=[] ) ) lowercase : Any = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(snake_case ,Namespace(foo=12 ,bar=3.14 ,baz="""42""" ,ces=["""a""", """b""", """c"""] ,des=[1, 2, 3] ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = HfArgumentParser(snake_case ) lowercase : Any = argparse.ArgumentParser() expected.add_argument("""--required_list""" ,nargs="""+""" ,type=snake_case ,required=snake_case ) expected.add_argument("""--required_str""" ,type=snake_case ,required=snake_case ) expected.add_argument( """--required_enum""" ,type=make_choice_type_function(["""titi""", """toto"""] ) ,choices=["""titi""", """toto"""] ,required=snake_case ,) self.argparsersEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = HfArgumentParser(snake_case ) lowercase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" ,type=snake_case ,required=snake_case ) expected.add_argument( """--required_enum""" ,type=make_choice_type_function(["""titi""", """toto"""] ) ,choices=["""titi""", """toto"""] ,required=snake_case ,) expected.add_argument("""--opt""" ,type=snake_case ,default=snake_case ) expected.add_argument("""--baz""" ,default="""toto""" ,type=snake_case ,help="""help message""" ) expected.add_argument("""--foo_str""" ,nargs="""+""" ,default=["""Hallo""", """Bonjour""", """Hello"""] ,type=snake_case ) self.argparsersEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = HfArgumentParser(snake_case ) lowercase : List[str] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } lowercase : Dict = parser.parse_dict(snake_case )[0] lowercase : Any = BasicExample(**snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = HfArgumentParser(snake_case ) lowercase : Optional[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(snake_case ,parser.parse_dict ,snake_case ,allow_extra_keys=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = HfArgumentParser(snake_case ) lowercase : List[str] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict = os.path.join(snake_case ,"""temp_json""" ) os.mkdir(snake_case ) with open(temp_local_path + """.json""" ,"""w+""" ) as f: json.dump(snake_case ,snake_case ) lowercase : Dict = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] lowercase : Any = BasicExample(**snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = HfArgumentParser(snake_case ) lowercase : Optional[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Optional[Any] = os.path.join(snake_case ,"""temp_yaml""" ) os.mkdir(snake_case ) with open(temp_local_path + """.yaml""" ,"""w+""" ) as f: yaml.dump(snake_case ,snake_case ) lowercase : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] lowercase : Any = BasicExample(**snake_case ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = HfArgumentParser(snake_case ) self.assertIsNotNone(snake_case )
20
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
1
import os import sys import unittest lowercase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase : List[Any] = os.path.join(git_repo_path, """src""", """transformers""") lowercase : List[Any] = """ {0} = None """ lowercase : Tuple = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ lowercase : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(snake_case ) lowercase : List[str] = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(snake_case ,"""tokenizers""" ) lowercase : List[Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(snake_case ,"""tensorflow_text""" ) lowercase : Any = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(snake_case ,"""sentencepiece_and_tokenizers""" ) lowercase : Tuple = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(snake_case ,"""sentencepiece_and_tensorflow_text""" ) lowercase : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(snake_case ,"""sentencepiece_and_tokenizers_and_vision""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" ,snake_case ) self.assertIn("""tensorflow_text""" ,snake_case ) self.assertIn("""sentencepiece_and_tokenizers""" ,snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" ,objects["""torch"""] ) self.assertIn("""TFBertModel""" ,objects["""tf"""] ) self.assertIn("""FlaxBertModel""" ,objects["""flax"""] ) self.assertIn("""BertModel""" ,objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" ,objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" ,objects["""sentencepiece_and_tokenizers"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = create_dummy_object("""CONSTANT""" ,"""'torch'""" ) self.assertEqual(snake_case ,"""\nCONSTANT = None\n""" ) lowercase : Any = create_dummy_object("""function""" ,"""'torch'""" ) self.assertEqual( snake_case ,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowercase : Any = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowercase : int = create_dummy_object("""FakeClass""" ,"""'torch'""" ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowercase : Union[str, Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] ,snake_case )
20
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : List[str] = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model lowercase : Optional[Any] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = [] lowercase : List[Any] = [] lowercase : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase : List[str] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' lowercase : List[Any] = name[1:] # figure out how many levels deep the name is lowercase : int = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(SCREAMING_SNAKE_CASE__ ) # read data lowercase : List[Any] = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) names.append("""/""".join(SCREAMING_SNAKE_CASE__ ) ) arrays.append(SCREAMING_SNAKE_CASE__ ) logger.info(f"Read a total of {len(SCREAMING_SNAKE_CASE__ ):,} layers" ) # Sanity check if len(set(SCREAMING_SNAKE_CASE__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(SCREAMING_SNAKE_CASE__ ) )})" ) lowercase : Union[str, Any] = list(set(SCREAMING_SNAKE_CASE__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = full_name.split("""/""" ) lowercase : int = model lowercase : List[Any] = [] for i, m_name in enumerate(SCREAMING_SNAKE_CASE__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): lowercase : Tuple = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , """embeddings""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """encoder""" ) lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , """layer""" ) lowercase : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """pooler""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , """token_type_embeddings""" ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) lowercase : Any = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) lowercase : Tuple = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """attention""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) lowercase : str = getattr(SCREAMING_SNAKE_CASE__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """intermediate""" ) lowercase : int = getattr(SCREAMING_SNAKE_CASE__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) lowercase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , """weight""" ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary lowercase : List[Any] = """.""".join(SCREAMING_SNAKE_CASE__ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , SCREAMING_SNAKE_CASE__ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase : str = array.transpose() if pointer.shape == array.shape: lowercase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) lowercase : Any = BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = BertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowercase : str = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
20
import os import numpy import onnx def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : int = a.name lowercase : Any = b.name lowercase : Optional[Any] = """""" lowercase : Dict = """""" lowercase : int = a == b lowercase : int = name_a lowercase : List[str] = name_b return res def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Any = list(model.graph.initializer ) lowercase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : Union[str, Any] = inits[i].name lowercase : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : str = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[str] = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : int = {} lowercase : Optional[Any] = [] lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : int = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowercase : Tuple = inits[i].name lowercase : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) lowercase : str = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """optimized_""" + model_file_name lowercase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
20
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : int = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : List[str] = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowercase : List[Any] = { """unc-nlp/lxmert-base-uncased""": 512, } lowercase : Dict = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class __snake_case ( lowerCAmelCase ): _a : List[Any]= VOCAB_FILES_NAMES _a : Optional[int]= PRETRAINED_VOCAB_FILES_MAP _a : List[Any]= PRETRAINED_INIT_CONFIGURATION _a : Dict= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[Any]= LxmertTokenizer def __init__( self ,snake_case=None ,snake_case=None ,snake_case=True ,snake_case="[UNK]" ,snake_case="[SEP]" ,snake_case="[PAD]" ,snake_case="[CLS]" ,snake_case="[MASK]" ,snake_case=True ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__( snake_case ,tokenizer_file=snake_case ,do_lower_case=snake_case ,unk_token=snake_case ,sep_token=snake_case ,pad_token=snake_case ,cls_token=snake_case ,mask_token=snake_case ,tokenize_chinese_chars=snake_case ,strip_accents=snake_case ,**snake_case ,) lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,snake_case ) != do_lower_case or normalizer_state.get("""strip_accents""" ,snake_case ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,snake_case ) != tokenize_chinese_chars ): lowercase : Optional[Any] = getattr(snake_case ,normalizer_state.pop("""type""" ) ) lowercase : int = do_lower_case lowercase : Tuple = strip_accents lowercase : Union[str, Any] = tokenize_chinese_chars lowercase : str = normalizer_class(**snake_case ) lowercase : Tuple = do_lower_case def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Dict = [self.sep_token_id] lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Dict = self._tokenizer.model.save(snake_case ,name=snake_case ) return tuple(snake_case )
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : int = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "gptj" _a : Tuple= { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,snake_case=50400 ,snake_case=2048 ,snake_case=4096 ,snake_case=28 ,snake_case=16 ,snake_case=64 ,snake_case=None ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,snake_case=False ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Optional[Any] = n_positions lowercase : Any = n_embd lowercase : Tuple = n_layer lowercase : Any = n_head lowercase : List[Any] = n_inner lowercase : Optional[Any] = rotary_dim lowercase : List[str] = activation_function lowercase : List[str] = resid_pdrop lowercase : List[str] = embd_pdrop lowercase : Optional[int] = attn_pdrop lowercase : Optional[Any] = layer_norm_epsilon lowercase : Tuple = initializer_range lowercase : List[str] = use_cache lowercase : Tuple = bos_token_id lowercase : int = eos_token_id super().__init__( bos_token_id=snake_case ,eos_token_id=snake_case ,tie_word_embeddings=snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,snake_case = "default" ,snake_case = None ,snake_case = False ,): '''simple docstring''' super().__init__(snake_case ,task=snake_case ,patching_specs=snake_case ,use_past=snake_case ) if not getattr(self._config ,"""pad_token_id""" ,snake_case ): # TODO: how to do that better? lowercase : List[Any] = 0 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : str = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.n_layer @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.n_head def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Optional[Any] = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : Tuple = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Union[str, Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowercase : Any = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
from ...configuration_utils import PretrainedConfig lowercase : Dict = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class __snake_case ( lowerCAmelCase ): _a : Tuple= "tapas" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=1024 ,snake_case=[3, 256, 256, 2, 256, 256, 10] ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=0 ,snake_case=10.0 ,snake_case=0 ,snake_case=1.0 ,snake_case=None ,snake_case=1.0 ,snake_case=False ,snake_case=None ,snake_case=1.0 ,snake_case=1.0 ,snake_case=False ,snake_case=False ,snake_case="ratio" ,snake_case=None ,snake_case=None ,snake_case=64 ,snake_case=32 ,snake_case=False ,snake_case=True ,snake_case=False ,snake_case=False ,snake_case=True ,snake_case=False ,snake_case=None ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,**snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase : List[str] = vocab_size lowercase : Optional[int] = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Dict = hidden_act lowercase : Optional[int] = intermediate_size lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : Tuple = max_position_embeddings lowercase : str = type_vocab_sizes lowercase : Union[str, Any] = initializer_range lowercase : Union[str, Any] = layer_norm_eps # Fine-tuning task hyperparameters lowercase : Dict = positive_label_weight lowercase : Dict = num_aggregation_labels lowercase : Optional[int] = aggregation_loss_weight lowercase : Any = use_answer_as_supervision lowercase : int = answer_loss_importance lowercase : Tuple = use_normalized_answer_loss lowercase : List[str] = huber_loss_delta lowercase : Optional[Any] = temperature lowercase : Dict = aggregation_temperature lowercase : Union[str, Any] = use_gumbel_for_cells lowercase : Dict = use_gumbel_for_aggregation lowercase : Optional[Any] = average_approximation_function lowercase : Optional[Any] = cell_selection_preference lowercase : Optional[Any] = answer_loss_cutoff lowercase : List[Any] = max_num_rows lowercase : int = max_num_columns lowercase : List[str] = average_logits_per_cell lowercase : str = select_one_column lowercase : List[Any] = allow_empty_column_selection lowercase : str = init_cell_selection_weights_to_zero lowercase : str = reset_position_index_per_cell lowercase : Any = disable_per_token_loss # Aggregation hyperparameters lowercase : List[Any] = aggregation_labels lowercase : str = no_aggregation_label_index if isinstance(self.aggregation_labels ,snake_case ): lowercase : List[str] = {int(snake_case ): v for k, v in aggregation_labels.items()}
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) lowercase : Dict = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house lowercase : List[Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowercase : str = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase : List[str] = model(snake_case )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,snake_case ,atol=1e-3 ) ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) lowercase : List[Any] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house lowercase : Any = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim lowercase : Dict = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase : Dict = model(snake_case )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,snake_case ,atol=1e-3 ) )
20
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( lowerCAmelCase ): _a : str= "gpt_neo" _a : Optional[int]= ["past_key_values"] _a : Dict= {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,snake_case=50257 ,snake_case=2048 ,snake_case=2048 ,snake_case=24 ,snake_case=[[["global", "local"], 12]] ,snake_case=16 ,snake_case=None ,snake_case=256 ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Union[str, Any] = num_layers lowercase : Union[str, Any] = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Optional[int] = activation_function lowercase : List[str] = resid_dropout lowercase : int = embed_dropout lowercase : Optional[int] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : List[str] = use_cache lowercase : Optional[int] = bos_token_id lowercase : int = eos_token_id lowercase : Union[str, Any] = attention_types lowercase : Dict = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: import torch lowercase : Tuple = input.size() lowercase : int = len(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = shape[dimension] lowercase : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 lowercase : Dict = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] lowercase : Union[str, Any] = [slice(SCREAMING_SNAKE_CASE__ )] * rank lowercase : Optional[Any] = indices lowercase : List[str] = input[s] lowercase : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: import torch lowercase : Union[str, Any] = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = remainders == 0 lowercase : Optional[int] = candidates[divisor_indices] lowercase : List[Any] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Any = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Any = ordered_inputs["""attention_mask"""].dtype lowercase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : List[Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase : Optional[int] = """Usage of script: script_name <size_of_canvas:int>""" lowercase : List[Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[list[bool]]: lowercase : Optional[Any] = [[False for i in range(SCREAMING_SNAKE_CASE__ )] for j in range(SCREAMING_SNAKE_CASE__ )] return canvas def _snake_case( SCREAMING_SNAKE_CASE__ ) -> None: for i, row in enumerate(SCREAMING_SNAKE_CASE__ ): for j, _ in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : int = bool(random.getrandbits(1 ) ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[list[bool]]: lowercase : List[str] = np.array(SCREAMING_SNAKE_CASE__ ) lowercase : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(SCREAMING_SNAKE_CASE__ ): for c, pt in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : str = __judge_point( SCREAMING_SNAKE_CASE__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowercase : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowercase : list[list[bool]] = current_canvas.tolist() return return_canvas def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bool: lowercase : List[str] = 0 lowercase : int = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowercase : Union[str, Any] = pt if pt: if alive < 2: lowercase : Any = False elif alive == 2 or alive == 3: lowercase : Tuple = True elif alive > 3: lowercase : Dict = False else: if alive == 3: lowercase : Optional[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase : Tuple = int(sys.argv[1]) # main working structure of this module. lowercase : Dict = create_canvas(canvas_size) seed(c) lowercase , lowercase : int = plt.subplots() fig.show() lowercase : List[str] = ListedColormap(["""w""", """k"""]) try: while True: lowercase : Any = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1e-1_2 ) -> Optional[Any]: lowercase : str = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE__ , axis=1 ) , a_min=SCREAMING_SNAKE_CASE__ ) ).T lowercase : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE__ , axis=1 ) , a_min=SCREAMING_SNAKE_CASE__ ) ).T return jnp.matmul(SCREAMING_SNAKE_CASE__ , norm_emb_a.T ) class __snake_case ( nn.Module ): _a : CLIPConfig _a : jnp.dtype= jnp.floataa def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = FlaxCLIPVisionModule(self.config.vision_config ) lowercase : int = nn.Dense(self.config.projection_dim ,use_bias=snake_case ,dtype=self.dtype ) lowercase : Union[str, Any] = self.param("""concept_embeds""" ,jax.nn.initializers.ones ,(17, self.config.projection_dim) ) lowercase : List[Any] = self.param( """special_care_embeds""" ,jax.nn.initializers.ones ,(3, self.config.projection_dim) ) lowercase : int = self.param("""concept_embeds_weights""" ,jax.nn.initializers.ones ,(17,) ) lowercase : str = self.param("""special_care_embeds_weights""" ,jax.nn.initializers.ones ,(3,) ) def __call__( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.vision_model(snake_case )[1] lowercase : Optional[Any] = self.visual_projection(snake_case ) lowercase : List[Any] = jax_cosine_distance(snake_case ,self.special_care_embeds ) lowercase : List[str] = jax_cosine_distance(snake_case ,self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase : Optional[Any] = 0.0 lowercase : Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase : Any = jnp.round(snake_case ,3 ) lowercase : Any = jnp.any(special_scores > 0 ,axis=1 ,keepdims=snake_case ) # Use a lower threshold if an image has any special care concept lowercase : Tuple = is_special_care * 0.01 lowercase : Tuple = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase : Dict = jnp.round(snake_case ,3 ) lowercase : Dict = jnp.any(concept_scores > 0 ,axis=1 ) return has_nsfw_concepts class __snake_case ( lowerCAmelCase ): _a : str= CLIPConfig _a : Dict= "clip_input" _a : Optional[Any]= FlaxStableDiffusionSafetyCheckerModule def __init__( self ,snake_case ,snake_case = None ,snake_case = 0 ,snake_case = jnp.floataa ,snake_case = True ,**snake_case ,): '''simple docstring''' if input_shape is None: lowercase : List[str] = (1, 224, 224, 3) lowercase : Union[str, Any] = self.module_class(config=snake_case ,dtype=snake_case ,**snake_case ) super().__init__(snake_case ,snake_case ,input_shape=snake_case ,seed=snake_case ,dtype=snake_case ,_do_init=_do_init ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : str = jax.random.normal(snake_case ,snake_case ) lowercase , lowercase : int = jax.random.split(snake_case ) lowercase : List[str] = {"""params""": params_rng, """dropout""": dropout_rng} lowercase : Tuple = self.module.init(snake_case ,snake_case )["""params"""] return random_params def __call__( self ,snake_case ,snake_case = None ,): '''simple docstring''' lowercase : Optional[int] = jnp.transpose(snake_case ,(0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} ,jnp.array(snake_case ,dtype=jnp.floataa ) ,rngs={} ,)
