code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : List[str] , A_ : int = 16 , A_ : int = 88 , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : int = 1 , A_ : float = 0.0 , A_ : int = 32 , A_ : Optional[int] = None , A_ : bool = False , A_ : Optional[int] = None , A_ : str = "geglu" , A_ : bool = True , A_ : bool = True , ) -> Optional[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = in_channels lowerCamelCase_ = torch.nn.GroupNorm(num_groups=A_ , num_channels=A_ , eps=1E-6 , affine=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) # 3. Define transformers blocks lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , cross_attention_dim=A_ , activation_fn=A_ , attention_bias=A_ , double_self_attention=A_ , norm_elementwise_affine=A_ , ) for d in range(A_ ) ] ) lowerCamelCase_ = nn.Linear(A_ , A_ ) def a__ ( self : Union[str, Any] , A_ : int , A_ : Union[str, Any]=None , A_ : str=None , A_ : Optional[Any]=None , A_ : str=1 , A_ : List[str]=None , A_ : bool = True , ) -> str: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = hidden_states.shape lowerCamelCase_ = batch_frames // num_frames lowerCamelCase_ = hidden_states lowerCamelCase_ = hidden_states[None, :].reshape(A_ , A_ , A_ , A_ , A_ ) lowerCamelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase_ = self.norm(A_ ) lowerCamelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A_ , A_ ) lowerCamelCase_ = self.proj_in(A_ ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase_ = block( A_ , encoder_hidden_states=A_ , timestep=A_ , cross_attention_kwargs=A_ , class_labels=A_ , ) # 3. Output lowerCamelCase_ = self.proj_out(A_ ) lowerCamelCase_ = ( hidden_states[None, None, :] .reshape(A_ , A_ , A_ , A_ , A_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase_ = hidden_states.reshape(A_ , A_ , A_ , A_ ) lowerCamelCase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A_ )
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : Optional[int] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = len([g for position, g in enumerate(lowercase ) if g == main_target[position]] ) return (item, float(lowercase )) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = random.randint(0 , len(lowercase ) - 1 ) lowerCamelCase_ = parent_a[:random_slice] + parent_a[random_slice:] lowerCamelCase_ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : list[str] ): '''simple docstring''' lowerCamelCase_ = list(lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCamelCase_ = random.choice(lowercase ) return "".join(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : tuple[str, float] , lowercase : list[tuple[str, float]] , lowercase : list[str] , ): '''simple docstring''' lowerCamelCase_ = [] # Generate more children proportionally to the fitness score. lowerCamelCase_ = int(parent_a[1] * 1_00 ) + 1 lowerCamelCase_ = 10 if child_n >= 10 else child_n for _ in range(lowercase ): lowerCamelCase_ = population_score[random.randint(0 , lowercase )][0] lowerCamelCase_ , lowerCamelCase_ = crossover(parent_a[0] , lowercase ) # Append new string to the population list. pop.append(mutate(lowercase , lowercase ) ) pop.append(mutate(lowercase , lowercase ) ) return pop def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : list[str] , lowercase : bool = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCamelCase_ = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCamelCase_ = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCamelCase_ = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase ) # Generate random starting population. lowerCamelCase_ = [] for _ in range(lowercase ): population.append(''.join([random.choice(lowercase ) for i in range(len(lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCamelCase_ , lowerCamelCase_ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCamelCase_ = [evaluate(lowercase , lowercase ) for item in population] # Check if there is a matching evolution. lowerCamelCase_ = sorted(lowercase , key=lambda lowercase : x[1] , reverse=lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCamelCase_ = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase ) # Normalize population score to be between 0 and 1. lowerCamelCase_ = [ (item, score / len(lowercase )) for item, score in population_score ] # This is selection for i in range(lowercase ): population.extend(select(population_score[int(lowercase )] , lowercase , lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase : Any = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 10_00 ): '''simple docstring''' lowerCamelCase_ = 2**power lowerCamelCase_ = str(lowercase ) lowerCamelCase_ = list(lowercase ) lowerCamelCase_ = 0 for i in list_num: sum_of_num += int(lowercase ) return sum_of_num if __name__ == "__main__": lowerCamelCase : int = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) lowerCamelCase : Optional[Any] = solution(power) print("Sum of the digits is: ", result)
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''efficientformer''' def __init__( self : List[str] , A_ : List[int] = [3, 2, 6, 4] , A_ : List[int] = [48, 96, 224, 448] , A_ : List[bool] = [True, True, True, True] , A_ : int = 448 , A_ : int = 32 , A_ : int = 4 , A_ : int = 7 , A_ : int = 5 , A_ : int = 8 , A_ : int = 4 , A_ : float = 0.0 , A_ : int = 16 , A_ : int = 3 , A_ : int = 3 , A_ : int = 3 , A_ : int = 2 , A_ : int = 1 , A_ : float = 0.0 , A_ : int = 1 , A_ : bool = True , A_ : bool = True , A_ : float = 1E-5 , A_ : str = "gelu" , A_ : float = 0.02 , A_ : float = 1E-12 , A_ : int = 224 , A_ : float = 1E-05 , **A_ : str , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = hidden_sizes lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = depths lowerCamelCase_ = mlp_expansion_ratio lowerCamelCase_ = downsamples lowerCamelCase_ = dim lowerCamelCase_ = key_dim lowerCamelCase_ = attention_ratio lowerCamelCase_ = resolution lowerCamelCase_ = pool_size lowerCamelCase_ = downsample_patch_size lowerCamelCase_ = downsample_stride lowerCamelCase_ = downsample_pad lowerCamelCase_ = drop_path_rate lowerCamelCase_ = num_metaad_blocks lowerCamelCase_ = distillation lowerCamelCase_ = use_layer_scale lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = image_size lowerCamelCase_ = batch_norm_eps
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class A: '''simple docstring''' @staticmethod def a__ ( *A_ : Any , **A_ : str ) -> Tuple: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( lowercase : Image ): '''simple docstring''' lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def a__ ( self : Optional[int] , A_ : Union[str, Any] , A_ : Any , A_ : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = DepthEstimationPipeline(model=A_ , image_processor=A_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a__ ( self : List[Any] , A_ : List[str] , A_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , A_ ) import datasets lowerCamelCase_ = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCamelCase_ = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , A_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" pass @slow @require_torch def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = 'Intel/dpt-large' lowerCamelCase_ = pipeline('depth-estimation' , model=A_ ) lowerCamelCase_ = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) lowerCamelCase_ = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def a__ ( self : Dict ) -> List[str]: """simple docstring""" self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase : str = 8 def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any]=BITS ): '''simple docstring''' lowerCamelCase_ = x.device lowerCamelCase_ = (x * 2_55).int().clamp(0 , 2_55 ) lowerCamelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase ) lowerCamelCase_ = rearrange(lowercase , 'd -> d 1 1' ) lowerCamelCase_ = rearrange(lowercase , 'b c h w -> b c 1 h w' ) lowerCamelCase_ = ((x & mask) != 0).float() lowerCamelCase_ = rearrange(lowercase , 'b c d h w -> b (c d) h w' ) lowerCamelCase_ = bits * 2 - 1 return bits def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[int]=BITS ): '''simple docstring''' lowerCamelCase_ = x.device lowerCamelCase_ = (x > 0).int() lowerCamelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase , dtype=torch.intaa ) lowerCamelCase_ = rearrange(lowercase , 'd -> d 1 1' ) lowerCamelCase_ = rearrange(lowercase , 'b (c d) h w -> b c d h w' , d=8 ) lowerCamelCase_ = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : float = 0.0 , lowercase : bool = True , lowercase : Dict=None , lowercase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase_ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase_ = self.alphas_cumprod[timestep] lowerCamelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase_ = self.bit_scale if self.config.clip_sample: lowerCamelCase_ = torch.clamp(lowercase , -scale , lowercase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase_ = self._get_variance(lowercase , lowercase ) lowerCamelCase_ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase_ = model_output.device if torch.is_tensor(lowercase ) else 'cpu' lowerCamelCase_ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase ).to(lowercase ) lowerCamelCase_ = self._get_variance(lowercase , lowercase ) ** 0.5 * eta * noise lowerCamelCase_ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : Tuple="epsilon" , lowercase : Any=None , lowercase : bool = True , ): '''simple docstring''' lowerCamelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase_ , lowerCamelCase_ = torch.split(lowercase , sample.shape[1] , dim=1 ) else: lowerCamelCase_ = None # 1. compute alphas, betas lowerCamelCase_ = self.alphas_cumprod[t] lowerCamelCase_ = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase_ = 1 - alpha_prod_t lowerCamelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase_ = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowerCamelCase_ = self.bit_scale if self.config.clip_sample: lowerCamelCase_ = torch.clamp(lowercase , -scale , lowercase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase_ = 0 if t > 0: lowerCamelCase_ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase ).to(model_output.device ) lowerCamelCase_ = (self._get_variance(lowercase , predicted_variance=lowercase ) ** 0.5) * noise lowerCamelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , A_ : UNetaDConditionModel , A_ : Union[DDIMScheduler, DDPMScheduler] , A_ : Optional[float] = 1.0 , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowerCamelCase_ = bit_scale lowerCamelCase_ = ( ddim_bit_scheduler_step if isinstance(A_ , A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : Optional[int] , A_ : Optional[int] = 256 , A_ : Optional[int] = 256 , A_ : Optional[int] = 50 , A_ : Optional[torch.Generator] = None , A_ : Optional[int] = 1 , A_ : Optional[str] = "pil" , A_ : bool = True , **A_ : Any , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" lowerCamelCase_ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A_ , ) lowerCamelCase_ = decimal_to_bits(A_ ) * self.bit_scale lowerCamelCase_ = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase_ = self.unet(A_ , A_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample lowerCamelCase_ = bits_to_decimal(A_ ) if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Optional[Any] , A_ : Optional[Any]=7 , A_ : Optional[Any]=3 , A_ : List[Any]=18 , A_ : Dict=30 , A_ : Dict=400 , A_ : List[Any]=True , A_ : int=None , A_ : Any=True , A_ : Optional[int]=None , A_ : str=True , A_ : Any=[0.5, 0.5, 0.5] , A_ : int=[0.5, 0.5, 0.5] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = size if size is not None else {'shortest_edge': 18} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std def a__ ( self : Dict ) -> Dict: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = LevitImageProcessor if is_vision_available() else None def a__ ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = LevitImageProcessingTester(self ) @property def a__ ( self : Optional[int] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" pass def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] def a__ ( self : Any , A_ : Optional[int] , A_ : Any , A_ : Tuple , **A_ : List[str] ) -> List[Any]: """simple docstring""" self.events.append('on_init_end' ) def a__ ( self : Dict , A_ : List[Any] , A_ : List[Any] , A_ : List[Any] , **A_ : Tuple ) -> Optional[int]: """simple docstring""" self.events.append('on_train_begin' ) def a__ ( self : str , A_ : Dict , A_ : Optional[int] , A_ : Optional[Any] , **A_ : List[str] ) -> Optional[Any]: """simple docstring""" self.events.append('on_train_end' ) def a__ ( self : List[str] , A_ : List[Any] , A_ : Dict , A_ : Optional[int] , **A_ : Optional[Any] ) -> Any: """simple docstring""" self.events.append('on_epoch_begin' ) def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : List[str] , A_ : Dict , **A_ : Dict ) -> Union[str, Any]: """simple docstring""" self.events.append('on_epoch_end' ) def a__ ( self : int , A_ : Dict , A_ : str , A_ : List[str] , **A_ : Optional[Any] ) -> Optional[int]: """simple docstring""" self.events.append('on_step_begin' ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , **A_ : Dict ) -> Optional[int]: """simple docstring""" self.events.append('on_step_end' ) def a__ ( self : Union[str, Any] , A_ : int , A_ : Dict , A_ : Union[str, Any] , **A_ : Dict ) -> List[str]: """simple docstring""" self.events.append('on_evaluate' ) def a__ ( self : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Optional[Any] , **A_ : Any ) -> Optional[int]: """simple docstring""" self.events.append('on_predict' ) def a__ ( self : List[Any] , A_ : Dict , A_ : Optional[Any] , A_ : int , **A_ : int ) -> str: """simple docstring""" self.events.append('on_save' ) def a__ ( self : int , A_ : str , A_ : Dict , A_ : Tuple , **A_ : List[str] ) -> List[Any]: """simple docstring""" self.events.append('on_log' ) def a__ ( self : Optional[int] , A_ : Dict , A_ : Any , A_ : Optional[Any] , **A_ : Dict ) -> List[str]: """simple docstring""" self.events.append('on_prediction_step' ) @require_torch class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" shutil.rmtree(self.output_dir ) def a__ ( self : Dict , A_ : Optional[int]=0 , A_ : Any=0 , A_ : Any=64 , A_ : Optional[int]=64 , A_ : Tuple=None , A_ : Dict=False , **A_ : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = RegressionDataset(length=A_ ) lowerCamelCase_ = RegressionDataset(length=A_ ) lowerCamelCase_ = RegressionModelConfig(a=A_ , b=A_ ) lowerCamelCase_ = RegressionPreTrainedModel(A_ ) lowerCamelCase_ = TrainingArguments(self.output_dir , disable_tqdm=A_ , report_to=[] , **A_ ) return Trainer( A_ , A_ , train_dataset=A_ , eval_dataset=A_ , callbacks=A_ , ) def a__ ( self : Tuple , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) # Order doesn't matter lowerCamelCase_ = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) lowerCamelCase_ = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) for cba, cba in zip(A_ , A_ ): if isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(A_ , A_ ) elif isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): self.assertEqual(A_ , cba.__class__ ) elif not isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(cba.__class__ , A_ ) else: self.assertEqual(A_ , A_ ) def a__ ( self : Optional[int] , A_ : int ) -> List[str]: """simple docstring""" lowerCamelCase_ = ['on_init_end', 'on_train_begin'] lowerCamelCase_ = 0 lowerCamelCase_ = len(trainer.get_eval_dataloader() ) lowerCamelCase_ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(A_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # Callbacks passed at init are added to the default callbacks lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCamelCase_ = self.get_trainer(disable_tqdm=A_ ) lowerCamelCase_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCamelCase_ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = trainer.pop_callback(A_ ) self.assertEqual(cb.__class__ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # We can also add, pop, or remove by instance lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = trainer.callback_handler.callbacks[0] trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCamelCase_ = self.get_trainer() lowerCamelCase_ = trainer.callback_handler.callbacks[0] lowerCamelCase_ = trainer.pop_callback(A_ ) self.assertEqual(A_ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=A_ ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # Independent log/save/eval lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCamelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # A bit of everything lowerCamelCase_ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowerCamelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowerCamelCase_ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A_ ) in warn_mock.call_args[0][0]