20
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase : Optional[Any] = logging.getLogger(__name__) class __snake_case : def __init__( self ): '''simple docstring''' lowercase : Optional[int] = False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if not self.initialized: lowercase : int = RagRetriever( snake_case ,question_encoder_tokenizer=snake_case ,generator_tokenizer=snake_case ,index=snake_case ,init_retrieval=snake_case ,) lowercase : Dict = True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.retriever.index.init_index() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase , lowercase : List[Any] = self.retriever._main_retrieve(snake_case ,snake_case ) return doc_ids, retrieved_doc_embeds class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(snake_case ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( snake_case ,question_encoder_tokenizer=snake_case ,generator_tokenizer=snake_case ,index=snake_case ,init_retrieval=snake_case ,) lowercase : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(snake_case ,snake_case ,snake_case ,snake_case ) for worker in self.retrieval_workers ] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase : Tuple = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] lowercase , lowercase : Dict = ray.get(random_worker.retrieve.remote(snake_case ,snake_case ) ) else: lowercase , lowercase : Optional[Any] = self._main_retrieve(snake_case ,snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' return super(snake_case ,cls ).get_tokenizers(snake_case ,snake_case ,**snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase : int = kwargs.pop("""config""" ,snake_case ) or RagConfig.from_pretrained(snake_case ,**snake_case ) lowercase : str = RagTokenizer.from_pretrained(snake_case ,config=snake_case ) lowercase : int = rag_tokenizer.question_encoder lowercase : int = rag_tokenizer.generator if indexed_dataset is not None: lowercase : List[Any] = """custom""" lowercase : int = CustomHFIndex(config.retrieval_vector_size ,snake_case ) else: lowercase : Tuple = cls._build_index(snake_case ) return cls( snake_case ,question_encoder_tokenizer=snake_case ,generator_tokenizer=snake_case ,retrieval_workers=snake_case ,index=snake_case ,)
20
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=32 ,snake_case=5 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : str = parent lowercase : List[str] = batch_size lowercase : Dict = seq_length lowercase : Tuple = is_training lowercase : Any = use_token_type_ids lowercase : str = use_labels lowercase : List[str] = vocab_size lowercase : Union[str, Any] = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Any = hidden_act lowercase : Any = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : Optional[int] = max_position_embeddings lowercase : str = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Union[str, Any] = initializer_range lowercase : List[str] = num_labels lowercase : Any = num_choices lowercase : Optional[int] = scope lowercase : Dict = self.vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Optional[Any] = None if self.use_token_type_ids: lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : Any = None lowercase : Dict = None lowercase : Any = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : List[str] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) lowercase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : int = OpenAIGPTModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : Dict = model(snake_case ,token_type_ids=snake_case ,head_mask=snake_case ) lowercase : Union[str, Any] = model(snake_case ,token_type_ids=snake_case ) lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : List[Any] = OpenAIGPTLMHeadModel(snake_case ) model.to(snake_case ) model.eval() lowercase : Dict = model(snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : List[Any] = OpenAIGPTDoubleHeadsModel(snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : List[Any] = self.num_labels lowercase : Any = OpenAIGPTForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = model(snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Any = config_and_inputs lowercase : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Optional[Any]= ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a : int= ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a : str= ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=False ): '''simple docstring''' lowercase : Tuple = super()._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowercase : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case ,) lowercase : Tuple = inputs_dict["""labels"""] lowercase : Dict = inputs_dict["""labels"""] lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=snake_case ,) lowercase : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=snake_case ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OpenAIGPTModelTester(self ) lowercase : str = ConfigTester(self ,config_class=snake_case ,n_embd=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = OpenAIGPTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(snake_case ) lowercase : List[Any] = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=snake_case ) # the president is lowercase : str = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowercase : int = model.generate(snake_case ,do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() ,snake_case )
20
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
1
from math import ceil def _snake_case( SCREAMING_SNAKE_CASE__ = 1_001 ) -> int: lowercase : List[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase : List[Any] = 2 * i + 1 lowercase : Tuple = 2 * i lowercase : List[str] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowercase : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
20
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase : Any = logging.get_logger(__name__) # General docstring lowercase : Tuple = """RegNetConfig""" # Base docstring lowercase : int = """facebook/regnet-y-040""" lowercase : str = [1, 1088, 7, 7] # Image classification docstring lowercase : Tuple = """facebook/regnet-y-040""" lowercase : Optional[int] = """tabby, tabby cat""" lowercase : str = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case = 3 ,snake_case = 1 ,snake_case = 1 ,snake_case = "relu" ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase : Any = tf.keras.layers.ConvaD( filters=snake_case ,kernel_size=snake_case ,strides=snake_case ,padding="""VALID""" ,groups=snake_case ,use_bias=snake_case ,name="""convolution""" ,) lowercase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name="""normalization""" ) lowercase : Dict = ACTaFN[activation] if activation is not None else tf.identity def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.convolution(self.padding(snake_case ) ) lowercase : Any = self.normalization(snake_case ) lowercase : int = self.activation(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Dict = config.num_channels lowercase : Any = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="""embedder""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = shape_list(snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase : str = tf.transpose(snake_case ,perm=(0, 2, 3, 1) ) lowercase : Dict = self.embedder(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case = 2 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Dict = tf.keras.layers.ConvaD( filters=snake_case ,kernel_size=1 ,strides=snake_case ,use_bias=snake_case ,name="""convolution""" ) lowercase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name="""normalization""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case ) ,training=snake_case ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case ,name="""pooler""" ) lowercase : Dict = [ tf.keras.layers.ConvaD(filters=snake_case ,kernel_size=1 ,activation="""relu""" ,name="""attention.0""" ), tf.keras.layers.ConvaD(filters=snake_case ,kernel_size=1 ,activation="""sigmoid""" ,name="""attention.2""" ), ] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.pooler(snake_case ) for layer_module in self.attention: lowercase : List[Any] = layer_module(snake_case ) lowercase : Union[str, Any] = hidden_state * pooled return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 1 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[Any] = in_channels != out_channels or stride != 1 lowercase : Tuple = max(1 ,out_channels // config.groups_width ) lowercase : str = ( TFRegNetShortCut(snake_case ,stride=snake_case ,name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" ,name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase : List[Any] = [ TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=config.hidden_act ,name="""layer.0""" ), TFRegNetConvLayer( snake_case ,stride=snake_case ,groups=snake_case ,activation=config.hidden_act ,name="""layer.1""" ), TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=snake_case ,name="""layer.2""" ), ] lowercase : Any = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = hidden_state for layer_module in self.layers: lowercase : Optional[int] = layer_module(snake_case ) lowercase : Optional[Any] = self.shortcut(snake_case ) hidden_state += residual lowercase : Dict = self.activation(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 1 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : Optional[Any] = in_channels != out_channels or stride != 1 lowercase : List[Any] = max(1 ,out_channels // config.groups_width ) lowercase : Optional[Any] = ( TFRegNetShortCut(snake_case ,stride=snake_case ,name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" ,name="""shortcut""" ) ) lowercase : Optional[int] = [ TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=config.hidden_act ,name="""layer.0""" ), TFRegNetConvLayer( snake_case ,stride=snake_case ,groups=snake_case ,activation=config.hidden_act ,name="""layer.1""" ), TFRegNetSELayer(snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ,name="""layer.2""" ), TFRegNetConvLayer(snake_case ,kernel_size=1 ,activation=snake_case ,name="""layer.3""" ), ] lowercase : List[Any] = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = hidden_state for layer_module in self.layers: lowercase : Tuple = layer_module(snake_case ) lowercase : Union[str, Any] = self.shortcut(snake_case ) hidden_state += residual lowercase : Optional[int] = self.activation(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case = 2 ,snake_case = 2 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[str] = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer lowercase : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(snake_case ,snake_case ,snake_case ,stride=snake_case ,name="""layers.0""" ), *[layer(snake_case ,snake_case ,snake_case ,name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' for layer_module in self.layers: lowercase : Dict = layer_module(snake_case ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="""stages.0""" ,) ) lowercase : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case ,snake_case ,snake_case ,depth=snake_case ,name=f"stages.{i+1}" ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ,snake_case = True ): '''simple docstring''' lowercase : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase : str = hidden_states + (hidden_state,) lowercase : Union[str, Any] = stage_module(snake_case ) if output_hidden_states: lowercase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case ,hidden_states=snake_case ) @keras_serializable class __snake_case ( tf.keras.layers.Layer ): _a : List[Any]= RegNetConfig def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[str] = config lowercase : Optional[int] = TFRegNetEmbeddings(snake_case ,name="""embedder""" ) lowercase : List[Any] = TFRegNetEncoder(snake_case ,name="""encoder""" ) lowercase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case ,name="""pooler""" ) @unpack_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = False ,): '''simple docstring''' lowercase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : List[Any] = self.embedder(snake_case ,training=snake_case ) lowercase : Optional[Any] = self.encoder( snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ,training=snake_case ) lowercase : Optional[Any] = encoder_outputs[0] lowercase : Optional[int] = self.pooler(snake_case ) # Change to NCHW output format have uniformity in the modules lowercase : Union[str, Any] = tf.transpose(snake_case ,perm=(0, 3, 1, 2) ) lowercase : Dict = tf.transpose(snake_case ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase : Any = tuple([tf.transpose(snake_case ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case ,pooler_output=snake_case ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= RegNetConfig _a : Optional[int]= "regnet" _a : str= "pixel_values" @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} lowercase : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ lowercase : Tuple = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(snake_case ,*snake_case ,**snake_case ) lowercase : Dict = TFRegNetMainLayer(snake_case ,name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case=False ,): '''simple docstring''' lowercase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Optional[int] = self.regnet( pixel_values=snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ,training=snake_case ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase , ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): def __init__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(snake_case ,*snake_case ,**snake_case ) lowercase : Optional[int] = config.num_labels lowercase : Optional[Any] = TFRegNetMainLayer(snake_case ,name="""regnet""" ) # classification head lowercase : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case=False ,): '''simple docstring''' lowercase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Optional[int] = self.regnet( snake_case ,output_hidden_states=snake_case ,return_dict=snake_case ,training=snake_case ) lowercase : Any = outputs.pooler_output if return_dict else outputs[1] lowercase : Dict = self.classifier[0](snake_case ) lowercase : Optional[int] = self.classifier[1](snake_case ) lowercase : Dict = None if labels is None else self.hf_compute_loss(labels=snake_case ,logits=snake_case ) if not return_dict: lowercase : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case ,logits=snake_case ,hidden_states=outputs.hidden_states )
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float(moles / volume ) * nfactor ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
20
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
1
from __future__ import annotations import math def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) def _snake_case( ) -> None: lowercase : str = [90, 23, 6, 33, 21, 65, 123, 34_423] lowercase : Dict = math.log(len(SCREAMING_SNAKE_CASE__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
1
from typing import List from .keymap import KEYMAP, get_character def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: def decorator(SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ ) return func return decorator def _snake_case( *SCREAMING_SNAKE_CASE__ ) -> Tuple: def decorator(SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ ) return func return decorator class __snake_case ( lowerCAmelCase ): def __new__( cls ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = super().__new__(cls ,snake_case ,snake_case ,snake_case ) if not hasattr(snake_case ,"""key_handler""" ): setattr(snake_case ,"""key_handler""" ,{} ) setattr(snake_case ,"""handle_input""" ,KeyHandler.handle_input ) for value in attrs.values(): lowercase : Union[str, Any] = getattr(snake_case ,"""handle_key""" ,[] ) for key in handled_keys: lowercase : Optional[Any] = value return new_cls @staticmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowercase : Optional[Any] = get_character() if char != KEYMAP["undefined"]: lowercase : List[Any] = ord(snake_case ) lowercase : Any = cls.key_handler.get(snake_case ) if handler: lowercase : List[str] = char return handler(cls ) else: return None def _snake_case( cls ) -> Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
20
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): _a : Optional[int]= MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : List[str] = VideoClassificationPipeline(model=snake_case ,image_processor=snake_case ,top_k=2 ) lowercase : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' for example in examples: lowercase : int = video_classifier(snake_case ) self.assertEqual( snake_case ,[ {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase : str = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) lowercase : List[Any] = pipeline( """video-classification""" ,model=snake_case ,feature_extractor=snake_case ,frame_sampling_rate=4 ) lowercase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : Any = video_classifier(snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] ,) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowercase : str = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ lowercase : Optional[Any] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ lowercase : List[str] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" ,id="""sequence""" ) ,id="""references""" ), } ) ,codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] ,reference_urls=[ """https://github.com/m-popovic/chrF""", ] ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = CHRF.CHAR_ORDER ,snake_case = CHRF.WORD_ORDER ,snake_case = CHRF.BETA ,snake_case = False ,snake_case = False ,snake_case = False ,): '''simple docstring''' lowercase : Any = len(references[0] ) if any(len(snake_case ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase : int = [[refs[i] for refs in references] for i in range(snake_case )] lowercase : Tuple = CHRF(snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ) lowercase : Optional[Any] = sb_chrf.corpus_score(snake_case ,snake_case ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def _SCREAMING_SNAKE_CASE ( *snake_case ,**snake_case ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): _a : str= MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = pipeline("""visual-question-answering""" ,model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowercase : Any = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = vqa_pipeline(snake_case ,top_k=1 ) self.assertEqual( snake_case ,[ [{"""score""": ANY(snake_case ), """answer""": ANY(snake_case )}], [{"""score""": ANY(snake_case ), """answer""": ANY(snake_case )}], ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = pipeline("""visual-question-answering""" ,model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowercase : Union[str, Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase : int = """How many cats are there?""" lowercase : str = vqa_pipeline(image=snake_case ,question="""How many cats are there?""" ,top_k=2 ) self.assertEqual( snake_case ,[{"""score""": ANY(snake_case ), """answer""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """answer""": ANY(snake_case )}] ) lowercase : List[str] = vqa_pipeline({"""image""": image, """question""": question} ,top_k=2 ) self.assertEqual( snake_case ,[{"""score""": ANY(snake_case ), """answer""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """answer""": ANY(snake_case )}] ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = pipeline("""visual-question-answering""" ,model="""dandelin/vilt-b32-finetuned-vqa""" ) lowercase : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase : Optional[int] = """How many cats are there?""" lowercase : Any = vqa_pipeline(image=snake_case ,question=snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowercase : str = vqa_pipeline({"""image""": image, """question""": question} ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowercase : Any = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[[{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 ,) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) set_seed(770) lowercase : List[str] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowercase : str = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowercase : Dict = os.path.dirname(os.path.abspath(__file__)) lowercase : Optional[int] = os.path.join(os.path.expanduser("""~"""), """.cache""") lowercase : Optional[Any] = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Tuple: lowercase : int = model_type if use_small: key += "_small" return os.path.join(SCREAMING_SNAKE_CASE__ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) hf_hub_download(repo_id=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , local_dir=SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="text" ) -> int: if model_type == "text": lowercase : List[str] = BarkSemanticModel lowercase : int = BarkSemanticConfig lowercase : int = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase : Dict = BarkCoarseModel lowercase : Union[str, Any] = BarkCoarseConfig lowercase : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": lowercase : int = BarkFineModel lowercase : Dict = BarkFineConfig lowercase : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() lowercase : Dict = f"{model_type}_small" if use_small else model_type lowercase : Any = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) # this is a hack lowercase : int = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: lowercase : List[Any] = model_args["""vocab_size"""] lowercase : Optional[int] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase : Tuple = model_args.pop("""n_head""" ) lowercase : Optional[int] = model_args.pop("""n_embd""" ) lowercase : Tuple = model_args.pop("""n_layer""" ) lowercase : Dict = ConfigClass(**checkpoint["""model_args"""] ) lowercase : int = ModelClass(config=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = GenerationConfigClass() lowercase : int = model_generation_config lowercase : List[Any] = checkpoint["""model"""] # fixup checkpoint lowercase : Optional[Any] = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(SCREAMING_SNAKE_CASE__ ): # replace part of the key with corresponding layer name in HF implementation lowercase : List[Any] = k[len(SCREAMING_SNAKE_CASE__ ) :] for old_layer_name in new_layer_name_dict: lowercase : Optional[Any] = new_k.replace(SCREAMING_SNAKE_CASE__ , new_layer_name_dict[old_layer_name] ) lowercase : Dict = state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase : Tuple = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} lowercase : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase : str = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(SCREAMING_SNAKE_CASE__ ) != 0: raise ValueError(f"extra keys found: {extra_keys}" ) if len(SCREAMING_SNAKE_CASE__ ) != 0: raise ValueError(f"missing keys: {missing_keys}" ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) lowercase : Any = model.num_parameters(exclude_embeddings=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = checkpoint["""best_val_loss"""].item() logger.info(f"model loaded: {round(n_params/1e6 , 1 )}M params, {round(SCREAMING_SNAKE_CASE__ , 3 )} loss" ) model.eval() model.to(SCREAMING_SNAKE_CASE__ ) del checkpoint, state_dict return model def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="text" ) -> Any: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase : Any = """cpu""" # do conversion on cpu lowercase : Optional[Any] = _get_ckpt_path(SCREAMING_SNAKE_CASE__ , use_small=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = _load_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , model_type=SCREAMING_SNAKE_CASE__ , use_small=SCREAMING_SNAKE_CASE__ ) # load bark initial model lowercase : Dict = _bark_load_model(SCREAMING_SNAKE_CASE__ , """cpu""" , model_type=SCREAMING_SNAKE_CASE__ , use_small=SCREAMING_SNAKE_CASE__ ) if model_type == "text": lowercase : Dict = bark_model["""model"""] if model.num_parameters(exclude_embeddings=SCREAMING_SNAKE_CASE__ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model lowercase : Optional[int] = 5 lowercase : Any = 10 if model_type in ["text", "coarse"]: lowercase : Optional[int] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowercase : Tuple = bark_model(SCREAMING_SNAKE_CASE__ )[0] lowercase : Any = model(SCREAMING_SNAKE_CASE__ ) # take last logits lowercase : str = output_new_model_total.logits[:, [-1], :] else: lowercase : int = 3 lowercase : Optional[int] = 8 lowercase : Optional[Any] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase : int = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = bark_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) ) lowercase : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) ) lowercase : Optional[int] = BarkFineConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) ) lowercase : Tuple = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) lowercase : str = BarkSemanticModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = BarkCoarseModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = BarkFineModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : int = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) lowercase : Optional[Any] = BarkConfig.from_sub_model_configs( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase : Optional[int] = BarkModel(SCREAMING_SNAKE_CASE__ ) lowercase : int = semantic lowercase : Union[str, Any] = coarseAcoustic lowercase : List[str] = fineAcoustic lowercase : Dict = codec lowercase : Optional[int] = bark_generation_config Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) bark.save_pretrained(SCREAMING_SNAKE_CASE__ , repo_id=SCREAMING_SNAKE_CASE__ , push_to_hub=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowercase : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
20
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
import os import numpy import onnx def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : int = a.name lowercase : Any = b.name lowercase : Optional[Any] = """""" lowercase : Dict = """""" lowercase : int = a == b lowercase : int = name_a lowercase : List[str] = name_b return res def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Any = list(model.graph.initializer ) lowercase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : Union[str, Any] = inits[i].name lowercase : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : str = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[str] = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : int = {} lowercase : Optional[Any] = [] lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : int = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowercase : Tuple = inits[i].name lowercase : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) lowercase : str = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """optimized_""" + model_file_name lowercase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
20
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=32 ,snake_case=2 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : Optional[Any] = parent lowercase : List[Any] = 13 lowercase : Any = 7 lowercase : Union[str, Any] = True lowercase : Dict = True lowercase : List[Any] = True lowercase : List[str] = True lowercase : Any = 99 lowercase : Tuple = 32 lowercase : Optional[Any] = 2 lowercase : Tuple = 4 lowercase : Tuple = 37 lowercase : Optional[int] = """gelu""" lowercase : List[str] = 0.1 lowercase : Tuple = 0.1 lowercase : Union[str, Any] = 512 lowercase : List[str] = 16 lowercase : Optional[int] = 2 lowercase : str = 0.02 lowercase : int = 3 lowercase : Optional[Any] = 4 lowercase : str = None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Tuple = None if self.use_input_mask: lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any = None if self.use_token_type_ids: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : List[str] = None lowercase : Optional[int] = None lowercase : Any = None if self.use_labels: lowercase : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : Any = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=snake_case ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = TFRoFormerModel(config=snake_case ) lowercase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Tuple = [input_ids, input_mask] lowercase : Any = model(snake_case ) lowercase : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = True lowercase : Dict = TFRoFormerForCausalLM(config=snake_case ) lowercase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Optional[int] = model(snake_case )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) ,[self.batch_size, self.seq_length, self.vocab_size] ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = TFRoFormerForMaskedLM(config=snake_case ) lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Dict = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.num_labels lowercase : Any = TFRoFormerForSequenceClassification(config=snake_case ) lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = self.num_choices lowercase : Tuple = TFRoFormerForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : Dict = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = self.num_labels lowercase : List[str] = TFRoFormerForTokenClassification(config=snake_case ) lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : List[str] = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = TFRoFormerForQuestionAnswering(config=snake_case ) lowercase : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase : Dict = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[str] = config_and_inputs lowercase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Tuple= ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _a : Dict= ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _a : List[Any]= False _a : Optional[Any]= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = TFRoFormerModelTester(self ) lowercase : Optional[Any] = ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(snake_case ) @require_tf class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : Tuple = model(snake_case )[0] # TODO Replace vocab size lowercase : int = 50000 lowercase : Optional[Any] = [1, 6, vocab_size] self.assertEqual(output.shape ,snake_case ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Any = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,snake_case ,atol=1e-4 ) @require_tf class __snake_case ( unittest.TestCase ): _a : Dict= 1E-4 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = tf.constant([[4, 10]] ) lowercase : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 ,embedding_dim=6 ) lowercase : Optional[Any] = emba(input_ids.shape ) lowercase : Optional[int] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(snake_case ,snake_case ,atol=self.tolerance ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowercase : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 ,embedding_dim=512 ) emba([2, 16, 512] ) lowercase : Union[str, Any] = emba.weight[:3, :5] tf.debugging.assert_near(snake_case ,snake_case ,atol=self.tolerance ) @require_tf class __snake_case ( unittest.TestCase ): _a : int= 1E-4 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 lowercase : Tuple = -tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 lowercase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 ,embedding_dim=64 ) lowercase : Union[str, Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case ,snake_case ,snake_case ) lowercase : Optional[Any] = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowercase : Optional[Any] = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] ,snake_case ,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] ,snake_case ,atol=self.tolerance )
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(snake_case ) lowercase : Tuple = -1 lowercase : Any = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(snake_case ) lowercase : Dict = model.generate(snake_case ,max_new_tokens=10 ,do_sample=snake_case ) lowercase : Union[str, Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase : Optional[Any] = TextStreamer(snake_case ) model.generate(snake_case ,max_new_tokens=10 ,do_sample=snake_case ,streamer=snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase : str = cs.out[:-1] self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase : Dict = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(snake_case ) lowercase : Optional[int] = -1 lowercase : int = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(snake_case ) lowercase : List[str] = model.generate(snake_case ,max_new_tokens=10 ,do_sample=snake_case ) lowercase : Any = tokenizer.decode(greedy_ids[0] ) lowercase : Optional[int] = TextIteratorStreamer(snake_case ) lowercase : Tuple = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowercase : Optional[int] = Thread(target=model.generate ,kwargs=snake_case ) thread.start() lowercase : List[str] = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase : Tuple = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(snake_case ) lowercase : Union[str, Any] = -1 lowercase : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(snake_case ) lowercase : Tuple = model.generate(snake_case ,max_new_tokens=10 ,do_sample=snake_case ) lowercase : Optional[int] = greedy_ids[:, input_ids.shape[1] :] lowercase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase : Any = TextStreamer(snake_case ,skip_prompt=snake_case ) model.generate(snake_case ,max_new_tokens=10 ,do_sample=snake_case ,streamer=snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase : int = cs.out[:-1] self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) lowercase : List[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(snake_case ) lowercase : List[Any] = -1 lowercase : Tuple = torch.ones((1, 5) ,device=snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase : str = TextStreamer(snake_case ,skip_special_tokens=snake_case ) model.generate(snake_case ,max_new_tokens=1 ,do_sample=snake_case ,streamer=snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase : Dict = cs.out[:-1] # Remove the final "\n" lowercase : List[str] = tokenizer(snake_case ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(snake_case ) lowercase : Tuple = -1 lowercase : List[str] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(snake_case ) lowercase : Tuple = TextIteratorStreamer(snake_case ,timeout=0.001 ) lowercase : List[str] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowercase : int = Thread(target=model.generate ,kwargs=snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(snake_case ): lowercase : str = """""" for new_text in streamer: streamer_text += new_text
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
from pathlib import Path import fire from tqdm import tqdm def _snake_case( SCREAMING_SNAKE_CASE__="ro" , SCREAMING_SNAKE_CASE__="en" , SCREAMING_SNAKE_CASE__="wmt16" , SCREAMING_SNAKE_CASE__=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowercase : Tuple = f"{src_lang}-{tgt_lang}" print(f"Converting {dataset}-{pair}" ) lowercase : List[str] = datasets.load_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if save_dir is None: lowercase : Tuple = f"{dataset}-{pair}" lowercase : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for split in ds.keys(): print(f"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets lowercase : Dict = """val""" if split == """validation""" else split lowercase : Any = save_dir.joinpath(f"{fn}.source" ) lowercase : Union[str, Any] = save_dir.joinpath(f"{fn}.target" ) lowercase : Any = src_path.open("""w+""" ) lowercase : str = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase : str = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowercase , lowercase : List[Any] = array[indexa], array[indexa] def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: if length > 1: lowercase : Union[str, Any] = int(length / 2 ) for i in range(SCREAMING_SNAKE_CASE__ , low + middle ): comp_and_swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + middle , SCREAMING_SNAKE_CASE__ ) bitonic_merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) bitonic_merge(SCREAMING_SNAKE_CASE__ , low + middle , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: if length > 1: lowercase : str = int(length / 2 ) bitonic_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) bitonic_sort(SCREAMING_SNAKE_CASE__ , low + middle , SCREAMING_SNAKE_CASE__ , 0 ) bitonic_merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Tuple = input("""Enter numbers separated by a comma:\n""").strip() lowercase : List[str] = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=16 ,snake_case=36 ,snake_case=6 ,snake_case=6 ,snake_case=6 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : Union[str, Any] = parent lowercase : Dict = batch_size lowercase : Optional[int] = seq_length lowercase : Union[str, Any] = is_training lowercase : Dict = use_input_mask lowercase : Dict = use_token_type_ids lowercase : str = use_labels lowercase : Union[str, Any] = vocab_size lowercase : int = embedding_size lowercase : List[str] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Optional[Any] = num_hidden_groups lowercase : List[Any] = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Any = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : List[str] = type_vocab_size lowercase : int = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : int = num_labels lowercase : Optional[Any] = num_choices lowercase : Union[str, Any] = scope def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : Tuple = None lowercase : Any = None lowercase : Any = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ) lowercase : str = model(snake_case ,token_type_ids=snake_case ) lowercase : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() lowercase : Union[str, Any] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,sentence_order_label=snake_case ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,start_positions=snake_case ,end_positions=snake_case ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.num_labels lowercase : Tuple = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase : Tuple = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = self.num_labels lowercase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Any = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Tuple = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Dict = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : str = config_and_inputs lowercase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Tuple= ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _a : List[str]= ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) _a : Dict= True def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=False ): '''simple docstring''' lowercase : List[str] = super()._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case ) lowercase : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=snake_case ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = AlbertModelTester(self ) lowercase : Optional[int] = ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : Optional[Any] = type self.model_tester.create_and_check_model(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = AlbertModel.from_pretrained("""albert-base-v2""" ) lowercase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : List[str] = model(snake_case ,attention_mask=snake_case )[0] lowercase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,snake_case ) lowercase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) )
20
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( lowerCAmelCase ): _a : str= "gpt_neo" _a : Optional[int]= ["past_key_values"] _a : Dict= {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,snake_case=50257 ,snake_case=2048 ,snake_case=2048 ,snake_case=24 ,snake_case=[[["global", "local"], 12]] ,snake_case=16 ,snake_case=None ,snake_case=256 ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Union[str, Any] = num_layers lowercase : Union[str, Any] = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Optional[int] = activation_function lowercase : List[str] = resid_dropout lowercase : int = embed_dropout lowercase : Optional[int] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : List[str] = use_cache lowercase : Optional[int] = bos_token_id lowercase : int = eos_token_id lowercase : Union[str, Any] = attention_types lowercase : Dict = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: import torch lowercase : Tuple = input.size() lowercase : int = len(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = shape[dimension] lowercase : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 lowercase : Dict = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] lowercase : Union[str, Any] = [slice(SCREAMING_SNAKE_CASE__ )] * rank lowercase : Optional[Any] = indices lowercase : List[str] = input[s] lowercase : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: import torch lowercase : Union[str, Any] = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = remainders == 0 lowercase : Optional[int] = candidates[divisor_indices] lowercase : List[Any] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Any = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Any = ordered_inputs["""attention_mask"""].dtype lowercase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence lowercase : List[str] = gray_code_sequence_string(SCREAMING_SNAKE_CASE__ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : List[Any] = int(sequence[i] , 2 ) return sequence def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) lowercase : Tuple = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase : Any = """0""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase : Dict = """1""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Tuple = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase : Optional[int] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase : Tuple = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase : Tuple = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase : List[str] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase : List[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase : int = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase : List[Any] = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase : List[str] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase : Dict = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase : Dict = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase : Any = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase : Tuple = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase : Union[str, Any] = value.float() for key, value in codebook_state_dict.items(): lowercase : Dict = value return upgrade @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Dict: if config_path is not None: lowercase : Optional[int] = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: lowercase : Dict = FlavaConfig() lowercase : Any = FlavaForPreTraining(SCREAMING_SNAKE_CASE__ ).eval() lowercase : Optional[Any] = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , save_checkpoint=SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): lowercase : int = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) else: lowercase : List[str] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) lowercase : Union[str, Any] = upgrade_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = hf_model.state_dict() lowercase : Dict = count_parameters(SCREAMING_SNAKE_CASE__ ) lowercase : str = count_parameters(SCREAMING_SNAKE_CASE__ ) + count_parameters(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