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , A_ : Any , A_ : Any=13 , A_ : Union[str, Any]=7 , A_ : Dict=True , A_ : List[Any]=True , A_ : Dict=True , A_ : Optional[int]=True , A_ : Any=99 , A_ : Tuple=32 , A_ : List[str]=5 , A_ : List[str]=4 , A_ : Dict=37 , A_ : List[str]="gelu" , A_ : Any=0.1 , A_ : str=0.1 , A_ : List[str]=512 , A_ : Optional[int]=16 , A_ : Dict=2 , A_ : Tuple=0.02 , A_ : Tuple=False , A_ : Optional[int]=True , A_ : Union[str, Any]="None" , A_ : int=3 , A_ : int=4 , A_ : Any=None , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = relative_attention lowerCamelCase_ = position_biased_input lowerCamelCase_ = pos_att_type lowerCamelCase_ = scope def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_config() lowerCamelCase_ = 300 return config def a__ ( self : Any , A_ : Optional[int] ) -> List[Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def a__ ( self : int , A_ : Any , A_ : List[Any] , A_ : Union[str, Any] , A_ : Any , A_ : str , A_ : List[Any] , A_ : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = DebertaModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ )[0] lowerCamelCase_ = model(A_ , token_type_ids=A_ )[0] lowerCamelCase_ = model(A_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def a__ ( self : Dict , A_ : List[Any] , A_ : Optional[int] , A_ : int , A_ : Any , A_ : int , A_ : Any , A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ = DebertaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Optional[int] , A_ : List[str] , A_ : Tuple , A_ : str , A_ : List[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = DebertaForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A_ ) def a__ ( self : Tuple , A_ : Optional[Any] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : str , A_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = DebertaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : str , A_ : str , A_ : Tuple , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : int , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = DebertaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = DebertaModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A_ ) def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A_ ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A_ ) @slow def a__ ( self : Dict ) -> Tuple: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = DebertaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" pass @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCamelCase_ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCamelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ = model(A_ , attention_mask=A_ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Dict = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features['label'].names if training_args.do_eval: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features['label'].names if training_args.do_predict: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features['label'].names # Labels lowerCamelCase_ = len(lowercase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , idalabel={str(lowercase ): label for i, label in enumerate(lowercase )} , labelaid={label: i for i, label in enumerate(lowercase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowercase : Optional[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowercase , max_length=data_args.max_seq_length , truncation=lowercase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowercase ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowercase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCamelCase_ = train_dataset.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowercase ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowercase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCamelCase_ = eval_dataset.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowercase ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowercase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): lowerCamelCase_ = predict_dataset.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function lowerCamelCase_ = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase : EvalPrediction ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions lowerCamelCase_ = np.argmax(lowercase , axis=1 ) return metric.compute(predictions=lowercase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowercase ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) lowerCamelCase_ = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowercase ) trainer.save_metrics('train' , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowercase ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) lowerCamelCase_ = min(lowercase , len(lowercase ) ) trainer.log_metrics('eval' , lowercase ) trainer.save_metrics('eval' , lowercase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowercase , metric_key_prefix='predict' ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase ) ) lowerCamelCase_ = min(lowercase , len(lowercase ) ) trainer.log_metrics('predict' , lowercase ) trainer.save_metrics('predict' , lowercase ) lowerCamelCase_ = np.argmax(lowercase , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowercase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowercase ): lowerCamelCase_ = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('google/mt5-small' ) lowerCamelCase_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids lowerCamelCase_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids lowerCamelCase_ = model(A_ , labels=A_ ).loss lowerCamelCase_ = -tf.math.reduce_mean(A_ ).numpy() lowerCamelCase_ = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''maskformer-swin''' UpperCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , A_ : Optional[Any]=224 , A_ : Dict=4 , A_ : str=3 , A_ : List[str]=96 , A_ : Union[str, Any]=[2, 2, 6, 2] , A_ : int=[3, 6, 12, 24] , A_ : Tuple=7 , A_ : Optional[Any]=4.0 , A_ : List[Any]=True , A_ : str=0.0 , A_ : str=0.0 , A_ : Dict=0.1 , A_ : Union[str, Any]="gelu" , A_ : Dict=False , A_ : List[str]=0.02 , A_ : List[str]=1E-5 , A_ : Union[str, Any]=None , A_ : Union[str, Any]=None , **A_ : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(A_ ) lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(A_ ) - 1) ) lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : tuple , lowercase : Path , lowercase : int , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : str , lowercase : List[Any]=False , ): '''simple docstring''' output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' lowerCamelCase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase_ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowerCamelCase_ = 'cpu' lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=lowercase ).to(lowercase ) lowerCamelCase_ = Path(lowercase ) # TEXT ENCODER lowerCamelCase_ = pipeline.text_encoder.config.max_position_embeddings lowerCamelCase_ = pipeline.text_encoder.config.hidden_size lowerCamelCase_ = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowercase , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=lowercase , ) del pipeline.text_encoder # UNET lowerCamelCase_ = pipeline.unet.config.in_channels lowerCamelCase_ = pipeline.unet.config.sample_size lowerCamelCase_ = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), torch.randn(2 ).to(device=lowercase , dtype=lowercase ), torch.randn(2 , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=lowercase , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=lowercase , use_external_data_format=lowercase , ) lowerCamelCase_ = str(unet_path.absolute().as_posix() ) lowerCamelCase_ = os.path.dirname(lowercase ) lowerCamelCase_ = onnx.load(lowercase ) # clean up existing tensor files shutil.rmtree(lowercase ) os.mkdir(lowercase ) # collate external tensor files into one onnx.save_model( lowercase , lowercase , save_as_external_data=lowercase , all_tensors_to_one_file=lowercase , location='weights.pb' , convert_attribute=lowercase , ) del pipeline.unet # VAE ENCODER lowerCamelCase_ = pipeline.vae lowerCamelCase_ = vae_encoder.config.in_channels lowerCamelCase_ = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase_ = lambda lowercase , lowercase : vae_encoder.encode(lowercase , lowercase )[0].sample() onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase , ) # VAE DECODER lowerCamelCase_ = pipeline.vae lowerCamelCase_ = vae_decoder.config.latent_channels lowerCamelCase_ = vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase_ = vae_encoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase_ = pipeline.safety_checker lowerCamelCase_ = safety_checker.config.vision_config.num_channels lowerCamelCase_ = safety_checker.config.vision_config.image_size lowerCamelCase_ = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowercase , lowercase , lowercase , ).to(device=lowercase , dtype=lowercase ), torch.randn(1 , lowercase , lowercase , lowercase ).to(device=lowercase , dtype=lowercase ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=lowercase , ) del pipeline.safety_checker lowerCamelCase_ = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) lowerCamelCase_ = pipeline.feature_extractor else: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=lowercase , feature_extractor=lowercase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowercase ) print('ONNX pipeline saved to' , lowercase ) del pipeline del onnx_pipeline lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(lowercase , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCamelCase : Union[str, Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) for i in range(length - 1 ): lowerCamelCase_ = i for k in range(i + 1 , lowercase ): if collection[k] < collection[least]: lowerCamelCase_ = k if least != i: lowerCamelCase_ , lowerCamelCase_ = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase : List[str] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : list ) -> Any: '''simple docstring''' lowerCamelCase_ = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCamelCase_ = True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCamelCase_ , lowerCamelCase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase_ = False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCamelCase_ , lowerCamelCase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCamelCase_ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") lowerCamelCase : Optional[int] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : Tuple = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = old_name if "patch_embed" in old_name: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = old_name.split('.' ) if layer == "0": lowerCamelCase_ = old_name.replace('0' , 'convolution1' ) elif layer == "1": lowerCamelCase_ = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": lowerCamelCase_ = old_name.replace('3' , 'convolution2' ) else: lowerCamelCase_ = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , lowercase ): lowerCamelCase_ = r'\b\d{2}\b' if bool(re.search(lowercase , lowercase ) ): lowerCamelCase_ = re.search(r'\d\.\d\d.' , lowercase ).group() else: lowerCamelCase_ = re.search(r'\d\.\d.' , lowercase ).group() if int(match[0] ) < 6: lowerCamelCase_ = old_name.replace(lowercase , '' ) lowerCamelCase_ = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) lowerCamelCase_ = 'intermediate_stages.' + trimmed_name else: lowerCamelCase_ = old_name.replace(lowercase , '' ) if int(match[2] ) < num_meta4D_last_stage: lowerCamelCase_ = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: lowerCamelCase_ = str(int(match[2] ) - num_meta4D_last_stage ) lowerCamelCase_ = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: lowerCamelCase_ = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: lowerCamelCase_ = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: lowerCamelCase_ = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: lowerCamelCase_ = trimmed_name.replace('fc2' , 'linear_out' ) lowerCamelCase_ = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , lowercase ): lowerCamelCase_ = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: lowerCamelCase_ = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCamelCase_ = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCamelCase_ = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: lowerCamelCase_ = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: lowerCamelCase_ = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: lowerCamelCase_ = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: lowerCamelCase_ = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCamelCase_ = new_name.replace('norm' , 'layernorm' ) lowerCamelCase_ = 'efficientformer.' + new_name else: lowerCamelCase_ = 'efficientformer.encoder.' + new_name return new_name def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' for key in checkpoint.copy().keys(): lowerCamelCase_ = checkpoint.pop(lowercase ) lowerCamelCase_ = val return checkpoint def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return image def _SCREAMING_SNAKE_CASE ( lowercase : Path , lowercase : Path , lowercase : Path , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = torch.load(lowercase , map_location='cpu' )['model'] lowerCamelCase_ = EfficientFormerConfig.from_json_file(lowercase ) lowerCamelCase_ = EfficientFormerForImageClassificationWithTeacher(lowercase ) lowerCamelCase_ = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) lowerCamelCase_ = config.depths[-1] - config.num_metaad_blocks + 1 lowerCamelCase_ = convert_torch_checkpoint(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() lowerCamelCase_ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image lowerCamelCase_ = prepare_img() lowerCamelCase_ = 2_56 lowerCamelCase_ = 2_24 lowerCamelCase_ = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) lowerCamelCase_ = processor(images=lowercase , return_tensors='pt' ).pixel_values # original processing pipeline lowerCamelCase_ = Compose( [ Resize(lowercase , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(lowercase ), ToTensor(), Normalize(lowercase , lowercase ), ] ) lowerCamelCase_ = image_transforms(lowercase ).unsqueeze(0 ) assert torch.allclose(lowercase , lowercase ) lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits lowerCamelCase_ = (1, 10_00) if "l1" in model_name: lowerCamelCase_ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowercase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCamelCase_ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowercase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCamelCase_ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=lowercase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=lowercase , ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowerCamelCase : str = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Any , A_ : Tuple , A_ : List[str]=3 , A_ : List[str]=32 , A_ : Optional[Any]=3 , A_ : Optional[Any]=10 , A_ : Dict=[10, 20, 30, 40] , A_ : Tuple=[1, 1, 2, 1] , A_ : List[Any]=True , A_ : Any=True , A_ : Optional[Any]="relu" , A_ : List[str]=3 , A_ : int=None , ) -> Tuple: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(A_ ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : Dict ) -> Dict: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a__ ( self : List[Any] , A_ : Optional[Any] , A_ : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = RegNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self : str , A_ : Dict , A_ : List[Any] , A_ : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = RegNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = RegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def a__ ( self : str ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Tuple ) -> Dict: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a__ ( self : str ) -> Any: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a__ ( self : Any ) -> Tuple: """simple docstring""" pass def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, module in model.named_modules(): if isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a__ ( self : int ) -> List[Any]: """simple docstring""" def check_hidden_states_output(A_ : Any , A_ : Tuple , A_ : List[str] ): lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(A_ , A_ , A_ ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = RegNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : str = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[int]=False , lowercase : int=False ): '''simple docstring''' lowerCamelCase_ = 'backbone.' if is_semantic else '' lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Optional[int] , lowercase : int=False , lowercase : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): lowerCamelCase_ = 'backbone.' if is_semantic else '' # queries, keys and values lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = q_bias lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) lowerCamelCase_ = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) lowerCamelCase_ = gamma_a lowerCamelCase_ = gamma_a def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = dct.pop(lowercase ) lowerCamelCase_ = val def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Union[str, Any]=False ): '''simple docstring''' lowerCamelCase_ = False if 'rvlcdip' in checkpoint_url else True lowerCamelCase_ = BeitConfig(use_absolute_position_embeddings=lowercase , use_mask_token=lowercase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase_ = 10_24 lowerCamelCase_ = 40_96 lowerCamelCase_ = 24 lowerCamelCase_ = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase_ = 16 lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = 'rvlcdip-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' )['model'] lowerCamelCase_ = create_rename_keys(lowercase , has_lm_head=lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , has_lm_head=lowercase ) # load HuggingFace model lowerCamelCase_ = BeitForMaskedImageModeling(lowercase ) if has_lm_head else BeitForImageClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # Check outputs on an image lowerCamelCase_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowercase , return_tensors='pt' ) lowerCamelCase_ = encoding['pixel_values'] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits # verify logits lowerCamelCase_ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(lowercase ), "Shape of logits not as expected" Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if push_to_hub: if has_lm_head: lowerCamelCase_ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowerCamelCase_ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowercase , ) model.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowercase , ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) lowerCamelCase : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CycleDiffusionPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self : int ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCamelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(A_ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ ( self : str , A_ : List[str] , A_ : Optional[Any]=0 ) -> Any: """simple docstring""" lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase_ = image / 2 + 0.5 if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = CycleDiffusionPipeline(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = self.get_dummy_inputs(A_ ) lowerCamelCase_ = pipe(**A_ ) lowerCamelCase_ = output.images lowerCamelCase_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = self.get_dummy_components() for name, module in components.items(): if hasattr(A_ , 'half' ): lowerCamelCase_ = module.half() lowerCamelCase_ = CycleDiffusionPipeline(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = self.get_dummy_inputs(A_ ) lowerCamelCase_ = pipe(**A_ ) lowerCamelCase_ = output.images lowerCamelCase_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ ( self : Tuple ) -> int: """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def a__ ( self : str ) -> int: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def a__ ( self : int ) -> Optional[Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def a__ ( self : Any ) -> Tuple: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = 'CompVis/stable-diffusion-v1-4' lowerCamelCase_ = DDIMScheduler.from_pretrained(A_ , subfolder='scheduler' ) lowerCamelCase_ = CycleDiffusionPipeline.from_pretrained( A_ , scheduler=A_ , safety_checker=A_ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'A black colored car' lowerCamelCase_ = 'A blue colored car' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , source_prompt=A_ , image=A_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = 'CompVis/stable-diffusion-v1-4' lowerCamelCase_ = DDIMScheduler.from_pretrained(A_ , subfolder='scheduler' ) lowerCamelCase_ = CycleDiffusionPipeline.from_pretrained(A_ , scheduler=A_ , safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() lowerCamelCase_ = 'A black colored car' lowerCamelCase_ = 'A blue colored car' lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe( prompt=A_ , source_prompt=A_ , image=A_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images assert np.abs(image - expected_image ).max() < 2E-2