20
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
1
import math def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: if ( not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: if ( not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: def get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Tuple = [] lowercase : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase : Dict = int(max(0 , i - limit ) ) lowercase : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(SCREAMING_SNAKE_CASE__ ) lowercase : Any = f"{_stra[0:_stra.index(SCREAMING_SNAKE_CASE__ )]} {_stra[_stra.index(SCREAMING_SNAKE_CASE__ ) + 1:]}" return "".join(SCREAMING_SNAKE_CASE__ ) # matching characters lowercase : Optional[Any] = get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) # transposition lowercase : List[Any] = ( len([(ca, ca) for ca, ca in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if ca != ca] ) // 2 ) if not match_count: lowercase : str = 0.0 else: lowercase : Union[str, Any] = ( 1 / 3 * ( match_count / len(SCREAMING_SNAKE_CASE__ ) + match_count / len(SCREAMING_SNAKE_CASE__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase : Union[str, Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
20
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
1
from functools import reduce lowercase : Union[str, Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _snake_case( SCREAMING_SNAKE_CASE__ = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str(int(SCREAMING_SNAKE_CASE__ ) * int(SCREAMING_SNAKE_CASE__ ) ) , n[i : i + 13] ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
20
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : int = logging.get_logger(__name__) lowercase : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : str= "instructblip_vision_model" def __init__( self ,snake_case=1408 ,snake_case=6144 ,snake_case=39 ,snake_case=16 ,snake_case=224 ,snake_case=14 ,snake_case="gelu" ,snake_case=1e-6 ,snake_case=0.0 ,snake_case=1e-10 ,snake_case=True ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : Any = hidden_size lowercase : Optional[int] = intermediate_size lowercase : Optional[int] = num_hidden_layers lowercase : str = num_attention_heads lowercase : List[Any] = patch_size lowercase : Any = image_size lowercase : List[Any] = initializer_range lowercase : Optional[Any] = attention_dropout lowercase : str = layer_norm_eps lowercase : Optional[int] = hidden_act lowercase : Union[str, Any] = qkv_bias @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Optional[int] = cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowercase : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[str]= "instructblip_qformer" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=0 ,snake_case="absolute" ,snake_case=2 ,snake_case=1408 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : str = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : List[str] = hidden_act lowercase : Optional[int] = intermediate_size lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Optional[Any] = max_position_embeddings lowercase : Any = initializer_range lowercase : List[Any] = layer_norm_eps lowercase : Optional[Any] = position_embedding_type lowercase : Dict = cross_attention_frequency lowercase : int = encoder_hidden_size @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) lowercase , lowercase : Tuple = cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowercase : Any = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case ,**snake_case ) class __snake_case ( lowerCAmelCase ): _a : List[str]= "instructblip" _a : List[Any]= True def __init__( self ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=32 ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if vision_config is None: lowercase : int = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: lowercase : Tuple = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: lowercase : Tuple = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase : Dict = InstructBlipVisionConfig(**snake_case ) lowercase : Optional[Any] = InstructBlipQFormerConfig(**snake_case ) lowercase : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase : Optional[Any] = CONFIG_MAPPING[text_model_type](**snake_case ) lowercase : Union[str, Any] = self.text_config.tie_word_embeddings lowercase : Optional[int] = self.text_config.is_encoder_decoder lowercase : Tuple = num_query_tokens lowercase : int = self.vision_config.hidden_size lowercase : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase : Tuple = 1.0 lowercase : int = 0.02 @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case ,snake_case ,**snake_case ,): '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) lowercase : str = self.vision_config.to_dict() lowercase : int = self.qformer_config.to_dict() lowercase : List[Any] = self.text_config.to_dict() lowercase : Optional[int] = self.__class__.model_type return output
20
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowercase : List[str] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowercase : str = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowercase : Tuple = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase : Optional[Any] = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowercase : Tuple = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Tuple = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , SCREAMING_SNAKE_CASE__ ) return [m.group(0 ) for m in matches] def _snake_case( ) -> int: lowercase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase : Optional[Any] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowercase : int = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) lowercase : Any = collections.defaultdict(SCREAMING_SNAKE_CASE__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = None if _re_tf_models.match(SCREAMING_SNAKE_CASE__ ) is not None: lowercase : Any = tf_models lowercase : List[str] = _re_tf_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE__ ) is not None: lowercase : Optional[Any] = flax_models lowercase : Optional[int] = _re_flax_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE__ ) is not None: lowercase : Union[str, Any] = pt_models lowercase : List[Any] = _re_pt_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE__ ) > 0: if attr_name in model_prefix_to_model_type: lowercase : List[Any] = True break # Try again after removing the last word in the name lowercase : List[str] = """""".join(camel_case_split(SCREAMING_SNAKE_CASE__ )[:-1] ) lowercase : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowercase : Tuple = list(SCREAMING_SNAKE_CASE__ ) all_models.sort() lowercase : Any = {"""model_type""": all_models} lowercase : Tuple = [pt_models[t] for t in all_models] lowercase : Tuple = [tf_models[t] for t in all_models] lowercase : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowercase : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowercase : int = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowercase : int = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowercase : List[str] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowercase : List[Any] = """AutoTokenizer""" lowercase : int = [processors[t] for t in all_models] return pd.DataFrame(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: lowercase : Optional[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowercase : Optional[int] = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"] lowercase : Any = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # The type of pipeline may not exist in this framework if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): continue # First extract all model_names lowercase : Any = [] for name in getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).values(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model_names.append(SCREAMING_SNAKE_CASE__ ) else: model_names.extend(list(SCREAMING_SNAKE_CASE__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = get_frameworks_table() lowercase : Tuple = Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=SCREAMING_SNAKE_CASE__ ) lowercase : int = Dataset.from_json(SCREAMING_SNAKE_CASE__ ) lowercase : str = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(SCREAMING_SNAKE_CASE__ ) ) } lowercase : Tuple = update_pipeline_and_auto_class_table(SCREAMING_SNAKE_CASE__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowercase : Union[str, Any] = sorted(table.keys() ) lowercase : int = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) lowercase : Optional[int] = Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ , """pipeline_tags.json""" ) ) if commit_sha is not None: lowercase : int = ( f"Update with commit {commit_sha}\n\nSee: " f"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: lowercase : Dict = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , token=SCREAMING_SNAKE_CASE__ , commit_message=SCREAMING_SNAKE_CASE__ , ) def _snake_case( ) -> int: lowercase : List[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowercase : str = transformers_module.pipelines.SUPPORTED_TASKS lowercase : Optional[Any] = [] for key in pipeline_tasks: if key not in in_table: lowercase : str = pipeline_tasks[key]["""pt"""] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): lowercase : Tuple = model[0] lowercase : List[Any] = model.__name__ if model not in in_table.values(): missing.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : List[Any] = """, """.join(SCREAMING_SNAKE_CASE__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") lowercase : Dict = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
20
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Optional[Any] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __snake_case ( lowerCAmelCase ): _a : Tuple= "trocr" _a : Optional[int]= ["past_key_values"] _a : str= { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,snake_case=50265 ,snake_case=1024 ,snake_case=12 ,snake_case=16 ,snake_case=4096 ,snake_case="gelu" ,snake_case=512 ,snake_case=0.1 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=2 ,snake_case=0.02 ,snake_case=0.0 ,snake_case=True ,snake_case=False ,snake_case=True ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' lowercase : Dict = vocab_size lowercase : List[str] = d_model lowercase : Dict = decoder_layers lowercase : Union[str, Any] = decoder_attention_heads lowercase : Optional[Any] = decoder_ffn_dim lowercase : Union[str, Any] = activation_function lowercase : Optional[int] = max_position_embeddings lowercase : List[Any] = dropout lowercase : Optional[Any] = attention_dropout lowercase : Tuple = activation_dropout lowercase : int = init_std lowercase : str = decoder_layerdrop lowercase : List[Any] = use_cache lowercase : int = scale_embedding lowercase : List[Any] = use_learned_position_embeddings lowercase : int = layernorm_embedding super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
20
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Optional[int]= BioGptTokenizer _a : Optional[Any]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase : int = dict(zip(snake_case ,range(len(snake_case ) ) ) ) lowercase : Union[str, Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ) as fp: fp.write(json.dumps(snake_case ) ) with open(self.merges_file ,"""w""" ) as fp: fp.write("""\n""".join(snake_case ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = """lower newer""" lowercase : int = """lower newer""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = BioGptTokenizer(self.vocab_file ,self.merges_file ) lowercase : Any = """lower""" lowercase : Optional[int] = ["""low""", """er</w>"""] lowercase : Optional[int] = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case ,snake_case ) lowercase : Optional[int] = tokens + ["""<unk>"""] lowercase : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowercase : Dict = tokenizer.encode("""sequence builders""" ,add_special_tokens=snake_case ) lowercase : Any = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=snake_case ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case ) lowercase : int = tokenizer.build_inputs_with_special_tokens(snake_case ,snake_case ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
20
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): _a : Optional[int]= MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : List[str] = VideoClassificationPipeline(model=snake_case ,image_processor=snake_case ,top_k=2 ) lowercase : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' for example in examples: lowercase : int = video_classifier(snake_case ) self.assertEqual( snake_case ,[ {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase : str = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) lowercase : List[Any] = pipeline( """video-classification""" ,model=snake_case ,feature_extractor=snake_case ,frame_sampling_rate=4 ) lowercase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : Any = video_classifier(snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] ,) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _snake_case( ) -> int: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase : List[str] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _snake_case( ) -> str: assert _test_patching.open is open lowercase : Union[str, Any] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _snake_case( ) -> Optional[Any]: # pandas.read_csv is not present in _test_patching lowercase : int = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _snake_case( ) -> Optional[int]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase : Tuple = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _snake_case( ) -> Dict: lowercase : Optional[int] = """__test_patch_submodule_start_and_stop_mock__""" lowercase : Optional[int] = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _snake_case( ) -> int: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase : Union[str, Any] = """__test_patch_submodule_successive_join__""" lowercase : Tuple = """__test_patch_submodule_successive_dirname__""" lowercase : int = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _snake_case( ) -> int: lowercase : Optional[int] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> list: lowercase : Any = [] lowercase , lowercase : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase : Optional[Any] = result + left + right return input_list def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list: if len(SCREAMING_SNAKE_CASE__ ) <= 1: return input_list lowercase : Dict = list(SCREAMING_SNAKE_CASE__ ) # iteration for two-way merging lowercase : Optional[int] = 2 while p <= len(SCREAMING_SNAKE_CASE__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = i lowercase : Optional[int] = i + p - 1 lowercase : Optional[Any] = (low + high + 1) // 2 lowercase : Optional[Any] = merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # final merge of last two parts if p * 2 >= len(SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = i lowercase : Any = merge(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowercase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowercase : List[str] = [] else: lowercase : Tuple = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
20
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
1
class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : List[str] = size lowercase : List[Any] = [0] * size lowercase : Optional[int] = [0] * size @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' return index | (index + 1) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' return (index & (index + 1)) - 1 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = value while index < self.size: lowercase : Optional[Any] = self.get_prev(snake_case ) + 1 if current_left_border == index: lowercase : List[Any] = value else: lowercase : List[str] = max(snake_case ,snake_case ,snake_case ) lowercase : int = self.get_next(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' right -= 1 # Because of right is exclusive lowercase : List[Any] = 0 while left <= right: lowercase : Optional[Any] = self.get_prev(snake_case ) if left <= current_left: lowercase : Dict = max(snake_case ,self.tree[right] ) lowercase : Any = current_left else: lowercase : str = max(snake_case ,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : Tuple = BlipImageProcessor() lowercase : str = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowercase : Dict = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) lowercase : Tuple = InstructBlipProcessor(snake_case ,snake_case ,snake_case ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case ).tokenizer def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case ).image_processor def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case ).qformer_tokenizer def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase : List[str] = [Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) lowercase : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowercase : Union[str, Any] = self.get_image_processor(do_normalize=snake_case ,padding_value=1.0 ) lowercase : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case ) self.assertIsInstance(processor.qformer_tokenizer ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : Optional[Any] = self.get_tokenizer() lowercase : int = self.get_qformer_tokenizer() lowercase : Optional[Any] = InstructBlipProcessor( tokenizer=snake_case ,image_processor=snake_case ,qformer_tokenizer=snake_case ) lowercase : List[str] = self.prepare_image_inputs() lowercase : Optional[int] = image_processor(snake_case ,return_tensors="""np""" ) lowercase : Union[str, Any] = processor(images=snake_case ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.get_image_processor() lowercase : Optional[Any] = self.get_tokenizer() lowercase : int = self.get_qformer_tokenizer() lowercase : Dict = InstructBlipProcessor( tokenizer=snake_case ,image_processor=snake_case ,qformer_tokenizer=snake_case ) lowercase : Optional[int] = """lower newer""" lowercase : Any = processor(text=snake_case ) lowercase : Any = tokenizer(snake_case ,return_token_type_ids=snake_case ) lowercase : List[str] = qformer_tokenizer(snake_case ,return_token_type_ids=snake_case ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor["""qformer_""" + key] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : Optional[int] = self.get_qformer_tokenizer() lowercase : List[Any] = InstructBlipProcessor( tokenizer=snake_case ,image_processor=snake_case ,qformer_tokenizer=snake_case ) lowercase : Any = """lower newer""" lowercase : Tuple = self.prepare_image_inputs() lowercase : Any = processor(text=snake_case ,images=snake_case ) self.assertListEqual( list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] ,) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.get_image_processor() lowercase : str = self.get_tokenizer() lowercase : str = self.get_qformer_tokenizer() lowercase : Tuple = InstructBlipProcessor( tokenizer=snake_case ,image_processor=snake_case ,qformer_tokenizer=snake_case ) lowercase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Optional[Any] = processor.batch_decode(snake_case ) lowercase : Any = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : Dict = self.get_qformer_tokenizer() lowercase : Tuple = InstructBlipProcessor( tokenizer=snake_case ,image_processor=snake_case ,qformer_tokenizer=snake_case ) lowercase : int = """lower newer""" lowercase : Any = self.prepare_image_inputs() lowercase : Dict = processor(text=snake_case ,images=snake_case ) self.assertListEqual( list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] ,)
20
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __snake_case : _a : Optional[Any]= PegasusConfig _a : Any= {} _a : List[Any]= "gelu" def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=False ,snake_case=99 ,snake_case=32 ,snake_case=2 ,snake_case=4 ,snake_case=37 ,snake_case=0.1 ,snake_case=0.1 ,snake_case=40 ,snake_case=2 ,snake_case=1 ,snake_case=0 ,): '''simple docstring''' lowercase : Optional[int] = parent lowercase : Tuple = batch_size lowercase : str = seq_length lowercase : Optional[Any] = is_training lowercase : Optional[Any] = use_labels lowercase : List[Any] = vocab_size lowercase : Any = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : List[Any] = intermediate_size lowercase : List[Any] = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : List[str] = eos_token_id lowercase : Optional[Any] = pad_token_id lowercase : Tuple = bos_token_id def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowercase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowercase : List[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Dict = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowercase : Union[str, Any] = prepare_pegasus_inputs_dict(snake_case ,snake_case ,snake_case ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = TFPegasusModel(config=snake_case ).get_decoder() lowercase : List[Any] = inputs_dict["""input_ids"""] lowercase : List[Any] = input_ids[:1, :] lowercase : Tuple = inputs_dict["""attention_mask"""][:1, :] lowercase : Optional[int] = inputs_dict["""head_mask"""] lowercase : List[str] = 1 # first forward pass lowercase : Optional[Any] = model(snake_case ,attention_mask=snake_case ,head_mask=snake_case ,use_cache=snake_case ) lowercase , lowercase : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase : List[str] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowercase : Optional[Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowercase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowercase : str = model(snake_case ,attention_mask=snake_case )[0] lowercase : List[str] = model(snake_case ,attention_mask=snake_case ,past_key_values=snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowercase : int = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowercase : str = output_from_no_past[:, -3:, random_slice_idx] lowercase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case ,snake_case ,rtol=1e-3 ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: if attention_mask is None: lowercase : int = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _a : Dict= (TFPegasusForConditionalGeneration,) if is_tf_available() else () _a : str= ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _a : int= True _a : Dict= False _a : Optional[int]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = TFPegasusModelTester(self ) lowercase : Any = ConfigTester(self ,config_class=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case ) @require_sentencepiece @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): _a : Optional[int]= [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _a : Optional[Any]= [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers _a : Tuple= "google/pegasus-xsum" @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : int = self.translate_src_text(**snake_case ) assert self.expected_text == generated_words def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Any = self.tokenizer(self.src_text ,**snake_case ,padding=snake_case ,return_tensors="""tf""" ) lowercase : Tuple = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=snake_case ,) lowercase : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=snake_case ) return generated_words @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