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''''' UpperCamelCase = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : str , A_ : Optional[DatasetInfo] = None , A_ : Optional[str] = None , **A_ : Tuple , ) -> int: """simple docstring""" super().__init__(self , **A_ ) lowerCamelCase_ = repo_info lowerCamelCase_ = token lowerCamelCase_ = None def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" if self.dir_cache is None: lowerCamelCase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase_ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(A_ ): {'name': str(A_ ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def a__ ( self : str , A_ : str , A_ : str = "rb" , **A_ : Any , ) -> Union[str, Any]: """simple docstring""" if not isinstance(self.repo_info , A_ ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) lowerCamelCase_ = hf_hub_url(self.repo_info.id , A_ , revision=self.repo_info.sha ) return fsspec.open( A_ , mode=A_ , headers=get_authentication_headers_for_url(A_ , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def a__ ( self : Union[str, Any] , A_ : str , **A_ : Any ) -> str: """simple docstring""" self._get_dirs() lowerCamelCase_ = self._strip_protocol(A_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A_ ) def a__ ( self : Union[str, Any] , A_ : Any , A_ : Tuple=False , **A_ : Optional[Any] ) -> str: """simple docstring""" self._get_dirs() lowerCamelCase_ = PurePosixPath(path.strip('/' ) ) lowerCamelCase_ = {} for p, f in self.dir_cache.items(): lowerCamelCase_ = PurePosixPath(p.strip('/' ) ) lowerCamelCase_ = p.parent if root == path: lowerCamelCase_ = f lowerCamelCase_ = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : List[Any] = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["MaskFormerFeatureExtractor"] lowerCamelCase : List[str] = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] lowerCamelCase : Any = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Any = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''codegen''' UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , A_ : List[str]=50400 , A_ : str=2048 , A_ : int=2048 , A_ : Union[str, Any]=4096 , A_ : str=28 , A_ : Optional[Any]=16 , A_ : Dict=64 , A_ : int=None , A_ : Optional[Any]="gelu_new" , A_ : List[Any]=0.0 , A_ : Dict=0.0 , A_ : Dict=0.0 , A_ : Dict=1E-5 , A_ : Union[str, Any]=0.02 , A_ : Optional[Any]=True , A_ : Union[str, Any]=50256 , A_ : Optional[int]=50256 , A_ : Dict=False , **A_ : Union[str, Any] , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = n_ctx lowerCamelCase_ = n_positions lowerCamelCase_ = n_embd lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = n_inner lowerCamelCase_ = rotary_dim lowerCamelCase_ = activation_function lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = use_cache lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id super().__init__( bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : int , A_ : PretrainedConfig , A_ : str = "default" , A_ : List[PatchingSpec] = None , A_ : bool = False , ) -> Optional[Any]: """simple docstring""" super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ ) if not getattr(self._config , 'pad_token_id' , A_ ): # TODO: how to do that better? lowerCamelCase_ = 0 @property def a__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCamelCase_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) lowerCamelCase_ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def a__ ( self : str ) -> int: """simple docstring""" return self._config.n_layer @property def a__ ( self : List[str] ) -> int: """simple docstring""" return self._config.n_head def a__ ( self : Union[str, Any] , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() lowerCamelCase_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase_ = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] lowerCamelCase_ = common_inputs['attention_mask'] if self.use_past: lowerCamelCase_ = ordered_inputs['attention_mask'].dtype lowerCamelCase_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def a__ ( self : List[Any] ) -> int: """simple docstring""" return 13
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if 'large' in model_name or 'huge' in model_name else False lowerCamelCase_ = True if 'large' in model_name or 'huge' in model_name else False lowerCamelCase_ = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 1_28 elif "large" in model_name: lowerCamelCase_ = 1_92 elif "xlarge" in model_name: lowerCamelCase_ = 2_56 elif "huge" in model_name: lowerCamelCase_ = 3_52 # set label information lowerCamelCase_ = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = 'imagenet-22k-id2label.json' else: lowerCamelCase_ = 'imagenet-1k-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowercase , depths=lowercase , focal_levels=lowercase , focal_windows=lowercase , use_conv_embed=lowercase , idalabel=lowercase , labelaid=lowercase , use_post_layernorm=lowercase , use_layerscale=lowercase , ) return config def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: lowerCamelCase_ = 'encoder.' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": lowerCamelCase_ = 'layernorm.weight' if name == "norm.bias": lowerCamelCase_ = 'layernorm.bias' if "head" in name: lowerCamelCase_ = name.replace('head' , 'classifier' ) else: lowerCamelCase_ = 'focalnet.' + name return name def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple , lowercase : List[str]=False ): '''simple docstring''' lowerCamelCase_ = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('Checkpoint URL: ' , lowercase ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowercase ) lowerCamelCase_ = FocalNetForImageClassification(lowercase ) model.eval() # load state dict model.load_state_dict(lowercase ) # verify conversion lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = BitImageProcessor( do_resize=lowercase , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase , crop_size=2_24 , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , ) lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) lowerCamelCase_ = processor(images=lowercase , return_tensors='pt' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowercase , atol=1e-4 ) lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
import argparse import os import re lowerCamelCase : List[str] = "src/diffusers" # Pattern that looks at the indentation in a line. lowerCamelCase : Dict = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase : Dict = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase : str = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase : str = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase : Any = re.compile(r"\[([^\]]+)\]") def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = _re_indent.search(lowercase ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Tuple="" , lowercase : List[str]=None , lowercase : Any=None ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowercase ): index += 1 lowerCamelCase_ = ['\n'.join(lines[:index] )] else: lowerCamelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCamelCase_ = [lines[index]] index += 1 while index < len(lowercase ) and (end_prompt is None or not lines[index].startswith(lowercase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowercase ) ) if index < len(lowercase ) - 1: lowerCamelCase_ = [lines[index + 1]] index += 1 else: lowerCamelCase_ = [] else: blocks.append('\n'.join(lowercase ) ) lowerCamelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase ) > 0: blocks.append('\n'.join(lowercase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' def _inner(lowercase : str ): return key(lowercase ).lower().replace('_' , '' ) return _inner def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any]=None ): '''simple docstring''' def noop(lowercase : int ): return x if key is None: lowerCamelCase_ = noop # Constants are all uppercase, they go first. lowerCamelCase_ = [obj for obj in objects if key(lowercase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCamelCase_ = [obj for obj in objects if key(lowercase )[0].isupper() and not key(lowercase ).isupper()] # Functions begin with a lowercase, they go last. lowerCamelCase_ = [obj for obj in objects if not key(lowercase )[0].isupper()] lowerCamelCase_ = ignore_underscore(lowercase ) return sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' def _replace(lowercase : Dict ): lowerCamelCase_ = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCamelCase_ = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowercase )] ) + "]" lowerCamelCase_ = import_statement.split('\n' ) if len(lowercase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCamelCase_ = 2 if lines[1].strip() == '[' else 1 lowerCamelCase_ = [(i, _re_strip_line.search(lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCamelCase_ = sort_objects(lowercase , key=lambda lowercase : x[1] ) lowerCamelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCamelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCamelCase_ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] lowerCamelCase_ = get_indent(lines[1] ) + ', '.join([f"""\"{k}\"""" for k in sort_objects(lowercase )] ) return "\n".join(lowercase ) else: # Finally we have to deal with imports fitting on one line lowerCamelCase_ = _re_bracket_content.sub(_replace , lowercase ) return import_statement def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Dict=True ): '''simple docstring''' with open(lowercase , 'r' ) as f: lowerCamelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCamelCase_ = split_code_in_indented_blocks( lowercase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCamelCase_ = main_blocks[block_idx] lowerCamelCase_ = block.split('\n' ) # Get to the start of the imports. lowerCamelCase_ = 0 while line_idx < len(lowercase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCamelCase_ = len(lowercase ) else: line_idx += 1 if line_idx >= len(lowercase ): continue # Ignore beginning and last line: they don't contain anything. lowerCamelCase_ = '\n'.join(block_lines[line_idx:-1] ) lowerCamelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCamelCase_ = split_code_in_indented_blocks(lowercase , indent_level=lowercase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCamelCase_ = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCamelCase_ = [(pattern.search(lowercase ).groups()[0] if pattern.search(lowercase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCamelCase_ = [(i, key) for i, key in enumerate(lowercase ) if key is not None] lowerCamelCase_ = [x[0] for x in sorted(lowercase , key=lambda lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCamelCase_ = 0 lowerCamelCase_ = [] for i in range(len(lowercase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCamelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase ) count += 1 # And we put our main block back together with its first and last line. lowerCamelCase_ = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(lowercase , 'w' ) as f: f.write('\n'.join(lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : str=True ): '''simple docstring''' lowerCamelCase_ = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: lowerCamelCase_ = sort_imports(os.path.join(lowercase , '__init__.py' ) , check_only=lowercase ) if result: lowerCamelCase_ = [os.path.join(lowercase , '__init__.py' )] if len(lowercase ) > 0: raise ValueError(f"""Would overwrite {len(lowercase )} files, run `make style`.""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''vit''' def __init__( self : Union[str, Any] , A_ : Tuple=768 , A_ : Any=12 , A_ : Optional[int]=12 , A_ : Dict=3072 , A_ : Union[str, Any]="gelu" , A_ : Tuple=0.0 , A_ : List[str]=0.0 , A_ : List[str]=0.02 , A_ : List[Any]=1E-12 , A_ : Dict=224 , A_ : List[Any]=16 , A_ : Union[str, Any]=3 , A_ : int=True , A_ : Any=16 , **A_ : int , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias lowerCamelCase_ = encoder_stride class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def a__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ ( self : List[Any] ) -> float: """simple docstring""" return 1E-4
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 50 ): '''simple docstring''' lowerCamelCase_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase : int = False @skip_mps class A( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionAttendAndExcitePipeline UpperCamelCase = False UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def a__ ( cls : Dict ) -> Optional[int]: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(A_ ) @classmethod def a__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(A_ ) def a__ ( self : int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A_ , ) lowerCamelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) lowerCamelCase_ = CLIPTextModel(A_ ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ ( self : str , A_ : Any , A_ : Any=0 ) -> Tuple: """simple docstring""" if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = lowerCamelCase_ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = self.get_dummy_inputs(A_ ) lowerCamelCase_ = pipe(**A_ ).images lowerCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase_ = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) lowerCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ , 1E-3 ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def a__ ( self : int ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=5E-4 ) def a__ ( self : Tuple ) -> int: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A( unittest.TestCase ): '''simple docstring''' @classmethod def a__ ( cls : Tuple ) -> Tuple: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(A_ ) @classmethod def a__ ( cls : int ) -> int: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(A_ ) def a__ ( self : Dict ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = torch.manual_seed(51 ) lowerCamelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=A_ , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase_ = 'a painting of an elephant with glasses' lowerCamelCase_ = [5, 7] lowerCamelCase_ = pipe( prompt=A_ , token_indices=A_ , guidance_scale=7.5 , generator=A_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = AutoConfig.from_pretrained(lowercase ) lowerCamelCase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase ) lowerCamelCase_ = checkpoints.load_tax_checkpoint(lowercase ) lowerCamelCase_ = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": lowerCamelCase_ = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase_ = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase_ = f"""layers_{str(lowercase )}""" # Self-Attention lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase_ = flax_model.params['encoder']['block'][str(lowercase )]['layer'] lowerCamelCase_ = tax_attention_key lowerCamelCase_ = tax_attention_out lowerCamelCase_ = tax_attention_query lowerCamelCase_ = tax_attention_value lowerCamelCase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = tax_global_layer_norm if split_mlp_wi: lowerCamelCase_ = tax_mlp_wi_a lowerCamelCase_ = tax_mlp_wi_a else: lowerCamelCase_ = tax_mlp_wi lowerCamelCase_ = tax_mlp_wo lowerCamelCase_ = tax_mlp_layer_norm lowerCamelCase_ = flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase_ = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T lowerCamelCase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase_ = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T lowerCamelCase_ = tax_encoder_global_rel_embedding # Assigning lowerCamelCase_ = tax_model['target']['encoder']['encoder_norm']['scale'] lowerCamelCase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase_ = f"""layers_{str(lowercase )}""" # Self-Attention lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] lowerCamelCase_ = tax_enc_dec_attention_module['key']['kernel'] lowerCamelCase_ = tax_enc_dec_attention_module['out']['kernel'] lowerCamelCase_ = tax_enc_dec_attention_module['query']['kernel'] lowerCamelCase_ = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization lowerCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning lowerCamelCase_ = flax_model.params['decoder']['block'][str(lowercase )]['layer'] lowerCamelCase_ = tax_attention_key lowerCamelCase_ = tax_attention_out lowerCamelCase_ = tax_attention_query lowerCamelCase_ = tax_attention_value lowerCamelCase_ = tax_pre_attention_layer_norm lowerCamelCase_ = tax_enc_dec_attention_key lowerCamelCase_ = tax_enc_dec_attention_out lowerCamelCase_ = tax_enc_dec_attention_query lowerCamelCase_ = tax_enc_dec_attention_value lowerCamelCase_ = tax_cross_layer_norm if split_mlp_wi: lowerCamelCase_ = tax_mlp_wi_a lowerCamelCase_ = tax_mlp_wi_a else: lowerCamelCase_ = tax_mlp_wi lowerCamelCase_ = tax_mlp_wo lowerCamelCase_ = txa_mlp_layer_norm lowerCamelCase_ = flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase_ = tax_model['target']['decoder']['decoder_norm']['scale'] lowerCamelCase_ = txa_decoder_norm # Only for layer 0: lowerCamelCase_ = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T lowerCamelCase_ = tax_decoder_rel_embedding # Token Embeddings lowerCamelCase_ = tax_model['target']['token_embedder']['embedding'] lowerCamelCase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase_ = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(lowercase ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) lowerCamelCase : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
import string from math import logaa def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) lowerCamelCase_ = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase_ = corpus_without_punctuation.split('\n' ) lowerCamelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return round(tf * idf , 3 )
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A: '''simple docstring''' UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(UpperCamelCase )} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) UpperCamelCase = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) UpperCamelCase = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase = field( default=UpperCamelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) UpperCamelCase = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) UpperCamelCase = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) UpperCamelCase = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''train''' UpperCamelCase = '''dev''' class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Optional[int] , A_ : SquadDataTrainingArguments , A_ : PreTrainedTokenizer , A_ : Optional[int] = None , A_ : Union[str, Split] = Split.train , A_ : Optional[bool] = False , A_ : Optional[str] = None , A_ : Optional[str] = "pt" , ) -> Dict: """simple docstring""" lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A_ , A_ ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = 'v2' if args.version_2_with_negative else 'v1' lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + '.lock' with FileLock(A_ ): if os.path.exists(A_ ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(A_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features['features'] lowerCamelCase_ = self.old_features.get('dataset' , A_ ) lowerCamelCase_ = self.old_features.get('examples' , A_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=A_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A_ , ) lowerCamelCase_ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , A_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Any , A_ : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
class A: '''simple docstring''' def __init__( self : Any , A_ : list ) -> None: """simple docstring""" lowerCamelCase_ = set_counts lowerCamelCase_ = max(A_ ) lowerCamelCase_ = len(A_ ) lowerCamelCase_ = [1] * num_sets lowerCamelCase_ = list(range(A_ ) ) def a__ ( self : Any , A_ : int , A_ : int ) -> bool: """simple docstring""" lowerCamelCase_ = self.get_parent(A_ ) lowerCamelCase_ = self.get_parent(A_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCamelCase_ = 0 lowerCamelCase_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCamelCase_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCamelCase_ = 0 lowerCamelCase_ = src_parent lowerCamelCase_ = self.set_counts[src_parent] lowerCamelCase_ = max(self.max_set , A_ ) return True def a__ ( self : Tuple , A_ : int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set lowerCamelCase_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' lowerCamelCase_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCamelCase_ = 1_28 elif "12-12" in model_name: lowerCamelCase_ = 12 lowerCamelCase_ = 12 elif "14-14" in model_name: lowerCamelCase_ = 14 lowerCamelCase_ = 14 elif "16-16" in model_name: lowerCamelCase_ = 16 lowerCamelCase_ = 16 else: raise ValueError('Model not supported' ) lowerCamelCase_ = 'huggingface/label-files' if "speech-commands" in model_name: lowerCamelCase_ = 35 lowerCamelCase_ = 'speech-commands-v2-id2label.json' else: lowerCamelCase_ = 5_27 lowerCamelCase_ = 'audioset-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if "module.v" in name: lowerCamelCase_ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowerCamelCase_ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowerCamelCase_ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowerCamelCase_ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCamelCase_ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCamelCase_ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowerCamelCase_ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowerCamelCase_ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowercase ) if "qkv" in key: lowerCamelCase_ = key.split('.' ) lowerCamelCase_ = int(key_split[3] ) lowerCamelCase_ = config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any=False ): '''simple docstring''' lowerCamelCase_ = get_audio_spectrogram_transformer_config(lowercase ) lowerCamelCase_ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowerCamelCase_ = model_name_to_url[model_name] lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' ) # remove some keys remove_keys(lowercase ) # rename some keys lowerCamelCase_ = convert_state_dict(lowercase , lowercase ) # load 🤗 model lowerCamelCase_ = ASTForAudioClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCamelCase_ = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 lowerCamelCase_ = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 lowerCamelCase_ = 10_24 if 'speech-commands' not in model_name else 1_28 lowerCamelCase_ = ASTFeatureExtractor(mean=lowercase , std=lowercase , max_length=lowercase ) if "speech-commands" in model_name: lowerCamelCase_ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowerCamelCase_ = dataset[0]['audio']['array'] else: lowerCamelCase_ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowerCamelCase_ , lowerCamelCase_ = torchaudio.load(lowercase ) lowerCamelCase_ = waveform.squeeze().numpy() lowerCamelCase_ = feature_extractor(lowercase , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCamelCase_ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCamelCase_ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCamelCase_ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCamelCase_ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCamelCase_ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCamelCase_ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCamelCase_ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCamelCase_ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(lowercase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase : List[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
from __future__ import annotations lowerCamelCase : List[str] = list[list[int]] # assigning initial values to the grid lowerCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _SCREAMING_SNAKE_CASE ( lowercase : Matrix , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _SCREAMING_SNAKE_CASE ( lowercase : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _SCREAMING_SNAKE_CASE ( lowercase : Matrix ): '''simple docstring''' if location := find_empty_location(lowercase ): lowerCamelCase_ , lowerCamelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = digit if sudoku(lowercase ) is not None: return grid lowerCamelCase_ = 0 return None def _SCREAMING_SNAKE_CASE ( lowercase : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(lowercase , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") lowerCamelCase : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
from __future__ import annotations class A: '''simple docstring''' def __init__( self : Any , A_ : str=None ) -> Any: """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = None def __repr__( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = self while temp: string_rep.append(f"""{temp.data}""" ) lowerCamelCase_ = temp.next return "->".join(A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : list ) -> Union[str, Any]: '''simple docstring''' if not elements_list: raise Exception('The Elements List is empty' ) lowerCamelCase_ = lowerCamelCase_ = Node(elements_list[0] ) for i in range(1 , len(lowercase ) ): lowerCamelCase_ = Node(elements_list[i] ) lowerCamelCase_ = current.next return head def _SCREAMING_SNAKE_CASE ( lowercase : Node ) -> Tuple: '''simple docstring''' if head_node is not None and isinstance(lowercase , lowercase ): print_reverse(head_node.next ) print(head_node.data ) def _SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' from doctest import testmod testmod() lowerCamelCase_ = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowercase ) print('Elements in Reverse:' ) print_reverse(lowercase ) if __name__ == "__main__": main()
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
import pytest lowerCamelCase : Optional[int] = "__dummy_dataset1__" lowerCamelCase : Tuple = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = dataset_loading_script_name lowerCamelCase_ = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=lowercase ) lowerCamelCase_ = script_dir / f"""{script_name}.py""" with open(lowercase , 'w' ) as f: f.write(lowercase ) return str(lowercase )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) lowerCamelCase_ = transform(lowercase ).unsqueeze(0 ).to(lowercase ) return image def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if "visual_encoder" in key: lowerCamelCase_ = re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase ) if "blocks" in key: lowerCamelCase_ = re.sub(r'blocks' , 'layers' , lowercase ) if "attn" in key: lowerCamelCase_ = re.sub(r'attn' , 'self_attn' , lowercase ) if "norm1" in key: lowerCamelCase_ = re.sub(r'norm1' , 'layer_norm1' , lowercase ) if "norm2" in key: lowerCamelCase_ = re.sub(r'norm2' , 'layer_norm2' , lowercase ) if "encoder.norm" in key: lowerCamelCase_ = re.sub(r'encoder.norm' , 'post_layernorm' , lowercase ) if "encoder.patch_embed.proj" in key: lowerCamelCase_ = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase ) if "encoder.pos_embed" in key: lowerCamelCase_ = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase ) if "encoder.cls_token" in key: lowerCamelCase_ = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , lowercase ) if "self_attn" in key: lowerCamelCase_ = re.sub(r'self_attn.proj' , 'self_attn.projection' , lowercase ) return key @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any]=None ): '''simple docstring''' if config_path is not None: lowerCamelCase_ = BlipConfig.from_pretrained(lowercase ) else: lowerCamelCase_ = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowerCamelCase_ = BlipForConditionalGeneration(lowercase ).eval() lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' lowerCamelCase_ = blip_decoder(pretrained=lowercase , image_size=3_84 , vit='base' ) lowerCamelCase_ = pt_model.eval() lowerCamelCase_ = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase_ = modified_state_dict.pop(lowercase ) lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = value hf_model.load_state_dict(lowercase ) lowerCamelCase_ = 3_84 lowerCamelCase_ = load_demo_image(image_size=lowercase , device='cpu' ) lowerCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer(['a picture of'] ).input_ids lowerCamelCase_ = hf_model.generate(lowercase , lowercase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowerCamelCase_ = hf_model.generate(lowercase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCamelCase_ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) lowerCamelCase_ = blip_vqa(pretrained=lowercase , image_size=lowercase , vit='base' ) vqa_model.eval() lowerCamelCase_ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase_ = modified_state_dict.pop(lowercase ) lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = value lowerCamelCase_ = BlipForQuestionAnswering(lowercase ) hf_vqa_model.load_state_dict(lowercase ) lowerCamelCase_ = ['How many dogs are in this image?'] lowerCamelCase_ = tokenizer(lowercase , return_tensors='pt' ).input_ids lowerCamelCase_ = hf_vqa_model.generate(lowercase , lowercase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) lowerCamelCase_ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' lowerCamelCase_ = blip_itm(pretrained=lowercase , image_size=lowercase , vit='base' ) itm_model.eval() lowerCamelCase_ = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase_ = modified_state_dict.pop(lowercase ) lowerCamelCase_ = rename_key(lowercase ) lowerCamelCase_ = value lowerCamelCase_ = BlipForImageTextRetrieval(lowercase ) lowerCamelCase_ = ['A picture of a woman with a dog sitting in a beach'] lowerCamelCase_ = tokenizer( lowercase , return_tensors='pt' , padding='max_length' , truncation=lowercase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowercase ) hf_itm_model.eval() lowerCamelCase_ = hf_itm_model(lowercase , lowercase , use_itm_head=lowercase ) lowerCamelCase_ = hf_itm_model(lowercase , lowercase , use_itm_head=lowercase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : List[str] , A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : str ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ ) # create a imagenet -> id dictionary for easier use lowerCamelCase_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowerCamelCase_ = int(A_ ) lowerCamelCase_ = dict(sorted(self.labels.items() ) ) def a__ ( self : Dict , A_ : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(A_ , A_ ): lowerCamelCase_ = list(A_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : int , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self.transformer.config.sample_size lowerCamelCase_ = self.transformer.config.in_channels lowerCamelCase_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , ) lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 ) lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device ) lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowerCamelCase_ = latent_model_input[: len(A_ ) // 2] lowerCamelCase_ = torch.cat([half, half] , dim=0 ) lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = t if not torch.is_tensor(A_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowerCamelCase_ = latent_model_input.device.type == 'mps' if isinstance(A_ , A_ ): lowerCamelCase_ = torch.floataa if is_mps else torch.floataa else: lowerCamelCase_ = torch.intaa if is_mps else torch.intaa lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowerCamelCase_ = self.transformer( A_ , timestep=A_ , class_labels=A_ ).sample # perform guidance if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 ) lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 ) lowerCamelCase_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 ) else: lowerCamelCase_ = noise_pred # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 ) else: lowerCamelCase_ = latent_model_input lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A_ )