20
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Any = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" ,revision="""bf16""" ,dtype=jnp.bfloataa ,) lowercase : Optional[Any] = """A painting of a squirrel eating a burger""" lowercase : Any = jax.device_count() lowercase : Tuple = num_samples * [prompt] lowercase : Any = sd_pipe.prepare_inputs(snake_case ) lowercase : Tuple = replicate(snake_case ) lowercase : Optional[int] = shard(snake_case ) lowercase : Optional[int] = jax.random.PRNGKey(0 ) lowercase : Tuple = jax.random.split(snake_case ,jax.device_count() ) lowercase : List[Any] = sd_pipe(snake_case ,snake_case ,snake_case ,num_inference_steps=25 ,jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : List[Any] = images[0, 253:256, 253:256, -1] lowercase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : Union[str, Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = """stabilityai/stable-diffusion-2""" lowercase , lowercase : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case ,subfolder="""scheduler""" ) lowercase , lowercase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( snake_case ,scheduler=snake_case ,revision="""bf16""" ,dtype=jnp.bfloataa ,) lowercase : Optional[int] = scheduler_params lowercase : List[str] = """A painting of a squirrel eating a burger""" lowercase : Any = jax.device_count() lowercase : Dict = num_samples * [prompt] lowercase : Any = sd_pipe.prepare_inputs(snake_case ) lowercase : Tuple = replicate(snake_case ) lowercase : Optional[Any] = shard(snake_case ) lowercase : Tuple = jax.random.PRNGKey(0 ) lowercase : int = jax.random.split(snake_case ,jax.device_count() ) lowercase : Any = sd_pipe(snake_case ,snake_case ,snake_case ,num_inference_steps=25 ,jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : Union[str, Any] = images[0, 253:256, 253:256, -1] lowercase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : List[Any] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
20
import os import numpy import onnx def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : int = a.name lowercase : Any = b.name lowercase : Optional[Any] = """""" lowercase : Dict = """""" lowercase : int = a == b lowercase : int = name_a lowercase : List[str] = name_b return res def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Any = list(model.graph.initializer ) lowercase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : Union[str, Any] = inits[i].name lowercase : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : str = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[str] = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : int = {} lowercase : Optional[Any] = [] lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : int = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowercase : Tuple = inits[i].name lowercase : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) lowercase : str = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """optimized_""" + model_file_name lowercase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
20
1
lowercase : Union[str, Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _snake_case( ) -> None: lowercase : Tuple = input("""Enter message: """ ) lowercase : Dict = input("""Enter key [alphanumeric]: """ ) lowercase : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowercase : Optional[Any] = """encrypt""" lowercase : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif mode.lower().startswith("""d""" ): lowercase : List[Any] = """decrypt""" lowercase : Union[str, Any] = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"\n{mode.title()}ed message:" ) print(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """encrypt""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """decrypt""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : str = [] lowercase : Tuple = 0 lowercase : Tuple = key.upper() for symbol in message: lowercase : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE__ ): lowercase : str = 0 else: translated.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
def _snake_case( SCREAMING_SNAKE_CASE__ = 1_000 ) -> int: lowercase , lowercase : int = 1, 1 lowercase : Tuple = [] for i in range(1 , n + 1 ): lowercase : Union[str, Any] = prev_numerator + 2 * prev_denominator lowercase : List[Any] = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE__ ) ) > len(str(SCREAMING_SNAKE_CASE__ ) ): result.append(SCREAMING_SNAKE_CASE__ ) lowercase : Any = numerator lowercase : List[str] = denominator return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''{solution() = }''')
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= ["pixel_values"] def __init__( self ,snake_case = True ,snake_case = None ,snake_case = PILImageResampling.BICUBIC ,snake_case = True ,snake_case = None ,snake_case = True ,snake_case = 1 / 255 ,snake_case = True ,snake_case = None ,snake_case = None ,snake_case = True ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : List[str] = size if size is not None else {"""shortest_edge""": 224} lowercase : Optional[int] = get_size_dict(snake_case ,default_to_square=snake_case ) lowercase : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase : Optional[Any] = get_size_dict(snake_case ,default_to_square=snake_case ,param_name="""crop_size""" ) lowercase : Dict = do_resize lowercase : Dict = size lowercase : str = resample lowercase : Tuple = do_center_crop lowercase : Tuple = crop_size lowercase : Union[str, Any] = do_rescale lowercase : List[Any] = rescale_factor lowercase : Any = do_normalize lowercase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : Dict = image_std if image_std is not None else OPENAI_CLIP_STD lowercase : Dict = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = PILImageResampling.BICUBIC ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = get_size_dict(snake_case ,default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowercase : Optional[Any] = get_resize_output_image_size(snake_case ,size=size["""shortest_edge"""] ,default_to_square=snake_case ) return resize(snake_case ,size=snake_case ,resample=snake_case ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Dict = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(snake_case ,size=(size["""height"""], size["""width"""]) ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return rescale(snake_case ,scale=snake_case ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return normalize(snake_case ,mean=snake_case ,std=snake_case ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = ChannelDimension.FIRST ,**snake_case ,): '''simple docstring''' lowercase : Dict = do_resize if do_resize is not None else self.do_resize lowercase : Optional[int] = size if size is not None else self.size lowercase : Dict = get_size_dict(snake_case ,param_name="""size""" ,default_to_square=snake_case ) lowercase : Any = resample if resample is not None else self.resample lowercase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Tuple = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(snake_case ,param_name="""crop_size""" ,default_to_square=snake_case ) lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : str = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowercase : List[Any] = image_std if image_std is not None else self.image_std lowercase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : List[Any] = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : Optional[int] = [convert_to_rgb(snake_case ) for image in images] # All transformations expect numpy arrays. lowercase : Optional[Any] = [to_numpy_array(snake_case ) for image in images] if do_resize: lowercase : str = [self.resize(image=snake_case ,size=snake_case ,resample=snake_case ) for image in images] if do_center_crop: lowercase : Tuple = [self.center_crop(image=snake_case ,size=snake_case ) for image in images] if do_rescale: lowercase : Union[str, Any] = [self.rescale(image=snake_case ,scale=snake_case ) for image in images] if do_normalize: lowercase : Optional[Any] = [self.normalize(image=snake_case ,mean=snake_case ,std=snake_case ) for image in images] lowercase : List[Any] = [to_channel_dimension_format(snake_case ,snake_case ) for image in images] lowercase : int = {"""pixel_values""": images} return BatchFeature(data=snake_case ,tensor_type=snake_case )
20
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( lowerCAmelCase ): _a : str= "gpt_neo" _a : Optional[int]= ["past_key_values"] _a : Dict= {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,snake_case=50257 ,snake_case=2048 ,snake_case=2048 ,snake_case=24 ,snake_case=[[["global", "local"], 12]] ,snake_case=16 ,snake_case=None ,snake_case=256 ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Union[str, Any] = num_layers lowercase : Union[str, Any] = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Optional[int] = activation_function lowercase : List[str] = resid_dropout lowercase : int = embed_dropout lowercase : Optional[int] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : List[str] = use_cache lowercase : Optional[int] = bos_token_id lowercase : int = eos_token_id lowercase : Union[str, Any] = attention_types lowercase : Dict = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: import torch lowercase : Tuple = input.size() lowercase : int = len(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = shape[dimension] lowercase : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 lowercase : Dict = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] lowercase : Union[str, Any] = [slice(SCREAMING_SNAKE_CASE__ )] * rank lowercase : Optional[Any] = indices lowercase : List[str] = input[s] lowercase : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: import torch lowercase : Union[str, Any] = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = remainders == 0 lowercase : Optional[int] = candidates[divisor_indices] lowercase : List[Any] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Any = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Any = ordered_inputs["""attention_mask"""].dtype lowercase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
1
def _snake_case( ) -> Optional[Any]: for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Tuple = 1 lowercase : int = 2 while i * i <= n: lowercase : Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _snake_case( ) -> List[Any]: return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500 ) if __name__ == "__main__": print(solution())
20
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCAmelCase ): _a : str= (PNDMScheduler,) _a : List[Any]= (("num_inference_steps", 50),) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Dict = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**snake_case ) return config def _SCREAMING_SNAKE_CASE ( self ,snake_case=0 ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = dict(self.forward_default_kwargs ) lowercase : List[str] = kwargs.pop("""num_inference_steps""" ,snake_case ) lowercase : Optional[Any] = self.dummy_sample lowercase : Optional[int] = 0.1 * sample lowercase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : str = self.get_scheduler_config(**snake_case ) lowercase : Union[str, Any] = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals lowercase : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) lowercase : str = scheduler_class.from_pretrained(snake_case ) new_scheduler.set_timesteps(snake_case ) # copy over dummy past residuals lowercase : Dict = dummy_past_residuals[:] lowercase : Optional[int] = scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample lowercase : Tuple = new_scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase : Tuple = scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample lowercase : Union[str, Any] = new_scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ,snake_case=0 ,**snake_case ): '''simple docstring''' lowercase : int = dict(self.forward_default_kwargs ) lowercase : int = kwargs.pop("""num_inference_steps""" ,snake_case ) lowercase : Dict = self.dummy_sample lowercase : Dict = 0.1 * sample lowercase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase : Optional[Any] = self.get_scheduler_config() lowercase : Tuple = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowercase : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) lowercase : Any = scheduler_class.from_pretrained(snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case ) # copy over dummy past residual (must be after setting timesteps) lowercase : str = dummy_past_residuals[:] lowercase : List[Any] = scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample lowercase : List[str] = new_scheduler.step_prk(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase : Any = scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample lowercase : Optional[int] = new_scheduler.step_plms(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Optional[Any] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config(**snake_case ) lowercase : str = scheduler_class(**snake_case ) lowercase : Tuple = 10 lowercase : Union[str, Any] = self.dummy_model() lowercase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase : Tuple = model(snake_case ,snake_case ) lowercase : int = scheduler.step_prk(snake_case ,snake_case ,snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase : List[Any] = model(snake_case ,snake_case ) lowercase : Optional[int] = scheduler.step_plms(snake_case ,snake_case ,snake_case ).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = dict(self.forward_default_kwargs ) lowercase : Tuple = kwargs.pop("""num_inference_steps""" ,snake_case ) for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.get_scheduler_config() lowercase : Optional[int] = scheduler_class(**snake_case ) lowercase : Optional[Any] = self.dummy_sample lowercase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case ,"""set_timesteps""" ): scheduler.set_timesteps(snake_case ) elif num_inference_steps is not None and not hasattr(snake_case ,"""set_timesteps""" ): lowercase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase : Optional[Any] = dummy_past_residuals[:] lowercase : Tuple = scheduler.step_prk(snake_case ,0 ,snake_case ,**snake_case ).prev_sample lowercase : Union[str, Any] = scheduler.step_prk(snake_case ,1 ,snake_case ,**snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) lowercase : List[str] = scheduler.step_plms(snake_case ,0 ,snake_case ,**snake_case ).prev_sample lowercase : Any = scheduler.step_plms(snake_case ,1 ,snake_case ,**snake_case ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case ) lowercase : Optional[Any] = self.scheduler_classes[0] lowercase : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) lowercase : Optional[int] = scheduler_class(**snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001] ,[0.002, 0.02] ): self.check_over_configs(beta_start=snake_case ,beta_end=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: lowercase : List[str] = self.dummy_sample lowercase : Dict = 0.1 * sample lowercase : Any = self.get_scheduler_config() lowercase : int = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase : int = scheduler.step_prk(snake_case ,snake_case ,snake_case ).prev_sample def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaises(snake_case ): lowercase : List[Any] = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**snake_case ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.full_loop() lowercase : Optional[Any] = torch.sum(torch.abs(snake_case ) ) lowercase : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_580 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.full_loop(prediction_type="""v_prediction""" ) lowercase : str = torch.sum(torch.abs(snake_case ) ) lowercase : Optional[int] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_878 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.full_loop(set_alpha_to_one=snake_case ,beta_start=0.01 ) lowercase : Optional[int] = torch.sum(torch.abs(snake_case ) ) lowercase : Union[str, Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_995 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.full_loop(set_alpha_to_one=snake_case ,beta_start=0.01 ) lowercase : str = torch.sum(torch.abs(snake_case ) ) lowercase : Any = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_434 ) < 1e-3
20
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( lowerCAmelCase ): _a : BigBirdConfig _a : jnp.dtype= jnp.floataa _a : bool= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setup() lowercase : List[str] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : int = super().__call__(*snake_case ,**snake_case ) lowercase : Any = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( lowerCAmelCase ): _a : List[Any]= FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: def cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : int = logits.shape[-1] lowercase : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype("""f4""" ) lowercase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) lowercase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase : Any = reduction(SCREAMING_SNAKE_CASE__ ) return loss lowercase : Optional[Any] = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) lowercase : Optional[int] = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : _a : str= "google/bigbird-roberta-base" _a : int= 3000 _a : int= 1_0500 _a : int= 128 _a : int= 3 _a : int= 1 _a : int= 5 # tx_args _a : float= 3E-5 _a : float= 0.0 _a : int= 2_0000 _a : float= 0.00_95 _a : str= "bigbird-roberta-natural-questions" _a : str= "training-expt" _a : str= "data/nq-training.jsonl" _a : str= "data/nq-validation.jsonl" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=snake_case ) lowercase : Optional[int] = os.path.join(self.base_dir ,self.save_dir ) lowercase : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : _a : int _a : int= 4096 # no dynamic padding on TPUs def __call__( self ,snake_case ): '''simple docstring''' lowercase : int = self.collate_fn(snake_case ) lowercase : Union[str, Any] = jax.tree_util.tree_map(snake_case ,snake_case ) return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) lowercase : Tuple = { """input_ids""": jnp.array(snake_case ,dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case ,dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] ,dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] ,dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] ,dtype=jnp.intaa ), } return batch def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Any: if seed is not None: lowercase : Optional[int] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): lowercase : Optional[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: def loss_fn(SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = model_inputs.pop("""start_labels""" ) lowercase : Optional[int] = model_inputs.pop("""end_labels""" ) lowercase : str = model_inputs.pop("""pooled_labels""" ) lowercase : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[str] = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) lowercase , lowercase : int = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = grad_fn(state.params ) lowercase : List[Any] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase : List[Any] = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , """batch""" ) lowercase : str = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : int = model_inputs.pop("""start_labels""" ) lowercase : Dict = model_inputs.pop("""end_labels""" ) lowercase : Optional[Any] = model_inputs.pop("""pooled_labels""" ) lowercase : Optional[int] = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase , lowercase : List[Any] = outputs lowercase : Dict = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __snake_case ( train_state.TrainState ): _a : Callable= struct.field(pytree_node=lowerCAmelCase ) @dataclass class __snake_case : _a : Args _a : Callable _a : Callable _a : Callable _a : Callable _a : wandb _a : Callable= None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : Tuple = model.params lowercase : Any = TrainState.create( apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,loss_fn=snake_case ,) if ckpt_dir is not None: lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = restore_checkpoint(snake_case ,snake_case ) lowercase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase , lowercase : Tuple = build_tx(**snake_case ) lowercase : str = train_state.TrainState( step=snake_case ,apply_fn=model.__call__ ,params=snake_case ,tx=snake_case ,opt_state=snake_case ,) lowercase : Any = args lowercase : Optional[Any] = data_collator lowercase : List[str] = lr lowercase : str = params lowercase : Tuple = jax_utils.replicate(snake_case ) return state def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Dict = self.args lowercase : Optional[Any] = len(snake_case ) // args.batch_size lowercase : int = jax.random.PRNGKey(0 ) lowercase : List[str] = jax.random.split(snake_case ,jax.device_count() ) for epoch in range(args.max_epochs ): lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : List[str] = get_batched_dataset(snake_case ,args.batch_size ,seed=snake_case ) lowercase : int = 0 for batch in tqdm(snake_case ,total=snake_case ,desc=f"Running EPOCH-{epoch}" ): lowercase : Dict = self.data_collator(snake_case ) lowercase , lowercase , lowercase : Optional[int] = self.train_step_fn(snake_case ,snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: lowercase : Optional[Any] = jax_utils.unreplicate(state.step ) lowercase : List[str] = running_loss.item() / i lowercase : List[str] = self.scheduler_fn(state_step - 1 ) lowercase : int = self.evaluate(snake_case ,snake_case ) lowercase : Tuple = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case ,commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" ,state=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = get_batched_dataset(snake_case ,self.args.batch_size ) lowercase : Any = len(snake_case ) // self.args.batch_size lowercase : List[Any] = jnp.array(0 ,dtype=jnp.floataa ) lowercase : Optional[int] = 0 for batch in tqdm(snake_case ,total=snake_case ,desc="""Evaluating ... """ ): lowercase : Tuple = self.data_collator(snake_case ) lowercase : Optional[int] = self.val_step_fn(snake_case ,**snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = jax_utils.unreplicate(snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" ,end=""" ... """ ) self.model_save_fn(snake_case ,params=state.params ) with open(os.path.join(snake_case ,"""opt_state.msgpack""" ) ,"""wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(snake_case ,"""args.joblib""" ) ) joblib.dump(self.data_collator ,os.path.join(snake_case ,"""data_collator.joblib""" ) ) with open(os.path.join(snake_case ,"""training_state.json""" ) ,"""w""" ) as f: json.dump({"""step""": state.step.item()} ,snake_case ) print("""DONE""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase : str = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase : Optional[int] = from_bytes(state.opt_state , f.read() ) lowercase : Optional[Any] = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """args.joblib""" ) ) lowercase : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , """data_collator.joblib""" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """training_state.json""" ) , """r""" ) as f: lowercase : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : List[str] = num_train_steps - warmup_steps lowercase : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: def weight_decay_mask(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