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase : Dict = get_tests_dir("fixtures/dummy-config.json") class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = 0 def a__ ( self : Any ) -> int: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def a__ ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(A_ , A_ ) def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCamelCase_ = os.path.join(A_ , 'fake-roberta' ) os.makedirs(A_ , exist_ok=A_ ) with open(os.path.join(A_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertEqual(type(A_ ) , A_ ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , A_ ) # Wrong model type will raise an error with self.assertRaises(A_ ): AutoConfig.register('model' , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoConfig.register('bert' , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def a__ ( self : str ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = AutoConfig.from_pretrained('bert-base' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = AutoConfig.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : int ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises(A_ ): lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) lowerCamelCase_ = AutoConfig.from_pretrained(A_ , trust_remote_code=A_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def a__ ( self : List[str] ) -> str: """simple docstring""" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' try: AutoConfig.register('new-model' , A_ ) # If remote code is not set, the default is to use local lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub lowerCamelCase_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neo''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , A_ : List[str]=50257 , A_ : List[str]=2048 , A_ : Dict=2048 , A_ : str=24 , A_ : Tuple=[[["global", "local"], 12]] , A_ : List[str]=16 , A_ : Tuple=None , A_ : str=256 , A_ : int="gelu_new" , A_ : List[Any]=0.0 , A_ : int=0.0 , A_ : Union[str, Any]=0.0 , A_ : int=0.1 , A_ : Optional[int]=1E-5 , A_ : List[Any]=0.02 , A_ : Any=True , A_ : Tuple=50256 , A_ : Optional[Any]=50256 , **A_ : Dict , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_layers lowerCamelCase_ = num_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = window_size lowerCamelCase_ = activation_function lowerCamelCase_ = resid_dropout lowerCamelCase_ = embed_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = classifier_dropout lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = use_cache lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id lowerCamelCase_ = attention_types lowerCamelCase_ = self.expand_attention_types_params(A_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) @staticmethod def a__ ( A_ : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Any , lowercase : Dict , lowercase : Union[str, Any] ): '''simple docstring''' import torch lowerCamelCase_ = input.size() lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = shape[dimension] lowerCamelCase_ = torch.arange(0 , lowercase , lowercase ) lowerCamelCase_ = torch.div(sizedim - size , lowercase , rounding_mode='floor' ) + 1 lowerCamelCase_ = torch.arange(lowercase ) + low_indices[:min_length][:, None] lowerCamelCase_ = [slice(lowercase )] * rank lowerCamelCase_ = indices lowerCamelCase_ = input[s] lowerCamelCase_ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Dict ): '''simple docstring''' import torch lowerCamelCase_ = torch.arange(1 , lowercase ) lowerCamelCase_ = torch.remainder(lowercase , lowercase ) lowerCamelCase_ = remainders == 0 lowerCamelCase_ = candidates[divisor_indices] lowerCamelCase_ = torch.max(lowercase ) return largest_divisor, torch.div(lowercase , lowercase , rounding_mode='floor' ) class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCamelCase_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) lowerCamelCase_ = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def a__ ( self : int ) -> int: """simple docstring""" return self._config.num_heads def a__ ( self : str , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCamelCase_ = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() lowerCamelCase_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase_ , lowerCamelCase_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase_ = seqlen + 2 lowerCamelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase_ = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] lowerCamelCase_ = common_inputs['attention_mask'] if self.use_past: lowerCamelCase_ = ordered_inputs['attention_mask'].dtype lowerCamelCase_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def a__ ( self : Optional[int] ) -> int: """simple docstring""" return 13
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
import os def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with open(os.path.dirname(lowercase ) + '/p022_names.txt' ) as file: lowerCamelCase_ = str(file.readlines()[0] ) lowerCamelCase_ = names.replace('"' , '' ).split(',' ) names.sort() lowerCamelCase_ = 0 lowerCamelCase_ = 0 for i, name in enumerate(lowercase ): for letter in name: name_score += ord(lowercase ) - 64 total_score += (i + 1) * name_score lowerCamelCase_ = 0 return total_score if __name__ == "__main__": print(solution())
700
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : List[Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , A_ : Union[int, float] = 1 / 255 , A_ : bool = True , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A_ : Tuple , ) -> None: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BICUBIC , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Tuple , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ = int((256 / 224) * size['shortest_edge'] ) lowerCamelCase_ = get_resize_output_image_size(A_ , size=A_ , default_to_square=A_ ) lowerCamelCase_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( A_ , size=(size_dict['height'], size_dict['width']) , resample=A_ , data_format=A_ , **A_ ) def a__ ( self : Any , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def a__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Optional[int] , ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def a__ ( self : List[str] , A_ : np.ndarray , A_ : Union[float, List[float]] , A_ : Union[float, List[float]] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : str , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def a__ ( self : Optional[int] , A_ : ImageInput , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : PILImageResampling = None , A_ : Optional[bool] = None , A_ : Optional[Dict[str, int]] = None , A_ : Optional[bool] = None , A_ : Optional[float] = None , A_ : Optional[bool] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[Union[float, Iterable[float]]] = None , A_ : Optional[TensorType] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : List[Any] , ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(A_ , default_to_square=A_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(A_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(A_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(A_ , A_ , A_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(A_ , A_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(A_ , A_ ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(A_ , A_ , A_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(A_ , A_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
651
0
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
701
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase : Dict = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase_ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Union[str, Any] ): '''simple docstring''' if exitstatus == 5: lowerCamelCase_ = 0 # Doctest custom flag to ignore output. lowerCamelCase : Union[str, Any] = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase : Dict = doctest.OutputChecker class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Tuple , A_ : Union[str, Any] , A_ : str , A_ : Union[str, Any] ) -> List[str]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , A_ , A_ , A_ ) lowerCamelCase : List[Any] = CustomOutputChecker lowerCamelCase : Optional[int] = HfDoctestModule lowerCamelCase : int = HfDocTestParser
702
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(A_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return len(self.encoder ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = get_pairs(A_ ) if not pairs: return token while True: lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ , lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(A_ ): try: lowerCamelCase_ = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(A_ ) lowerCamelCase_ = new_word if len(A_ ) == 1: break else: lowerCamelCase_ = get_pairs(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = word return word def a__ ( self : str , A_ : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] for token in re.findall(self.pat , A_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def a__ ( self : Tuple , A_ : str ) -> Optional[Any]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def a__ ( self : Tuple , A_ : Dict ) -> List[Any]: """simple docstring""" return self.decoder.get(A_ ) def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ''.join(A_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) lowerCamelCase_ = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs) def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) lowerCamelCase_ = ' '.join(A_ ) lowerCamelCase_ = self.encode(A_ ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
651
0
from __future__ import annotations lowerCamelCase : List[str] = 1.6021e-19 # units = C def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Optional[Any] = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Dict[str, int] , A_ : List[str] , A_ : int = None , A_ : int = None ) -> str: """simple docstring""" super().__init__() lowerCamelCase_ = pad_token_id lowerCamelCase_ = max_length lowerCamelCase_ = vocab lowerCamelCase_ = merges lowerCamelCase_ = BytePairTokenizer(A_ , A_ , sequence_length=A_ ) @classmethod def a__ ( cls : int , A_ : GPTaTokenizer , *A_ : Dict , **A_ : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = [' '.join(A_ ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ = tokenizer.get_vocab() return cls(A_ , A_ , *A_ , **A_ ) @classmethod def a__ ( cls : Any , A_ : Union[str, os.PathLike] , *A_ : Any , **A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ = GPTaTokenizer.from_pretrained(A_ , *A_ , **A_ ) return cls.from_tokenizer(A_ , *A_ , **A_ ) @classmethod def a__ ( cls : List[str] , A_ : List[str] ) -> Optional[Any]: """simple docstring""" return cls(**A_ ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self : Optional[int] , A_ : List[str] , A_ : int = None ) -> str: """simple docstring""" lowerCamelCase_ = self.tf_tokenizer(A_ ) lowerCamelCase_ = tf.ones_like(A_ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_ , lowerCamelCase_ = pad_model_inputs( A_ , max_seq_length=A_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase : List[Any] = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48_000, "sample_size": 131_072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, } def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' return torch.atana(lowercase , lowercase ) / math.pi * 2 def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' lowerCamelCase_ = torch.sin(t * math.pi / 2 ) ** 2 lowerCamelCase_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowercase , lowercase ) class A( UpperCamelCase ): '''simple docstring''' pass class A( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , A_ : int ) -> List[str]: """simple docstring""" super().__init__() lowerCamelCase_ = DiffusionAttnUnetaD(A_ , n_attn_layers=4 ) lowerCamelCase_ = deepcopy(self.diffusion ) lowerCamelCase_ = torch.quasirandom.SobolEngine(1 , scramble=A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase : str = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } lowerCamelCase : str = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } lowerCamelCase : List[str] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } lowerCamelCase : Union[str, Any] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } lowerCamelCase : str = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } lowerCamelCase : Tuple = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowercase ) and not isinstance(lowercase , lowercase ): return name.replace(lowercase , lowercase ) elif name.startswith(lowercase ): return [name.replace(lowercase , lowercase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : Union[str, Any]=13 ): '''simple docstring''' lowerCamelCase_ = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) lowerCamelCase_ = 0 if string.startswith('net.3.' ): depth += 1 lowerCamelCase_ = string[6:] elif string.startswith('net.' ): lowerCamelCase_ = string[4:] while string.startswith('main.7.' ): depth += 1 lowerCamelCase_ = string[7:] if string.startswith('main.' ): lowerCamelCase_ = string[5:] # mid block if string[:2].isdigit(): lowerCamelCase_ = string[:2] lowerCamelCase_ = string[2:] else: lowerCamelCase_ = string[0] lowerCamelCase_ = string[1:] if depth == max_depth: lowerCamelCase_ = MID_NUM_TO_LAYER[layer_num] lowerCamelCase_ = 'mid_block' elif depth > 0 and int(lowercase ) < 7: lowerCamelCase_ = DOWN_NUM_TO_LAYER[layer_num] lowerCamelCase_ = f"""down_blocks.{depth}""" elif depth > 0 and int(lowercase ) > 7: lowerCamelCase_ = UP_NUM_TO_LAYER[layer_num] lowerCamelCase_ = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: lowerCamelCase_ = DEPTH_0_TO_LAYER[layer_num] lowerCamelCase_ = f"""up_blocks.{max_depth - 1}""" if int(lowercase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) lowerCamelCase_ = string_left[1:] if "resnets" in new_layer: lowerCamelCase_ = convert_resconv_naming(lowercase ) elif "attentions" in new_layer: lowerCamelCase_ = convert_attn_naming(lowercase ) lowerCamelCase_ = new_string_left if not isinstance(lowercase , lowercase ): lowerCamelCase_ = prefix + '.' + new_layer + '.' + string_left else: lowerCamelCase_ = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue lowerCamelCase_ = rename(lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowercase , lowercase ): lowerCamelCase_ = transform_conv_attns(lowercase , lowercase , lowercase ) else: lowerCamelCase_ = v return new_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' if len(lowercase ) == 1: if len(v.shape ) == 3: # weight lowerCamelCase_ = v[:, :, 0] else: # bias lowerCamelCase_ = v else: # qkv matrices lowerCamelCase_ = v.shape[0] lowerCamelCase_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCamelCase_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCamelCase_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCamelCase_ = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" lowerCamelCase_ = download(lowercase ) lowerCamelCase_ = MODELS_MAP[model_name]['sample_rate'] lowerCamelCase_ = MODELS_MAP[model_name]['sample_size'] lowerCamelCase_ = Object() lowerCamelCase_ = sample_size lowerCamelCase_ = sample_rate lowerCamelCase_ = 0 lowerCamelCase_ = UNetaDModel(sample_size=lowercase , sample_rate=lowercase ) lowerCamelCase_ = diffusers_model.state_dict() lowerCamelCase_ = DiffusionUncond(lowercase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowercase )['state_dict'] ) lowerCamelCase_ = orig_model.diffusion_ema.eval() lowerCamelCase_ = orig_model.state_dict() lowerCamelCase_ = rename_orig_weights(lowercase ) lowerCamelCase_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCamelCase_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowercase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(lowercase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": lowerCamelCase_ = value.squeeze() lowerCamelCase_ = value diffusers_model.load_state_dict(lowercase ) lowerCamelCase_ = 1_00 lowerCamelCase_ = 33 lowerCamelCase_ = IPNDMScheduler(num_train_timesteps=lowercase ) lowerCamelCase_ = torch.manual_seed(lowercase ) lowerCamelCase_ = torch.randn([1, 2, config.sample_size] , generator=lowercase ).to(lowercase ) lowerCamelCase_ = torch.linspace(1 , 0 , steps + 1 , device=lowercase )[:-1] lowerCamelCase_ = get_crash_schedule(lowercase ) lowerCamelCase_ = DanceDiffusionPipeline(unet=lowercase , scheduler=lowercase ) lowerCamelCase_ = torch.manual_seed(33 ) lowerCamelCase_ = pipe(num_inference_steps=lowercase , generator=lowercase ).audios lowerCamelCase_ = sampling.iplms_sample(lowercase , lowercase , lowercase , {} ) lowerCamelCase_ = generated.clamp(-1 , 1 ) lowerCamelCase_ = (generated - audio).abs().sum() lowerCamelCase_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , lowercase ) print('Diff max' , lowercase ) assert diff_max < 1e-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") lowerCamelCase : Dict = parser.parse_args() main(args)
706
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class A( unittest.TestCase ): '''simple docstring''' UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ , num_return_sequences=2 , return_tensors=A_ ) self.assertEqual( A_ , [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ] , ) lowerCamelCase_ = text_generator.model.config.eos_token_id lowerCamelCase_ = '<pad>' lowerCamelCase_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=A_ , num_return_sequences=2 , batch_size=2 , return_tensors=A_ , ) self.assertEqual( A_ , [ [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], [ {'generated_token_ids': ANY(A_ )}, {'generated_token_ids': ANY(A_ )}, ], ] , ) @require_tf def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output lowerCamelCase_ = text_generator('This is a test' , do_sample=A_ ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) lowerCamelCase_ = text_generator(['This is a test', 'This is a second test'] , do_sample=A_ ) self.assertEqual( A_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def a__ ( self : Optional[int] , A_ : Dict , A_ : int , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TextGenerationPipeline(model=A_ , tokenizer=A_ ) return text_generator, ["This is a test", "Another test"] def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = 'Hello I believe in' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) lowerCamelCase_ = text_generator(A_ ) self.assertEqual( A_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) lowerCamelCase_ = text_generator(A_ , stop_sequence=' fe' ) self.assertEqual(A_ , [{'generated_text': 'Hello I believe in fe'}] ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = text_generator.model lowerCamelCase_ = text_generator.tokenizer lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = pipeline(task='text-generation' , model=A_ , tokenizer=A_ , return_full_text=A_ ) lowerCamelCase_ = text_generator('This is a test' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) lowerCamelCase_ = text_generator('This is a test' , return_full_text=A_ ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) lowerCamelCase_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCamelCase_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=A_ ) self.assertEqual( A_ , [ [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], [{'generated_text': ANY(A_ )}, {'generated_text': ANY(A_ )}], ] , ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_text=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_full_text=A_ , return_tensors=A_ ) with self.assertRaises(A_ ): lowerCamelCase_ = text_generator('test' , return_text=A_ , return_tensors=A_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCamelCase_ = text_generator('' ) self.assertEqual(A_ , [{'generated_text': ANY(A_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCamelCase_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCamelCase_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) lowerCamelCase_ = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A_ ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" import torch # Classic `model_kwargs` lowerCamelCase_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCamelCase_ = pipe('This is a test' ) self.assertEqual( A_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def a__ ( self : int ) -> str: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def a__ ( self : List[Any] ) -> Dict: """simple docstring""" import torch lowerCamelCase_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=A_ , top_p=0.5 ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ = 'Hello world' lowerCamelCase_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": lowerCamelCase_ = logging.get_logger('transformers.generation.tf_utils' ) else: lowerCamelCase_ = logging.get_logger('transformers.generation.utils' ) lowerCamelCase_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 , max_new_tokens=1 ) self.assertIn(A_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_new_tokens=1 ) self.assertNotIn(A_ , cl.out ) with CaptureLogger(A_ ) as cl: lowerCamelCase_ = text_generator(A_ , max_length=10 ) self.assertNotIn(A_ , cl.out )