20
1
lowercase : str = 256 # Modulus to hash a string lowercase : List[Any] = 1000003 def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bool: lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) lowercase : int = len(SCREAMING_SNAKE_CASE__ ) if p_len > t_len: return False lowercase : Dict = 0 lowercase : List[Any] = 0 lowercase : str = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase : Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase : Optional[int] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase : Optional[int] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _snake_case( ) -> None: lowercase : Optional[int] = """abc1abc12""" lowercase : Optional[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowercase : Optional[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 2) lowercase : Dict = """ABABX""" lowercase : List[str] = """ABABZABABYABABX""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 3) lowercase : List[Any] = """AAAB""" lowercase : int = """ABAAAAAB""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 4) lowercase : Optional[int] = """abcdabcy""" lowercase : Optional[Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 5) lowercase : Optional[Any] = """Lü""" lowercase : Optional[int] = """Lüsai""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = """Lue""" assert not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
20
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase : List[str] = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48000, """sample_size""": 65536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48000, """sample_size""": 65536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48000, """sample_size""": 131072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : str = torch.sin(t * math.pi / 2 ) ** 2 lowercase : Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class __snake_case ( lowerCAmelCase ): pass class __snake_case ( nn.Module ): def __init__( self ,snake_case ): '''simple docstring''' super().__init__() lowercase : List[str] = DiffusionAttnUnetaD(snake_case ,n_attn_layers=4 ) lowercase : int = deepcopy(self.diffusion ) lowercase : Dict = torch.quasirandom.SobolEngine(1 ,scramble=snake_case ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Tuple = MODELS_MAP[model_name]["""url"""] os.system(f"wget {url} ./" ) return f"./{model_name}.ckpt" lowercase : Any = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } lowercase : Union[str, Any] = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } lowercase : str = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } lowercase : int = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } lowercase : str = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } lowercase : Any = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(f"Attn error with {name}" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ) -> Tuple: lowercase : Optional[int] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) lowercase : Optional[int] = 0 if string.startswith("""net.3.""" ): depth += 1 lowercase : List[str] = string[6:] elif string.startswith("""net.""" ): lowercase : str = string[4:] while string.startswith("""main.7.""" ): depth += 1 lowercase : Union[str, Any] = string[7:] if string.startswith("""main.""" ): lowercase : List[str] = string[5:] # mid block if string[:2].isdigit(): lowercase : List[str] = string[:2] lowercase : Tuple = string[2:] else: lowercase : Optional[Any] = string[0] lowercase : Any = string[1:] if depth == max_depth: lowercase : str = MID_NUM_TO_LAYER[layer_num] lowercase : Dict = """mid_block""" elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: lowercase : str = DOWN_NUM_TO_LAYER[layer_num] lowercase : int = f"down_blocks.{depth}" elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: lowercase : Dict = UP_NUM_TO_LAYER[layer_num] lowercase : Any = f"up_blocks.{max_depth - depth - 1}" elif depth == 0: lowercase : Dict = DEPTH_0_TO_LAYER[layer_num] lowercase : str = f"up_blocks.{max_depth - 1}" if int(SCREAMING_SNAKE_CASE__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f"Naming error with {input_string} and string_left: {string_left}." ) lowercase : Any = string_left[1:] if "resnets" in new_layer: lowercase : Dict = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: lowercase : List[Any] = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = prefix + """.""" + new_layer + """.""" + string_left else: lowercase : int = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Optional[Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue lowercase : List[str] = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: lowercase : Optional[int] = v return new_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight lowercase : Optional[Any] = v[:, :, 0] else: # bias lowercase : Tuple = v else: # qkv matrices lowercase : Tuple = v.shape[0] lowercase : Union[str, Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowercase : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowercase : List[str] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase : List[Any] = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}" lowercase : List[str] = download(SCREAMING_SNAKE_CASE__ ) lowercase : Any = MODELS_MAP[model_name]["""sample_rate"""] lowercase : str = MODELS_MAP[model_name]["""sample_size"""] lowercase : List[Any] = Object() lowercase : str = sample_size lowercase : List[str] = sample_rate lowercase : Any = 0 lowercase : Dict = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = diffusers_model.state_dict() lowercase : Optional[int] = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )["""state_dict"""] ) lowercase : Any = orig_model.diffusion_ema.eval() lowercase : int = orig_model.state_dict() lowercase : int = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowercase : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, f"Problem with {renamed_minus_diffusers}" assert all(k.endswith("""kernel""" ) for k in list(SCREAMING_SNAKE_CASE__ ) ), f"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": lowercase : str = value.squeeze() lowercase : int = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = 100 lowercase : int = 33 lowercase : Tuple = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) lowercase : str = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] lowercase : List[Any] = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) lowercase : Any = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = torch.manual_seed(33 ) lowercase : List[str] = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios lowercase : int = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) lowercase : str = generated.clamp(-1 , 1 ) lowercase : Any = (generated - audio).abs().sum() lowercase : Dict = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , SCREAMING_SNAKE_CASE__ ) print("""Diff max""" , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/" print(f"Conversion for {model_name} successful!" ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowercase : Optional[int] = parser.parse_args() main(args)
20
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : List[Any] = logging.getLogger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: return (preds == labels).mean() @dataclass class __snake_case : _a : str= field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __snake_case : _a : str= field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) _a : str= field(metadata={"help": "Should contain the data files for the task."} ) _a : int= field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) try: lowercase : Union[str, Any] = processors[data_args.task_name]() lowercase : List[Any] = processor.get_labels() lowercase : Dict = len(SCREAMING_SNAKE_CASE__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase : List[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Any = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , p.label_ids )} # Data collator lowercase : List[str] = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase : List[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase : List[Any] = trainer.evaluate() lowercase : List[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) return results def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
20
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
1
from dataclasses import dataclass, field from typing import Optional @dataclass class __snake_case : _a : Optional[str]= field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) _a : Optional[str]= field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _a : Optional[str]= field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) _a : Optional[str]= field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _a : Optional[int]= field(default=2 , metadata={"help": "Batch size for training."} ) _a : Optional[int]= field(default=2 , metadata={"help": "Batch size for evaluation."} ) _a : Optional[float]= field(default=0.1 , metadata={"help": "Value of weight decay."} ) _a : Optional[int]= field( default=1_0000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _a : Optional[float]= field(default=2E-4 , metadata={"help": "Learning rate fo training."} ) _a : Optional[str]= field(default="cosine" , metadata={"help": "Learning rate."} ) _a : Optional[int]= field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _a : Optional[int]= field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) _a : Optional[bool]= field( default=lowerCAmelCase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _a : Optional[int]= field(default=5_0000 , metadata={"help": "Maximum number of training steps."} ) _a : Optional[int]= field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _a : Optional[int]= field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) _a : Optional[int]= field(default=1 , metadata={"help": "Training seed."} ) _a : Optional[int]= field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _a : Optional[bool]= field(default=lowerCAmelCase , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __snake_case : _a : Optional[str]= field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _a : Optional[str]= field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _a : Optional[int]= field(default=2 , metadata={"help": "Batch size used for evaluation."} ) _a : Optional[int]= field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _a : Optional[int]= field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) _a : Optional[int]= field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __snake_case : _a : Optional[str]= field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _a : Optional[int]= field(default=lowerCAmelCase , metadata={"help": "Number of workers used for code evaluation."} ) _a : Optional[int]= field( default=lowerCAmelCase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) _a : Optional[bool]= field( default=lowerCAmelCase , metadata={"help": "Sample from the language model's output distribution."} ) _a : Optional[float]= field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) _a : Optional[int]= field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) _a : Optional[int]= field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) _a : Optional[float]= field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) _a : Optional[int]= field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) _a : Optional[int]= field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) _a : Optional[int]= field(default=1 , metadata={"help": "Random seed used for evaluation."} ) _a : Optional[str]= field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) _a : Optional[str]= field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _a : Optional[int]= field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __snake_case : _a : Optional[int]= field( default=lowerCAmelCase , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) _a : Optional[str]= field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) _a : Optional[str]= field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) _a : Optional[int]= field( default=10_0000 , metadata={"help": "Number of files to save per JSON output file."} ) _a : Optional[str]= field(default="content" , metadata={"help": "Column containing text data to process."} ) _a : Optional[float]= field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _a : Optional[float]= field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _a : Optional[float]= field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _a : Optional[float]= field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _a : Optional[float]= field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) _a : Optional[str]= field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) _a : Optional[bool]= field( default=lowerCAmelCase , metadata={"help": "If True, near-duplicate samples are removed."} ) _a : Optional[float]= field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __snake_case : _a : Optional[str]= field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) _a : Optional[str]= field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) _a : Optional[str]= field(default="content" , metadata={"help": "Column containing text data to process."} ) _a : Optional[int]= field(default=20_0000 , metadata={"help": "Number of examples to train tokenizer on."} ) _a : Optional[int]= field( default=3_2768 , metadata={"help": "Number of examples to train the tokenizer on."} ) _a : Optional[str]= field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) _a : Optional[bool]= field(default=lowerCAmelCase , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __snake_case : _a : Optional[str]= field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) _a : Optional[str]= field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) _a : Optional[str]= field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) _a : Optional[int]= field(default=lowerCAmelCase , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __snake_case : _a : Optional[str]= field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) _a : Optional[str]= field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) _a : Optional[str]= field(default="codeparrot" , metadata={"help": "Name of the created model."} ) _a : Optional[bool]= field(default=lowerCAmelCase , metadata={"help": "Push saved tokenizer to the hub."} )
20
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.999 , SCREAMING_SNAKE_CASE__="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE__ ): lowercase : Dict = i / num_diffusion_timesteps lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Tuple= [e.name for e in KarrasDiffusionSchedulers] _a : int= 2 @register_to_config def __init__( self ,snake_case = 1000 ,snake_case = 0.00_085 ,snake_case = 0.012 ,snake_case = "linear" ,snake_case = None ,snake_case = "epsilon" ,snake_case = False ,snake_case = False ,snake_case = 1.0 ,snake_case = "linspace" ,snake_case = 0 ,): '''simple docstring''' if trained_betas is not None: lowercase : List[str] = torch.tensor(snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Optional[Any] = torch.linspace(snake_case ,snake_case ,snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : int = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : Union[str, Any] = betas_for_alpha_bar(snake_case ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase : int = betas_for_alpha_bar(snake_case ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase : Any = 1.0 - self.betas lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case ,snake_case ,snake_case ) lowercase : Tuple = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : Dict = 1 if len(snake_case ) > 1 else 0 else: lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep lowercase : str = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[Any] = self.index_for_timestep(snake_case ) lowercase : Dict = self.sigmas[step_index] lowercase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,): '''simple docstring''' lowercase : Any = num_inference_steps lowercase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Optional[int] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case ,dtype=snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : List[str] = (np.arange(0 ,snake_case ) * step_ratio).round()[::-1].copy().astype(snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Optional[int] = (np.arange(snake_case ,0 ,-step_ratio )).round().copy().astype(snake_case ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Dict = np.log(snake_case ) lowercase : Union[str, Any] = np.interp(snake_case ,np.arange(0 ,len(snake_case ) ) ,snake_case ) if self.config.use_karras_sigmas: lowercase : List[Any] = self._convert_to_karras(in_sigmas=snake_case ,num_inference_steps=self.num_inference_steps ) lowercase : Tuple = np.array([self._sigma_to_t(snake_case ,snake_case ) for sigma in sigmas] ) lowercase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : List[Any] = torch.from_numpy(snake_case ).to(device=snake_case ) lowercase : List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Dict = torch.from_numpy(snake_case ) lowercase : List[Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case ).startswith("""mps""" ): # mps does not support float64 lowercase : Any = timesteps.to(snake_case ,dtype=torch.floataa ) else: lowercase : str = timesteps.to(device=snake_case ) # empty dt and derivative lowercase : Union[str, Any] = None lowercase : Any = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : str = defaultdict(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = np.log(snake_case ) # get distribution lowercase : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase : Optional[int] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase : Any = low_idx + 1 lowercase : str = log_sigmas[low_idx] lowercase : Dict = log_sigmas[high_idx] # interpolate sigmas lowercase : int = (low - log_sigma) / (low - high) lowercase : Dict = np.clip(snake_case ,0 ,1 ) # transform interpolation to time range lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : float = in_sigmas[-1].item() lowercase : float = in_sigmas[0].item() lowercase : Dict = 7.0 # 7.0 is the value used in the paper lowercase : Optional[int] = np.linspace(0 ,1 ,snake_case ) lowercase : int = sigma_min ** (1 / rho) lowercase : Any = sigma_max ** (1 / rho) lowercase : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.dt is None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : Union[str, Any] = self.index_for_timestep(snake_case ) # advance index counter by 1 lowercase : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : str = self.sigmas[step_index] lowercase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase : Dict = self.sigmas[step_index - 1] lowercase : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : Any = sigma_hat if self.state_in_first_order else sigma_next lowercase : int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase : Optional[Any] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase : str = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_next - sigma_hat # store for 2nd order step lowercase : Optional[int] = derivative lowercase : Union[str, Any] = dt lowercase : Union[str, Any] = sample else: # 2. 2nd order / Heun's method lowercase : Tuple = (sample - pred_original_sample) / sigma_next lowercase : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase : Tuple = self.dt lowercase : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase : List[str] = None lowercase : Tuple = None lowercase : Dict = None lowercase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case ): # mps does not support float64 lowercase : List[Any] = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) lowercase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Tuple = timesteps.to(original_samples.device ) lowercase : Any = [self.index_for_timestep(snake_case ,snake_case ) for t in timesteps] lowercase : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[int] = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