651
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Any = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class A( UpperCamelCase ): '''simple docstring''' @add_start_docstrings(A_ ) def __call__( self : Any , A_ : torch.LongTensor , A_ : torch.FloatTensor , **A_ : str ) -> bool: """simple docstring""" raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , A_ : int , A_ : Optional[int] = None ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = max_length lowerCamelCase_ = max_position_embeddings @add_start_docstrings(A_ ) def __call__( self : List[str] , A_ : torch.LongTensor , A_ : torch.FloatTensor , **A_ : Optional[int] ) -> bool: """simple docstring""" lowerCamelCase_ = input_ids.shape[-1] lowerCamelCase_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ 'exceptions, performance degradation, or nothing at all.' ) return is_done class A( UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , A_ : int , A_ : int ) -> Optional[Any]: """simple docstring""" warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ 'with `max_length = start_length + max_new_tokens` instead.' , A_ , ) lowerCamelCase_ = start_length lowerCamelCase_ = max_new_tokens lowerCamelCase_ = start_length + max_new_tokens @add_start_docstrings(A_ ) def __call__( self : Dict , A_ : torch.LongTensor , A_ : torch.FloatTensor , **A_ : Optional[int] ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , A_ : float , A_ : Optional[float] = None ) -> Any: """simple docstring""" lowerCamelCase_ = max_time lowerCamelCase_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(A_ ) def __call__( self : Union[str, Any] , A_ : torch.LongTensor , A_ : torch.FloatTensor , **A_ : Tuple ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class A( UpperCamelCase ): '''simple docstring''' @add_start_docstrings(A_ ) def __call__( self : Optional[int] , A_ : torch.LongTensor , A_ : torch.FloatTensor , **A_ : Optional[int] ) -> bool: """simple docstring""" return any(criteria(A_ , A_ ) for criteria in self ) @property def a__ ( self : str ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(A_ , A_ ): return stopping_criterium.max_length elif isinstance(A_ , A_ ): return stopping_criterium.max_length return None def _SCREAMING_SNAKE_CASE ( lowercase : StoppingCriteriaList , lowercase : int ): '''simple docstring''' lowerCamelCase_ = stopping_criteria.max_length lowerCamelCase_ = deepcopy(lowercase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , lowercase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowercase ) ) return new_stopping_criteria
707
import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCamelCase : Tuple = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(A_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : str , A_ : Optional[Any] , A_ : Optional[int] , A_ : str , A_ : Optional[Any]=None ) -> int: """simple docstring""" lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(A_ , mode=A_ ) lowerCamelCase_ = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(A_ , 'w' , newline='\n' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , 'r' ) as f: self.assertTrue(f.read() , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , A_ ) , ) # Copy consistency with a really long name lowerCamelCase_ = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , A_ , overwrite_result=re.sub('DDPM' , 'Test' , A_ ) , )
651
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCamelCase : Union[str, Any] = open # noqa: we just need to have a builtin inside this module to test it properly
708
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase : str = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowerCamelCase : List[str] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : int=False ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = create_model( 'HTSAT-tiny' , 'roberta' , lowercase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=lowercase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = {} lowerCamelCase_ = r'.*sequential.(\d+).*' lowerCamelCase_ = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase_ = key.replace(lowercase , lowercase ) if re.match(lowercase , lowercase ): # replace sequential layers with list lowerCamelCase_ = re.match(lowercase , lowercase ).group(1 ) lowerCamelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowercase )//3}.linear.""" ) elif re.match(lowercase , lowercase ): lowerCamelCase_ = int(re.match(lowercase , lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCamelCase_ = 1 if projecton_layer == 0 else 2 lowerCamelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCamelCase_ = value lowerCamelCase_ = mixed_qkv.size(0 ) // 3 lowerCamelCase_ = mixed_qkv[:qkv_dim] lowerCamelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCamelCase_ = mixed_qkv[qkv_dim * 2 :] lowerCamelCase_ = query_layer lowerCamelCase_ = key_layer lowerCamelCase_ = value_layer else: lowerCamelCase_ = value return model_state_dict def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : int , lowercase : List[Any]=False ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = init_clap(lowercase , enable_fusion=lowercase ) clap_model.eval() lowerCamelCase_ = clap_model.state_dict() lowerCamelCase_ = rename_state_dict(lowercase ) lowerCamelCase_ = ClapConfig() lowerCamelCase_ = enable_fusion lowerCamelCase_ = ClapModel(lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase , strict=lowercase ) model.save_pretrained(lowercase ) transformers_config.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowerCamelCase : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
709
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase : str = imread(r"digital_image_processing/image_data/lena_small.jpg") lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase_ = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase_ = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert med.median_filter(lowercase , 3 ).any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' lowerCamelCase_ = bs.Burkes(imread(lowercase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' lowerCamelCase_ = rs.NearestNeighbour(imread(lowercase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCamelCase_ = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = image[x_coordinate][y_coordinate] lowerCamelCase_ = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase_ = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = int(lowercase ) # Initialize Result lowerCamelCase_ = [] # Traverse through all denomination for denomination in reversed(lowercase ): # Find denominations while int(lowercase ) >= int(lowercase ): total_value -= int(lowercase ) answer.append(lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCamelCase : str = [] lowerCamelCase : Dict = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): lowerCamelCase : Optional[int] = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) lowerCamelCase : Optional[int] = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter lowerCamelCase : Any = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] lowerCamelCase : Optional[Any] = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"""Following is minimal change for {value}: """) lowerCamelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
from functools import reduce lowerCamelCase : List[str] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _SCREAMING_SNAKE_CASE ( lowercase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
711
def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0 for i in range(1 , 10_01 ): total += i**i return str(lowercase )[-10:] if __name__ == "__main__": print(solution())
651
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCamelCase : List[str] = threading.Lock() lowerCamelCase : Optional[logging.Handler] = None lowerCamelCase : int = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCamelCase : str = logging.WARNING lowerCamelCase : List[str] = True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = os.getenv('TRANSFORMERS_VERBOSITY' , lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return __name__.split('.' )[0] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCamelCase_ = logging.StreamHandler() # Set sys.stderr as stream. lowerCamelCase_ = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCamelCase_ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowerCamelCase_ = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowerCamelCase_ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowerCamelCase_ = None def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return log_levels def _SCREAMING_SNAKE_CASE ( lowercase : Optional[str] = None ): '''simple docstring''' if name is None: lowerCamelCase_ = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _SCREAMING_SNAKE_CASE ( lowercase : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() lowerCamelCase_ = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _configure_library_root_logger() lowerCamelCase_ = True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger().handlers for handler in handlers: lowerCamelCase_ = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowercase ) def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase : List[str] , **lowercase : str ): '''simple docstring''' lowerCamelCase_ = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , lowercase ) if no_advisory_warnings: return self.warning(*lowercase , **lowercase ) lowerCamelCase : Optional[Any] = warning_advice @functools.lru_cache(lowercase ) def _SCREAMING_SNAKE_CASE ( self : Any , *lowercase : Any , **lowercase : Union[str, Any] ): '''simple docstring''' self.warning(*lowercase , **lowercase ) lowerCamelCase : Optional[int] = warning_once class A: '''simple docstring''' def __init__( self : List[str] , *A_ : Tuple , **A_ : Any ) -> List[str]: # pylint: disable=unused-argument """simple docstring""" lowerCamelCase_ = args[0] if args else None def __iter__( self : str ) -> List[Any]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : Tuple , A_ : str ) -> List[Any]: """simple docstring""" def empty_fn(*A_ : List[Any] , **A_ : Optional[int] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ) -> int: """simple docstring""" return self def __exit__( self : Optional[int] , A_ : str , A_ : int , A_ : str ) -> Tuple: """simple docstring""" return class A: '''simple docstring''' def __call__( self : Tuple , *A_ : Union[str, Any] , **A_ : int ) -> List[str]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*A_ , **A_ ) else: return EmptyTqdm(*A_ , **A_ ) def a__ ( self : Tuple , *A_ : Dict , **A_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A_ , **A_ ) def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase : List[Any] = _tqdm_cls() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = True hf_hub_utils.enable_progress_bars() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = False hf_hub_utils.disable_progress_bars()
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["ViTFeatureExtractor"] lowerCamelCase : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
651
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''distilbert''' UpperCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : Optional[Any] , A_ : str=30522 , A_ : Any=512 , A_ : Any=False , A_ : Union[str, Any]=6 , A_ : List[str]=12 , A_ : Optional[Any]=768 , A_ : str=4 * 768 , A_ : Optional[int]=0.1 , A_ : Tuple=0.1 , A_ : int="gelu" , A_ : Optional[int]=0.02 , A_ : Tuple=0.1 , A_ : List[str]=0.2 , A_ : Optional[Any]=0 , **A_ : Optional[Any] , ) -> Any: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = sinusoidal_pos_embds lowerCamelCase_ = n_layers lowerCamelCase_ = n_heads lowerCamelCase_ = dim lowerCamelCase_ = hidden_dim lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation lowerCamelCase_ = initializer_range lowerCamelCase_ = qa_dropout lowerCamelCase_ = seq_classif_dropout super().__init__(**A_ , pad_token_id=A_ ) class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , A_ : str , A_ : int=7 , A_ : Optional[Any]=3 , A_ : Tuple=18 , A_ : List[Any]=30 , A_ : Optional[int]=400 , A_ : List[str]=True , A_ : str=32 , A_ : Union[str, Any]=True , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size_divisor lowerCamelCase_ = do_rescale def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = GLPNImageProcessor if is_vision_available() else None def a__ ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = GLPNImageProcessingTester(self ) @property def a__ ( self : str ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size_divisor' ) ) self.assertTrue(hasattr(A_ , 'resample' ) ) self.assertTrue(hasattr(A_ , 'do_rescale' ) ) def a__ ( self : str ) -> Tuple: """simple docstring""" pass def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
def _SCREAMING_SNAKE_CASE ( lowercase : dict ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase_ = set() return any( node not in visited and depth_first_search(lowercase , lowercase , lowercase , lowercase ) for node in graph ) def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : int , lowercase : set , lowercase : set ) -> Any: '''simple docstring''' visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase , lowercase , lowercase , lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
715
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''new-model''' if is_tf_available(): class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NewModelConfig @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'bert-base-cased' lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForPreTraining.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForCausalLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : int ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForMaskedLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForSequenceClassification.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow @require_tensorflow_probability def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained(A_ ) lowerCamelCase_ , lowerCamelCase_ = TFAutoModelForTableQuestionAnswering.from_pretrained( A_ , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModelWithLMHead.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = copy.deepcopy(model.config ) lowerCamelCase_ = ['FunnelBaseModel'] lowerCamelCase_ = TFAutoModel.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = TFAutoModel.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> Tuple: """simple docstring""" try: AutoConfig.register('new-model' , A_ ) lowerCamelCase_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) auto_class.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): auto_class.register(A_ , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ = BertModelTester(self ).get_config() lowerCamelCase_ = NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ = auto_class.from_config(A_ ) self.assertIsInstance(A_ , A_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ ) lowerCamelCase_ = auto_class.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a__ ( self : int ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = TFAutoModel.from_pretrained('bert-base' ) def a__ ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = TFAutoModel.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex(A_ , 'Use `from_pt=True` to load this model' ): lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: lowerCamelCase_ = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
651
0
from typing import Union import fire import torch from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str = "cpu" , lowercase : Union[str, None] = None ): '''simple docstring''' lowerCamelCase_ = torch.load(lowercase , map_location=lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowercase , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCamelCase_ = v.half() if save_path is None: # overwrite src_path lowerCamelCase_ = src_path torch.save(lowercase , lowercase ) if __name__ == "__main__": fire.Fire(convert)
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = ort.SessionOptions() lowerCamelCase_ = False return options def a__ ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default lowerCamelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 'A red cat sitting on a park bench' lowerCamelCase_ = np.random.RandomState(0 ) lowerCamelCase_ = pipe( prompt=A_ , image=A_ , mask_image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=A_ , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
717
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCamelCase_ = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Dict="eval" ): '''simple docstring''' lowerCamelCase_ = os.path.join(lowercase , f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase , 'r' ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_glue.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_clm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 100 ) @slow def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , 'argv' , A_ ): run_summarization_flax.main() lowerCamelCase_ = get_results(A_ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 10 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def a__ ( self : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertLess(result['eval_perplexity'] , 42 ) @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , 'argv' , A_ ): run_ta_mlm_flax.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = 7 if get_gpu_count() > 1 else 2 lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , 'argv' , A_ ): run_flax_ner.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , 'argv' , A_ ): run_qa.main() lowerCamelCase_ = get_results(A_ ) self.assertGreaterEqual(result['eval_f1'] , 30 ) self.assertGreaterEqual(result['eval_exact'] , 30 )