20
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : str= None _a : int= BloomTokenizerFast _a : Optional[Any]= BloomTokenizerFast _a : Dict= True _a : str= False _a : Union[str, Any]= "tokenizer_file" _a : Union[str, Any]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[int] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_rust_tokenizer() lowercase : List[str] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase : int = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : int = tokenizer.batch_encode_plus(snake_case )["""input_ids"""] self.assertListEqual(snake_case ,snake_case ) lowercase : int = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case ,**snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : str = """This is a simple input""" lowercase : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase : Optional[int] = ("""This is a simple input""", """This is a pair""") lowercase : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase : List[Any] = None # Hotfixing padding = None self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.get_rust_tokenizer() lowercase : Optional[Any] = load_dataset("""xnli""" ,"""all_languages""" ,split="""test""" ,streaming=snake_case ) lowercase : Tuple = next(iter(snake_case ) )["""premise"""] # pick up one data lowercase : Any = list(sample_data.values() ) lowercase : str = list(map(tokenizer.encode ,snake_case ) ) lowercase : Tuple = [tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
20
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowercase : int = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") lowercase : Union[str, Any] = F'''https://www.google.com/search?q={query}&num=100''' lowercase : List[Any] = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: lowercase : int = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: lowercase : Optional[int] = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
20
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=None ,): '''simple docstring''' lowercase : Dict = size if size is not None else {"""shortest_edge""": 20} lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase : str = parent lowercase : int = batch_size lowercase : str = num_channels lowercase : int = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Dict = do_resize lowercase : Dict = size lowercase : Dict = do_center_crop lowercase : str = crop_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Any= MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = MobileNetVaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""do_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Tuple = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : List[str] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
20
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = val def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: lowercase : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase : Tuple = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) lowercase : List[str] = value else: lowercase : Union[str, Any] = value return new_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Optional[Any]: lowercase : List[str] = """""" if is_panoptic: lowercase : Optional[Any] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase : int = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) lowercase : Any = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowercase : str = in_proj_weight[:256, :] lowercase : List[Any] = in_proj_bias[:256] lowercase : Union[str, Any] = in_proj_weight[256:512, :] lowercase : Optional[int] = in_proj_bias[256:512] lowercase : List[Any] = in_proj_weight[-256:, :] lowercase : str = in_proj_bias[-256:] def _snake_case( ) -> Optional[int]: lowercase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase : Dict = """resnet101""" if "dc5" in model_name: lowercase : str = True lowercase : Tuple = """panoptic""" in model_name if is_panoptic: lowercase : int = 250 else: lowercase : Optional[Any] = 91 lowercase : Optional[Any] = """huggingface/label-files""" lowercase : Tuple = """coco-detection-id2label.json""" lowercase : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) lowercase : Any = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : int = idalabel lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} # load image processor lowercase : str = """coco_panoptic""" if is_panoptic else """coco_detection""" lowercase : List[Any] = ConditionalDetrImageProcessor(format=SCREAMING_SNAKE_CASE__ ) # prepare image lowercase : List[str] = prepare_img() lowercase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) lowercase : Tuple = encoding["""pixel_values"""] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub lowercase : List[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" , SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ).eval() lowercase : Dict = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase : str = """conditional_detr.""" + src rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = rename_backbone_keys(SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ , is_panoptic=SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase : Tuple = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowercase : str = state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase : Dict = state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowercase : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowercase : Dict = state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = val # finally, create HuggingFace model and load state dict lowercase : int = ConditionalDetrForSegmentation(SCREAMING_SNAKE_CASE__ ) if is_panoptic else ConditionalDetrForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() model.push_to_hub(repo_id=SCREAMING_SNAKE_CASE__ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion lowercase : List[str] = conditional_detr(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowercase : Optional[int] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
20
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : int = {"""vocab_file""": """spiece.model"""} lowercase : Optional[int] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowercase : Optional[int] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowercase : int = 0 lowercase : int = 1 lowercase : Optional[Any] = 2 lowercase : Tuple = 3 lowercase : str = 4 class __snake_case ( lowerCAmelCase ): _a : Dict= VOCAB_FILES_NAMES _a : Optional[Any]= PRETRAINED_VOCAB_FILES_MAP _a : int= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Tuple= "left" def __init__( self ,snake_case ,snake_case=False ,snake_case=True ,snake_case=False ,snake_case="<s>" ,snake_case="</s>" ,snake_case="<unk>" ,snake_case="<sep>" ,snake_case="<pad>" ,snake_case="<cls>" ,snake_case="<mask>" ,snake_case=["<eop>", "<eod>"] ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : List[str] = AddedToken(snake_case ,lstrip=snake_case ,rstrip=snake_case ) if isinstance(snake_case ,snake_case ) else mask_token lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case ,remove_space=snake_case ,keep_accents=snake_case ,bos_token=snake_case ,eos_token=snake_case ,unk_token=snake_case ,sep_token=snake_case ,pad_token=snake_case ,cls_token=snake_case ,mask_token=snake_case ,additional_special_tokens=snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**snake_case ,) lowercase : List[Any] = 3 lowercase : str = do_lower_case lowercase : Any = remove_space lowercase : str = keep_accents lowercase : Any = vocab_file lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowercase : Optional[int] = self.__dict__.copy() lowercase : Union[str, Any] = None return state def __setstate__( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowercase : Optional[int] = {} lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.remove_space: lowercase : Optional[Any] = """ """.join(inputs.strip().split() ) else: lowercase : Optional[int] = inputs lowercase : Optional[int] = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: lowercase : str = unicodedata.normalize("""NFKD""" ,snake_case ) lowercase : Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: lowercase : str = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.preprocess_text(snake_case ) lowercase : Any = self.sp_model.encode(snake_case ,out_type=snake_case ) lowercase : Any = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowercase : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase : Tuple = cur_pieces[1:] else: lowercase : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = """""".join(snake_case ).replace(snake_case ,""" """ ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = False ,snake_case = None ,snake_case = True ,**snake_case ,): '''simple docstring''' lowercase : Optional[int] = kwargs.pop("""use_source_tokenizer""" ,snake_case ) lowercase : Optional[int] = self.convert_ids_to_tokens(snake_case ,skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase : Optional[Any] = [] lowercase : Union[str, Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) lowercase : Dict = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase : List[str] = """""".join(snake_case ) lowercase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase : Optional[Any] = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : int = [self.sep_token_id] lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case ,token_ids_a=snake_case ,already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : int = [self.sep_token_id] lowercase : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase : List[Any] = os.path.join( snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case ,"""wb""" ) as fi: lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
20
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): _a : Optional[int]= MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : List[str] = VideoClassificationPipeline(model=snake_case ,image_processor=snake_case ,top_k=2 ) lowercase : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' for example in examples: lowercase : int = video_classifier(snake_case ) self.assertEqual( snake_case ,[ {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, {"""score""": ANY(snake_case ), """label""": ANY(snake_case )}, ] ,) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase : str = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} ,crop_size={"""height""": 10, """width""": 10} ) lowercase : List[Any] = pipeline( """video-classification""" ,model=snake_case ,feature_extractor=snake_case ,frame_sampling_rate=4 ) lowercase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" ,filename="""archery.mp4""" ,repo_type="""dataset""" ) lowercase : Any = video_classifier(snake_case ,top_k=2 ) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] ,) lowercase : str = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(snake_case ,decimals=4 ) ,[ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] ,) @require_tf def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass
20
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : _a : int _a : TreeNode | None= None _a : TreeNode | None= None lowercase : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if root is None: return 0 # Validation def count_nodes(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(SCREAMING_SNAKE_CASE__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE__ ) != count_coins(SCREAMING_SNAKE_CASE__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(SCREAMING_SNAKE_CASE__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase : int = get_distrib(node.left ) lowercase , lowercase : List[Any] = get_distrib(node.right ) lowercase : Optional[Any] = 1 - left_distrib_excess lowercase : Union[str, Any] = 1 - right_distrib_excess lowercase : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE__ ) + abs(SCREAMING_SNAKE_CASE__ ) ) lowercase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return get_distrib(SCREAMING_SNAKE_CASE__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
20
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Tuple= CpmAntTokenizer _a : Union[str, Any]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] lowercase : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) lowercase : List[Any] = """今天天气真好!""" lowercase : List[str] = ["""今天""", """天气""", """真""", """好""", """!"""] lowercase : Optional[Any] = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case ,snake_case ) lowercase : str = """今天天气真好!""" lowercase : Union[str, Any] = [tokenizer.bos_token] + tokens lowercase : int = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,snake_case ) lowercase : str = tokenizer.decode(snake_case ) self.assertEqual(snake_case ,snake_case )
20
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,**snake_case ): '''simple docstring''' super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : Union[str, Any] = {} if "candidate_labels" in kwargs: lowercase : List[str] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case="This is a sound of {}." ): '''simple docstring''' if isinstance(snake_case ,snake_case ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : Optional[Any] = requests.get(snake_case ).content else: with open(snake_case ,"""rb""" ) as f: lowercase : Union[str, Any] = f.read() if isinstance(snake_case ,snake_case ): lowercase : int = ffmpeg_read(snake_case ,self.feature_extractor.sampling_rate ) if not isinstance(snake_case ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) lowercase : Tuple = candidate_labels lowercase : Tuple = [hypothesis_template.format(snake_case ) for x in candidate_labels] lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=self.framework ,padding=snake_case ) lowercase : Optional[Any] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_inputs.pop("""candidate_labels""" ) lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,snake_case ): lowercase : List[Any] = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : Optional[Any] = self.model(**snake_case ,**snake_case ) lowercase : Any = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) lowercase : Any = model_outputs["""logits"""][0] if self.framework == "pt": lowercase : Any = logits.softmax(dim=0 ) lowercase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowercase : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case ,snake_case ) ,key=lambda snake_case : -x[0] ) ] return result
20
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowercase : int = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> int: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class __snake_case : _a : List[str]= list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) _a : List[int]= list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) _a : List[int]= list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Use FP16 to accelerate inference."} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Benchmark training of model"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Verbose memory tracing"} ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) _a : bool= field( default=lowerCAmelCase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Trace memory line by line"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Save result to a CSV file"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Save all print statements in a log file"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Whether to print environment information"} ) _a : bool= field( default=lowerCAmelCase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) _a : str= field( default=f"""inference_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv."} , ) _a : str= field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv."} , ) _a : str= field( default=f"""train_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) _a : str= field( default=f"""train_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) _a : str= field( default=f"""env_info_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving environment information."} , ) _a : str= field( default=f"""log_{round(time() )}.csv""" , metadata={"help": "Log filename used if print statements are saved in log."} , ) _a : int= field(default=3 , metadata={"help": "Times an experiment will be run."} ) _a : bool= field( default=lowerCAmelCase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" ,snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
20
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case( *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 ) -> Optional[Any]: from .. import __version__ lowercase : int = take_from lowercase : Tuple = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowercase : int = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowercase : Union[str, Any] = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowercase : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowercase : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowercase : str = inspect.getouterframes(inspect.currentframe() )[1] lowercase : List[str] = call_frame.filename lowercase : Tuple = call_frame.lineno lowercase : List[str] = call_frame.function lowercase , lowercase : Optional[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
20
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCAmelCase , unittest.TestCase ): # TODO: is there an appropriate internal test set? _a : List[str]= "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self ,snake_case=0 ): '''simple docstring''' lowercase : List[Any] = floats_tensor((1, 3, 128, 128) ,rng=random.Random(snake_case ) ) lowercase : str = torch.manual_seed(snake_case ) lowercase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case ) lowercase : Tuple = self.get_dummy_inputs() lowercase : List[str] = pipe(**snake_case ).images lowercase : List[str] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowercase : List[Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) lowercase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=snake_case ) pipe.set_progress_bar_config(disable=snake_case ) lowercase : Union[str, Any] = self.get_dummy_inputs() lowercase : Tuple = pipe(**snake_case ).images lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : List[str] = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) lowercase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) lowercase : int = self.get_dummy_inputs() lowercase : str = pipe(**snake_case ).images lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : Any = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) lowercase : str = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) lowercase : List[Any] = self.get_dummy_inputs() lowercase : Dict = pipe(**snake_case ).images lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : Optional[int] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) lowercase : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case ) lowercase : Tuple = self.get_dummy_inputs() lowercase : Optional[int] = pipe(**snake_case ).images lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase : str = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = ort.SessionOptions() lowercase : Tuple = False return options def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase : Dict = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowercase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=snake_case ) lowercase : List[str] = """A fantasy landscape, trending on artstation""" lowercase : str = torch.manual_seed(0 ) lowercase : Any = pipe( prompt=snake_case ,image=snake_case ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=snake_case ,output_type="""np""" ,) lowercase : Optional[Any] = output.images lowercase : str = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase : Optional[int] = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase : Dict = init_image.resize((128, 128) ) lowercase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,subfolder="""scheduler""" ) lowercase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,scheduler=snake_case ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=snake_case ) lowercase : int = """A fantasy landscape, trending on artstation""" lowercase : Tuple = torch.manual_seed(0 ) lowercase : Any = pipe( prompt=snake_case ,image=snake_case ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=snake_case ,output_type="""np""" ,) lowercase : str = output.images lowercase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase : Tuple = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
20