651
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''image''': Image()} ) UpperCamelCase = Features({'''labels''': ClassLabel} ) UpperCamelCase = '''image''' UpperCamelCase = '''labels''' def a__ ( self : Optional[int] , A_ : Any ) -> str: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCamelCase_ = copy.deepcopy(self ) lowerCamelCase_ = self.label_schema.copy() lowerCamelCase_ = features[self.label_column] lowerCamelCase_ = label_schema return task_template @property def a__ ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[Any] ): '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : int , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_json_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_json_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowerCamelCase_ = features.copy() lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = JsonDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Tuple , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_json_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : List[str] , lowercase : List[str] ): '''simple docstring''' if issubclass(lowercase , lowercase ): lowerCamelCase_ = jsonl_path elif issubclass(lowercase , lowercase ): lowerCamelCase_ = [jsonl_path] lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase ).read() _check_json_dataset(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : int , lowercase : int=("train",) ): '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: lowerCamelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Any , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_json_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} , features=lowercase , cache_dir=lowercase ).read() _check_json_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : List[Any] , lowercase : List[str] ): '''simple docstring''' if split: lowerCamelCase_ = {split: jsonl_path} else: lowerCamelCase_ = 'train' lowerCamelCase_ = {'train': jsonl_path, 'test': jsonl_path} lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(lowercase , cache_dir=lowercase ).read() _check_json_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' return json.load(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' return [json.loads(lowercase ) for line in buffer] class A: '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Optional[Any] , A_ : Dict , A_ : List[Any] , A_ : List[str] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(A_ ) assert isinstance(A_ , A_ ) assert isinstance(exported_content[0] , A_ ) assert len(A_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Union[str, Any] , A_ : List[str] , A_ : List[Any] , A_ : List[str] , A_ : Dict , A_ : List[str] ) -> List[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ , orient=A_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(A_ ) assert isinstance(A_ , A_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(A_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : str , A_ : Tuple , A_ : List[Any] , A_ : List[str] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(A_ ) assert isinstance(A_ , A_ ) assert isinstance(exported_content[0] , A_ ) assert len(A_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : str , A_ : int , A_ : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , lines=A_ , orient=A_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(A_ ) assert isinstance(A_ , A_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(A_ ) == 10 def a__ ( self : Dict , A_ : str ) -> List[str]: """simple docstring""" with pytest.raises(A_ ): with io.BytesIO() as buffer: JsonDatasetWriter(A_ , A_ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def a__ ( self : Any , A_ : Union[str, Any] , A_ : int , A_ : Tuple , A_ : Union[str, Any] , A_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" lowerCamelCase_ = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(A_ , A_ , compression=A_ ).write() with fsspec.open(A_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() with fsspec.open(A_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() assert exported_content == original_content
719
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ = 0 def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Any ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(A_ ) / 'preprocessor_config.json' lowerCamelCase_ = Path(A_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(A_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(A_ , 'w' ) ) lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(A_ ) / 'preprocessor_config.json' lowerCamelCase_ = Path(A_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(A_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(A_ , 'w' ) ) lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCamelCase_ = Path(A_ ) / 'preprocessor_config.json' lowerCamelCase_ = Path(A_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(A_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(A_ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ ).to_dict() config_dict.pop('image_processor_type' ) lowerCamelCase_ = CLIPImageProcessor(**A_ ) # save in new folder model_config.save_pretrained(A_ ) config.save_pretrained(A_ ) lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ ) # make sure private variable is not incorrectly saved lowerCamelCase_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(A_ , A_ ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(A_ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(A_ , 'w' ) , ) lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( A_ , 'clip-base is not a local folder and is not a valid model identifier' ): lowerCamelCase_ = AutoImageProcessor.from_pretrained('clip-base' ) def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ , revision='aaaaaa' ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( A_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowerCamelCase_ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" with self.assertRaises(A_ ): lowerCamelCase_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): lowerCamelCase_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=A_ ) lowerCamelCase_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ , trust_remote_code=A_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def a__ ( self : Tuple ) -> Any: """simple docstring""" try: AutoConfig.register('custom' , A_ ) AutoImageProcessor.register(A_ , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoImageProcessor.register(A_ , A_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(A_ ) / 'preprocessor_config.json' lowerCamelCase_ = Path(A_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(A_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(A_ , 'w' ) ) lowerCamelCase_ = CustomImageProcessor.from_pretrained(A_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) lowerCamelCase_ = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def a__ ( self : int ) -> Tuple: """simple docstring""" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = True try: AutoConfig.register('custom' , A_ ) AutoImageProcessor.register(A_ , A_ ) # If remote code is not set, the default is to use local lowerCamelCase_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCamelCase_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCamelCase_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(A_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''nat''' UpperCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , A_ : Dict=4 , A_ : int=3 , A_ : Any=64 , A_ : Any=[3, 4, 6, 5] , A_ : Any=[2, 4, 8, 16] , A_ : Optional[Any]=7 , A_ : List[Any]=3.0 , A_ : Tuple=True , A_ : int=0.0 , A_ : int=0.0 , A_ : Optional[Any]=0.1 , A_ : str="gelu" , A_ : Tuple=0.02 , A_ : Tuple=1E-5 , A_ : List[Any]=0.0 , A_ : Any=None , A_ : Any=None , **A_ : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(A_ ) lowerCamelCase_ = num_heads lowerCamelCase_ = kernel_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(A_ ) - 1) ) lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if exponent == 1: return base if exponent % 2 == 0: _snake_case : Tuple = _modexpt(__lowerCAmelCase , exponent // 2 , __lowerCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCAmelCase , exponent - 1 , __lowerCAmelCase )) % modulo_value def A__( __lowerCAmelCase = 17_77 , __lowerCAmelCase = 18_55 , __lowerCAmelCase = 8 ): _snake_case : List[str] = base for _ in range(1 , __lowerCAmelCase ): _snake_case : Any = _modexpt(__lowerCAmelCase , __lowerCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
652
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : List[str] = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "xmod" def __init__( self : Tuple , lowerCamelCase_ : Dict=3_05_22 , lowerCamelCase_ : Optional[int]=7_68 , lowerCamelCase_ : Any=12 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Optional[int]=30_72 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Optional[int]=5_12 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : str=0.02 , lowerCamelCase_ : Optional[Any]=1e-12 , lowerCamelCase_ : str=1 , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Optional[int]="absolute" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : int=False , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=("en_XX",) , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : int = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : List[str] = intermediate_size _snake_case : List[str] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : int = position_embedding_type _snake_case : Optional[int] = use_cache _snake_case : Any = classifier_dropout _snake_case : int = pre_norm _snake_case : Optional[int] = adapter_reduction_factor _snake_case : Dict = adapter_layer_norm _snake_case : Optional[Any] = adapter_reuse_layer_norm _snake_case : List[str] = ln_before_adapter _snake_case : List[str] = list(lowerCamelCase_ ) _snake_case : Optional[int] = default_language class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
652
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
1
import copy import random from transformers import CLIPTokenizer class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Any ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[Any] = {} def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = super().add_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : str , *lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) else: _snake_case : int = [] for i in range(lowerCamelCase_ ): _snake_case : List[Any] = placeholder_token + f'''_{i}''' self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) _snake_case : Optional[Any] = output def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Tuple=1.0 ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Dict = self.token_map[placeholder_token] _snake_case : Tuple = tokens[: 1 + int(len(lowerCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Optional[int] = copy.copy(lowerCamelCase_ ) random.shuffle(lowerCamelCase_ ) _snake_case : Dict = text.replace(lowerCamelCase_ , ' '.join(lowerCamelCase_ ) ) return text def __call__( self : List[Any] , lowerCamelCase_ : Optional[Any] , *lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Union[str, Any]=1.0 , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , *lowerCamelCase_ : Any , lowerCamelCase_ : Dict=False , lowerCamelCase_ : int=1.0 , **lowerCamelCase_ : Any ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , )
652
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
1
from maths.prime_factors import prime_factors def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowerCAmelCase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(__lowerCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
652
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
1
import string def A__( __lowerCAmelCase ): for key in range(len(string.ascii_uppercase ) ): _snake_case : List[Any] = '' for symbol in message: if symbol in string.ascii_uppercase: _snake_case : Optional[int] = string.ascii_uppercase.find(__lowerCAmelCase ) _snake_case : Tuple = num - key if num < 0: _snake_case : List[Any] = num + len(string.ascii_uppercase ) _snake_case : str = translated + string.ascii_uppercase[num] else: _snake_case : Union[str, Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def A__( ): _snake_case : Union[str, Any] = input('Encrypted message: ' ) _snake_case : Optional[int] = message.upper() decrypt(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
652
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from sklearn.metrics import matthews_corrcoef import datasets lowercase_ : int = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowercase_ : Union[str, Any] = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowercase_ : Dict = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ , sample_weight=lowerCamelCase_ ) ), }
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
def A__( __lowerCAmelCase ): _snake_case : List[Any] = [0] * len(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): # use last results for better performance - dynamic programming _snake_case : Tuple = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[str] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Union[str, Any] = j return prefix_result def A__( __lowerCAmelCase ): return max(prefix_function(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) _snake_case : Optional[int] = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Union[str, Any] = vqa_pipeline(lowerCamelCase_ , top_k=1 ) self.assertEqual( lowerCamelCase_ , [ [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}], [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}], ] , ) @require_torch def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) _snake_case : List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' _snake_case : Any = 'How many cats are there?' _snake_case : Any = vqa_pipeline(image=lowerCamelCase_ , question='How many cats are there?' , top_k=2 ) self.assertEqual( lowerCamelCase_ , [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}] ) _snake_case : Tuple = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( lowerCamelCase_ , [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}] ) @slow @require_torch def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) _snake_case : Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' _snake_case : int = 'How many cats are there?' _snake_case : List[str] = vqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) _snake_case : Union[str, Any] = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) _snake_case : Any = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
652
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase : """simple docstring""" def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): '''simple docstring''' return None class lowercase : """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int ): '''simple docstring''' return None class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , 'tf' , 12 , **lowerCamelCase_ ) @require_torch @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , 'pt' , 12 , **lowerCamelCase_ ) @require_torch @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' from transformers import BertModel _snake_case : int = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() _snake_case : List[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _snake_case : Union[str, Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_ , 'pt' , 12 , lowerCamelCase_ ) @require_tf @slow def __UpperCAmelCase ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case : Union[str, Any] = self._test_export(lowerCamelCase_ , 'tf' , 12 , **lowerCamelCase_ ) _snake_case : List[str] = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case : Any = self._test_export(lowerCamelCase_ , 'pt' , 12 , **lowerCamelCase_ ) _snake_case : int = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _snake_case : Union[str, Any] = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def __UpperCAmelCase ( self : Dict ): '''simple docstring''' from transformers import BertModel _snake_case : Dict = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case : Tuple = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , 'pt' ) @require_tf @require_tokenizers @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' from transformers import TFBertModel _snake_case : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case : Optional[Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , 'tf' ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : str = FeatureExtractionPipeline(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _snake_case , _snake_case , _snake_case , _snake_case : Tuple = infer_shapes(lowerCamelCase_ , lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] _snake_case : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _snake_case , _snake_case : int = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ) , set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _snake_case , _snake_case : int = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : str = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
652