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase : Tuple = arr[i] combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # A temporary array to store all combination one by one lowercase : Optional[int] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
20
1
from math import factorial, pi def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase : List[str] = float(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(SCREAMING_SNAKE_CASE__ ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase : Dict = float(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
20
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if "cls_token" in name: lowercase : List[Any] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase : Any = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase : str = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase : int = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase : List[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase : List[str] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase : Dict = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase : List[str] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase : Tuple = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase : int = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: lowercase : int = key.split(""".""" ) lowercase : List[str] = int(key_split[1] ) if "decoder_blocks" in key: lowercase : Tuple = config.decoder_hidden_size lowercase : int = """decoder.decoder_layers.""" if "weight" in key: lowercase : List[Any] = val[:dim, :] lowercase : Tuple = val[dim : dim * 2, :] lowercase : List[Any] = val[-dim:, :] elif "bias" in key: lowercase : str = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Tuple = config.hidden_size lowercase : Union[str, Any] = """vit.encoder.layer.""" if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Dict = val[-dim:, :] elif "bias" in key: lowercase : Any = val[:dim] lowercase : str = val[dim : dim * 2] lowercase : Union[str, Any] = val[-dim:] else: lowercase : Union[str, Any] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = ViTMAEConfig() if "large" in checkpoint_url: lowercase : Dict = 1_024 lowercase : str = 4_096 lowercase : Optional[Any] = 24 lowercase : Optional[Any] = 16 elif "huge" in checkpoint_url: lowercase : int = 14 lowercase : List[Any] = 1_280 lowercase : int = 5_120 lowercase : List[Any] = 32 lowercase : Any = 16 lowercase : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Tuple = ViTMAEImageProcessor(size=config.image_size ) lowercase : Optional[int] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowercase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) lowercase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowercase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) lowercase : str = outputs.logits if "large" in checkpoint_url: lowercase : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowercase : Tuple = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowercase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : List[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
20
import os import numpy import onnx def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : int = a.name lowercase : Any = b.name lowercase : Optional[Any] = """""" lowercase : Dict = """""" lowercase : int = a == b lowercase : int = name_a lowercase : List[str] = name_b return res def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Any = list(model.graph.initializer ) lowercase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : Union[str, Any] = inits[i].name lowercase : Dict = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : str = onnx.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[str] = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : int = {} lowercase : Optional[Any] = [] lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE__ ) dup_set.add(SCREAMING_SNAKE_CASE__ ) lowercase : int = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , SCREAMING_SNAKE_CASE__ ) total_reduced_size += mem_size lowercase : Tuple = inits[i].name lowercase : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[str] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" ) lowercase : str = sorted(SCREAMING_SNAKE_CASE__ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = """optimized_""" + model_file_name lowercase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) onnx.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return new_model
20
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __snake_case : def __init__( self ,snake_case=None ,**snake_case ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) lowercase : Any = model lowercase : Optional[Any] = kwargs.get("""model_save_dir""" ,snake_case ) lowercase : str = kwargs.get("""latest_model_name""" ,snake_case ) def __call__( self ,**snake_case ): '''simple docstring''' lowercase : Tuple = {k: np.array(snake_case ) for k, v in kwargs.items()} return self.model.run(snake_case ,snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ,snake_case=None ,snake_case=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) lowercase : Optional[Any] = """CPUExecutionProvider""" return ort.InferenceSession(snake_case ,providers=[provider] ,sess_options=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,**snake_case ): '''simple docstring''' lowercase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowercase : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) lowercase : Dict = Path(snake_case ).joinpath(snake_case ) try: shutil.copyfile(snake_case ,snake_case ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowercase : Dict = self.model_save_dir.joinpath(snake_case ) if src_path.exists(): lowercase : Optional[int] = Path(snake_case ).joinpath(snake_case ) try: shutil.copyfile(snake_case ,snake_case ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE ( self ,snake_case ,**snake_case ,): '''simple docstring''' if os.path.isfile(snake_case ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(snake_case ,exist_ok=snake_case ) # saving model weights/files self._save_pretrained(snake_case ,**snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case = None ,snake_case = None ,snake_case = False ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case ): lowercase : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case ,snake_case ) ,provider=snake_case ,sess_options=snake_case ) lowercase : int = Path(snake_case ) # load model from hub else: # download model lowercase : Union[str, Any] = hf_hub_download( repo_id=snake_case ,filename=snake_case ,use_auth_token=snake_case ,revision=snake_case ,cache_dir=snake_case ,force_download=snake_case ,) lowercase : int = Path(snake_case ).parent lowercase : Union[str, Any] = Path(snake_case ).name lowercase : int = OnnxRuntimeModel.load_model(snake_case ,provider=snake_case ,sess_options=snake_case ) return cls(model=snake_case ,**snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case = True ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : int = None if len(str(snake_case ).split("""@""" ) ) == 2: lowercase , lowercase : List[Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=snake_case ,revision=snake_case ,cache_dir=snake_case ,force_download=snake_case ,use_auth_token=snake_case ,**snake_case ,)
20
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Optional[Any] = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def _snake_case( ) -> Dict: lowercase : Optional[Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Any = """imagenet-1k-id2label.json""" lowercase : List[str] = 1_000 lowercase : int = """huggingface/label-files""" lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Dict = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} lowercase : List[str] = CvtConfig(num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowercase : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowercase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase : int = [2, 2, 20] lowercase : Optional[int] = [3, 12, 16] lowercase : str = [192, 768, 1_024] lowercase : Union[str, Any] = CvtForImageClassification(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowercase : Optional[Any] = image_size lowercase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) lowercase : Optional[Any] = OrderedDict() lowercase : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase : Optional[Any] = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE__ ) lowercase : str = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE__ ) for cnt in range(config.depth[idx] ): lowercase : List[str] = list_of_state_dict + attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
20
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase : List[str] = get_logger(__name__) lowercase : str = Path(__file__).parent / """model_card_template.md""" lowercase : int = uuida().hex lowercase : str = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : Union[str, Any] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowercase : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _snake_case( SCREAMING_SNAKE_CASE__ = None ) -> str: lowercase : int = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> Dict: if token is None: lowercase : Union[str, Any] = HfFolder.get_token() if organization is None: lowercase : Dict = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """local_rank""" ) and args.local_rank not in [-1, 0]: return lowercase : List[str] = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , """hub_token""" ) else None lowercase : int = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) lowercase : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) lowercase : List[str] = os.path.join(args.output_dir , """README.md""" ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple: if resolved_file is None or commit_hash is not None: return commit_hash lowercase : int = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) lowercase : List[Any] = re.search(R"""snapshots/([^/]+)/""" , SCREAMING_SNAKE_CASE__ ) if search is None: return None lowercase : int = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase : Union[str, Any] = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowercase : Tuple = os.path.join(hf_cache_home, """diffusers""") def _snake_case( SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> None: if new_cache_dir is None: lowercase : List[str] = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : Dict = old_diffusers_cache lowercase : Any = Path(SCREAMING_SNAKE_CASE__ ).expanduser() lowercase : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : Union[str, Any] = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase : Optional[Any] = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowercase : Any = 0 else: with open(cache_version_file) as f: try: lowercase : Optional[int] = int(f.read()) except ValueError: lowercase : Optional[Any] = 0 if cache_version < 1: lowercase : int = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowercase : Optional[int] = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> str: if variant is not None: lowercase : Optional[int] = weights_name.split(""".""" ) lowercase : Dict = splits[:-1] + [variant] + splits[-1:] lowercase : Optional[Any] = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def _snake_case( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ) -> Any: lowercase : str = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse("""0.20.0""" ) ): try: lowercase : str = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' so that the correct variant file can be added." , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual lowercase : str = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " """this model name. Check the model page at """ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Tuple = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Optional[int] = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: lowercase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase : List[Any] = logging.get_logger(__name__) class __snake_case ( enum.Enum ): _a : Any= 0 _a : Optional[Any]= 1 @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): _a : int= "generated" def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=None ,snake_case=None ,**snake_case ,): '''simple docstring''' lowercase : Optional[Any] = {} if truncation is not None: lowercase : int = truncation lowercase : Union[str, Any] = generate_kwargs lowercase : List[Any] = {} if return_tensors is not None and return_type is None: lowercase : Any = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Union[str, Any] = self.tokenizer.encode(snake_case ,add_special_tokens=snake_case ) if len(snake_case ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowercase : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' return True def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] ,snake_case ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) lowercase : int = ([prefix + arg for arg in args[0]],) lowercase : str = True elif isinstance(args[0] ,snake_case ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) lowercase : Optional[int] = self.tokenizer(*snake_case ,padding=snake_case ,truncation=snake_case ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Optional[Any] = super().__call__(*snake_case ,**snake_case ) if ( isinstance(args[0] ,snake_case ) and all(isinstance(snake_case ,snake_case ) for el in args[0] ) and all(len(snake_case ) == 1 for res in result ) ): return [res[0] for res in result] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=TruncationStrategy.DO_NOT_TRUNCATE ,**snake_case ): '''simple docstring''' lowercase : Optional[Any] = self._parse_and_tokenize(snake_case ,truncation=snake_case ,**snake_case ) return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,**snake_case ): '''simple docstring''' if self.framework == "pt": lowercase , lowercase : Any = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() lowercase : Union[str, Any] = generate_kwargs.get("""min_length""" ,self.model.config.min_length ) lowercase : Tuple = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) self.check_inputs(snake_case ,generate_kwargs["""min_length"""] ,generate_kwargs["""max_length"""] ) lowercase : int = self.model.generate(**snake_case ,**snake_case ) lowercase : Union[str, Any] = output_ids.shape[0] if self.framework == "pt": lowercase : Any = output_ids.reshape(snake_case ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowercase : List[Any] = tf.reshape(snake_case ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=ReturnType.TEXT ,snake_case=False ): '''simple docstring''' lowercase : int = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: lowercase : Tuple = { f"{self.return_name}_text": self.tokenizer.decode( snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ,) } records.append(snake_case ) return records @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): _a : Optional[int]= "summary" def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' return super().__call__(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): _a : Tuple= "translation" def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,snake_case=TruncationStrategy.DO_NOT_TRUNCATE ,snake_case=None ,snake_case=None ): '''simple docstring''' if getattr(self.tokenizer ,"""_build_translation_inputs""" ,snake_case ): return self.tokenizer._build_translation_inputs( *snake_case ,return_tensors=self.framework ,truncation=snake_case ,src_lang=snake_case ,tgt_lang=snake_case ) else: return super()._parse_and_tokenize(*snake_case ,truncation=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase , lowercase , lowercase : List[Any] = super()._sanitize_parameters(**snake_case ) if src_lang is not None: lowercase : int = src_lang if tgt_lang is not None: lowercase : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : List[str] = kwargs.get("""task""" ,self.task ) lowercase : Tuple = task.split("""_""" ) if task and len(snake_case ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' return super().__call__(*snake_case ,**snake_case )
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Any: lowercase : Dict = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase , lowercase : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase : Dict = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE__ ) lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : str = file_path.read_text(encoding="""utf-8""" ) else: lowercase : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase : Tuple = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Dict: lowercase : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase : Optional[Any] = input_paths[compression_format] if input_path is None: lowercase : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) assert extractor_format is not None lowercase : Any = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase : int = output_path.read_text(encoding="""utf-8""" ) lowercase : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: import tarfile lowercase : Tuple = tmp_path / """data_dot_dot""" directory.mkdir() lowercase : str = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: import tarfile lowercase : Tuple = tmp_path / """data_sym_link""" directory.mkdir() lowercase : int = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=SCREAMING_SNAKE_CASE__ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase : Optional[int] = insecure_tar_files[insecure_tar_file] lowercase : List[str] = tmp_path / """extracted""" TarExtractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase : Any = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase : str = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE__ ) # but we're right
20
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : List[Any]= XLNetTokenizer _a : str= XLNetTokenizerFast _a : Optional[int]= True _a : str= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase : List[Any] = XLNetTokenizer(snake_case ,keep_accents=snake_case ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = """<s>""" lowercase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) ,snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(snake_case ) ,1006 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = XLNetTokenizer(snake_case ,keep_accents=snake_case ) lowercase : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,[285, 46, 10, 170, 382] ) lowercase : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : int = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = XLNetTokenizer(snake_case ,do_lower_case=snake_case ) lowercase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = XLNetTokenizer(snake_case ,do_lower_case=snake_case ) lowercase : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) lowercase : Tuple = tokenizer.encode("""sequence builders""" ,add_special_tokens=snake_case ) lowercase : Optional[int] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=snake_case ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(snake_case ) lowercase : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case ,snake_case ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
20
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( lowerCAmelCase ): _a : str= "gpt_neo" _a : Optional[int]= ["past_key_values"] _a : Dict= {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self ,snake_case=50257 ,snake_case=2048 ,snake_case=2048 ,snake_case=24 ,snake_case=[[["global", "local"], 12]] ,snake_case=16 ,snake_case=None ,snake_case=256 ,snake_case="gelu_new" ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case=1e-5 ,snake_case=0.02 ,snake_case=True ,snake_case=50256 ,snake_case=50256 ,**snake_case ,): '''simple docstring''' lowercase : int = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Union[str, Any] = num_layers lowercase : Union[str, Any] = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Optional[int] = activation_function lowercase : List[str] = resid_dropout lowercase : int = embed_dropout lowercase : Optional[int] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : List[str] = use_cache lowercase : Optional[int] = bos_token_id lowercase : int = eos_token_id lowercase : Union[str, Any] = attention_types lowercase : Dict = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: import torch lowercase : Tuple = input.size() lowercase : int = len(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = shape[dimension] lowercase : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 lowercase : Dict = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] lowercase : Union[str, Any] = [slice(SCREAMING_SNAKE_CASE__ )] * rank lowercase : Optional[Any] = indices lowercase : List[str] = input[s] lowercase : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: import torch lowercase : Union[str, Any] = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = remainders == 0 lowercase : Optional[int] = candidates[divisor_indices] lowercase : List[Any] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class __snake_case ( lowerCAmelCase ): @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case ,direction="""inputs""" ) lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = -1 ,snake_case = -1 ,snake_case = False ,snake_case = None ,): '''simple docstring''' lowercase : Any = super(snake_case ,self ).generate_dummy_inputs( snake_case ,batch_size=snake_case ,seq_length=snake_case ,is_pair=snake_case ,framework=snake_case ) # We need to order the input in the way they appears in the forward() lowercase : List[str] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase : Optional[int] = seqlen + 2 lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] lowercase : Optional[Any] = common_inputs["""attention_mask"""] if self.use_past: lowercase : Any = ordered_inputs["""attention_mask"""].dtype lowercase : Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case ,snake_case ,dtype=snake_case )] ,dim=1 ) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 13
20
1