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = tempfile.mkdtemp() # fmt: off _snake_case : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : str = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _snake_case : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case : Optional[Any] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) _snake_case : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _snake_case : str = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **lowerCamelCase_ : int ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , **lowerCamelCase_ : Tuple ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case : int = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizer() _snake_case : Dict = self.get_rust_tokenizer() _snake_case : List[Any] = self.get_image_processor() _snake_case : Dict = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) _snake_case : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case : Tuple = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case : Any = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) _snake_case : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.get_image_processor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : int = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : Tuple = image_processor(lowerCamelCase_ , return_tensors='np' ) _snake_case : List[str] = processor(images=lowerCamelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : str = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[Any] = 'lower newer' _snake_case : List[str] = processor(text=lowerCamelCase_ ) _snake_case : str = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Any = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = 'lower newer' _snake_case : Optional[Any] = self.prepare_image_inputs() _snake_case : Dict = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : int = self.get_tokenizer() _snake_case : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Optional[Any] = processor.batch_decode(lowerCamelCase_ ) _snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = self.get_image_processor() _snake_case : List[str] = self.get_tokenizer() _snake_case : Dict = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : List[Any] = 'lower newer' _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : List[str] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case : Tuple = (low + high) // 2 _snake_case , _snake_case , _snake_case : Tuple = max_subarray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case , _snake_case , _snake_case : Union[str, Any] = max_subarray(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) _snake_case , _snake_case , _snake_case : List[Any] = max_cross_sum(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case : Dict = float('-inf' ), -1 _snake_case , _snake_case : Optional[Any] = float('-inf' ), -1 _snake_case : int | float = 0 for i in range(__lowerCAmelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case : Any = summ _snake_case : List[str] = i _snake_case : Tuple = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case : List[str] = summ _snake_case : int = i return max_left, max_right, (left_sum + right_sum) def A__( __lowerCAmelCase ): _snake_case : Tuple = [randint(1 , __lowerCAmelCase ) for _ in range(__lowerCAmelCase )] _snake_case : str = time.time() max_subarray(__lowerCAmelCase , 0 , input_size - 1 ) _snake_case : Union[str, Any] = time.time() return end - start def A__( ): _snake_case : Dict = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] _snake_case : Tuple = [time_max_subarray(__lowerCAmelCase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__lowerCAmelCase , __lowerCAmelCase ): print(__lowerCAmelCase , '\t\t' , __lowerCAmelCase ) plt.plot(__lowerCAmelCase , __lowerCAmelCase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowercase_ : Optional[Any] = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase_ : List[Any] = logging.get_logger(__name__) # General docstring lowercase_ : Tuple = '''MobileNetV1Config''' # Base docstring lowercase_ : Any = '''google/mobilenet_v1_1.0_224''' lowercase_ : Any = [1, 1024, 7, 7] # Image classification docstring lowercase_ : Optional[int] = '''google/mobilenet_v1_1.0_224''' lowercase_ : Dict = '''tabby, tabby cat''' lowercase_ : Optional[int] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): _snake_case : List[Any] = {} if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = model.mobilenet_va else: _snake_case : Tuple = model _snake_case : List[Any] = 'MobilenetV1/Conv2d_0/' _snake_case : Optional[int] = backbone.conv_stem.convolution.weight _snake_case : Union[str, Any] = backbone.conv_stem.normalization.bias _snake_case : Optional[int] = backbone.conv_stem.normalization.weight _snake_case : Any = backbone.conv_stem.normalization.running_mean _snake_case : int = backbone.conv_stem.normalization.running_var for i in range(13 ): _snake_case : int = i + 1 _snake_case : List[Any] = i * 2 _snake_case : List[Any] = backbone.layer[pt_index] _snake_case : Tuple = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _snake_case : Dict = pointer.convolution.weight _snake_case : Union[str, Any] = pointer.normalization.bias _snake_case : int = pointer.normalization.weight _snake_case : Dict = pointer.normalization.running_mean _snake_case : int = pointer.normalization.running_var _snake_case : str = backbone.layer[pt_index + 1] _snake_case : Optional[int] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _snake_case : Any = pointer.convolution.weight _snake_case : Optional[Any] = pointer.normalization.bias _snake_case : Any = pointer.normalization.weight _snake_case : Tuple = pointer.normalization.running_mean _snake_case : str = pointer.normalization.running_var if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = 'MobilenetV1/Logits/Conv2d_1c_1x1/' _snake_case : Any = model.classifier.weight _snake_case : Union[str, Any] = model.classifier.bias return tf_to_pt_map def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _snake_case : Tuple = tf.train.list_variables(__lowerCAmelCase ) _snake_case : List[str] = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) _snake_case : Any = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = array # Build TF to PyTorch weights loading map _snake_case : Dict = _build_tf_to_pytorch_map(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue _snake_case : int = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _snake_case : int = np.transpose(__lowerCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _snake_case : int = array.squeeze().transpose() else: _snake_case : Tuple = np.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) _snake_case : str = torch.from_numpy(__lowerCAmelCase ) tf_weights.pop(__lowerCAmelCase , __lowerCAmelCase ) tf_weights.pop(name + '/RMSProp' , __lowerCAmelCase ) tf_weights.pop(name + '/RMSProp_1' , __lowerCAmelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , __lowerCAmelCase ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case : Any = features.shape[-2:] _snake_case , _snake_case : Optional[Any] = conv_layer.stride _snake_case , _snake_case : Optional[Any] = conv_layer.kernel_size if in_height % stride_height == 0: _snake_case : Any = max(kernel_height - stride_height , 0 ) else: _snake_case : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _snake_case : List[str] = max(kernel_width - stride_width , 0 ) else: _snake_case : Union[str, Any] = max(kernel_width - (in_width % stride_width) , 0 ) _snake_case : Tuple = pad_along_width // 2 _snake_case : Any = pad_along_width - pad_left _snake_case : Union[str, Any] = pad_along_height // 2 _snake_case : Optional[int] = pad_along_height - pad_top _snake_case : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__lowerCAmelCase , __lowerCAmelCase , 'constant' , 0.0 ) class lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : MobileNetVaConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[bool] = True , lowerCamelCase_ : Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _snake_case : str = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _snake_case : List[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _snake_case : str = nn.Convad( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=lowerCamelCase_ , stride=lowerCamelCase_ , padding=lowerCamelCase_ , groups=lowerCamelCase_ , bias=lowerCamelCase_ , padding_mode='zeros' , ) if use_normalization: _snake_case : List[Any] = nn.BatchNormad( num_features=lowerCamelCase_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCamelCase_ , track_running_stats=lowerCamelCase_ , ) else: _snake_case : Any = None if use_activation: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCamelCase_ ): _snake_case : List[str] = ACTaFN[config.hidden_act] else: _snake_case : int = config.hidden_act else: _snake_case : Optional[Any] = None def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _snake_case : Dict = apply_tf_padding(lowerCamelCase_ , self.convolution ) _snake_case : List[str] = self.convolution(lowerCamelCase_ ) if self.normalization is not None: _snake_case : Optional[int] = self.normalization(lowerCamelCase_ ) if self.activation is not None: _snake_case : List[str] = self.activation(lowerCamelCase_ ) return features class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : str = MobileNetVaConfig _UpperCamelCase : Union[str, Any] = load_tf_weights_in_mobilenet_va _UpperCamelCase : int = "mobilenet_v1" _UpperCamelCase : str = "pixel_values" _UpperCamelCase : Optional[Any] = False def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(lowerCamelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCamelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase_ : Optional[Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : MobileNetVaConfig , lowerCamelCase_ : bool = True ): '''simple docstring''' super().__init__(lowerCamelCase_ ) _snake_case : int = config _snake_case : Union[str, Any] = 32 _snake_case : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) _snake_case : List[str] = MobileNetVaConvLayer( lowerCamelCase_ , in_channels=config.num_channels , out_channels=lowerCamelCase_ , kernel_size=3 , stride=2 , ) _snake_case : Any = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _snake_case : Tuple = nn.ModuleList() for i in range(13 ): _snake_case : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 _snake_case : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=3 , stride=strides[i] , groups=lowerCamelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=1 , ) ) _snake_case : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , ): '''simple docstring''' _snake_case : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _snake_case : Optional[int] = self.conv_stem(lowerCamelCase_ ) _snake_case : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _snake_case : Optional[int] = layer_module(lowerCamelCase_ ) if output_hidden_states: _snake_case : Dict = all_hidden_states + (hidden_states,) _snake_case : List[Any] = hidden_states if self.pooler is not None: _snake_case : Union[str, Any] = torch.flatten(self.pooler(lowerCamelCase_ ) , start_dim=1 ) else: _snake_case : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=lowerCamelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : MobileNetVaConfig ): '''simple docstring''' super().__init__(lowerCamelCase_ ) _snake_case : int = config.num_labels _snake_case : Any = MobileNetVaModel(lowerCamelCase_ ) _snake_case : Any = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _snake_case : Union[str, Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCamelCase_ ) _snake_case : Tuple = nn.Linear(lowerCamelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , ): '''simple docstring''' _snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : int = self.mobilenet_va(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : List[Any] = outputs.pooler_output if return_dict else outputs[1] _snake_case : Union[str, Any] = self.classifier(self.dropout(lowerCamelCase_ ) ) _snake_case : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : Optional[int] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : List[Any] = 'single_label_classification' else: _snake_case : Tuple = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case : Any = MSELoss() if self.num_labels == 1: _snake_case : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case : int = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case : Optional[Any] = CrossEntropyLoss() _snake_case : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case : Union[str, Any] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: _snake_case : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states , )
652
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
1
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if height >= 1: move_tower(height - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) move_disk(__lowerCAmelCase , __lowerCAmelCase ) move_tower(height - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): print('moving disk from' , __lowerCAmelCase , 'to' , __lowerCAmelCase ) def A__( ): _snake_case : List[str] = int(input('Height of hanoi: ' ).strip() ) move_tower(__lowerCAmelCase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
652
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ : List[str] = TypeVar('''T''') class lowercase ( Generic[T] ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : list[T] , lowerCamelCase_ : Callable[[T, T], T] ): '''simple docstring''' _snake_case : Any | T = None _snake_case : int = len(lowerCamelCase_ ) _snake_case : list[T] = [any_type for _ in range(self.N )] + arr _snake_case : int = fnc self.build() def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): _snake_case : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : T ): '''simple docstring''' p += self.N _snake_case : Any = v while p > 1: _snake_case : Union[str, Any] = p // 2 _snake_case : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int ): # noqa: E741 '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = l + self.N, r + self.N _snake_case : T | None = None while l <= r: if l % 2 == 1: _snake_case : int = self.st[l] if res is None else self.fn(lowerCamelCase_ , self.st[l] ) if r % 2 == 0: _snake_case : Any = self.st[r] if res is None else self.fn(lowerCamelCase_ , self.st[r] ) _snake_case , _snake_case : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ : Tuple = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase_ : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase_ : Optional[Any] = SegmentTree(test_array, min) lowercase_ : Dict = SegmentTree(test_array, max) lowercase_ : Optional[int] = SegmentTree(test_array, lambda a, b: a + b) def A__( ): for i in range(len(__lowerCAmelCase ) ): for j in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): _snake_case : Any = reduce(__lowerCAmelCase , test_array[i : j + 1] ) _snake_case : str = reduce(__lowerCAmelCase , test_array[i : j + 1] ) _snake_case : Optional[Any] = reduce(lambda __lowerCAmelCase , __lowerCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) assert max_range == max_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) assert sum_range == sum_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) test_all_segments() for index, value in test_updates.items(): lowercase_ : Union[str, Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
652
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[Any] = ["image_processor", "tokenizer"] _UpperCamelCase : List[str] = "Pix2StructImageProcessor" _UpperCamelCase : int = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Tuple = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : Union[str, Any] , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = 20_48 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Dict , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _snake_case : str = self.tokenizer _snake_case : Dict = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _snake_case : Optional[int] = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , **lowerCamelCase_ ) else: # add pixel_values and bbox _snake_case : List[Any] = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , header_text=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and not self.image_processor.is_vqa: _snake_case : Dict = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) if "attention_mask" in text_encoding: _snake_case : Tuple = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _snake_case : Tuple = text_encoding.pop('input_ids' ) else: _snake_case : Any = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def __UpperCAmelCase ( self : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
652
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowercase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def A__( __lowerCAmelCase ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__lowerCAmelCase ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _snake_case : int = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format _snake_case : str = PipelineDataFormat.from_str( format=__lowerCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__lowerCAmelCase , __lowerCAmelCase ) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Pipeline , lowerCamelCase_ : PipelineDataFormat ): '''simple docstring''' _snake_case : str = nlp _snake_case : str = reader @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : ArgumentParser ): '''simple docstring''' _snake_case : Any = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=lowerCamelCase_ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=lowerCamelCase_ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=lowerCamelCase_ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=lowerCamelCase_ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=lowerCamelCase_ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=lowerCamelCase_ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=lowerCamelCase_ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=lowerCamelCase_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case : List[str] = self._nlp, [] for entry in self._reader: _snake_case : Optional[Any] = nlp(**lowerCamelCase_ ) if self._reader.is_multi_columns else nlp(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): outputs.append(lowerCamelCase_ ) else: outputs += output # Saving data if self._nlp.binary_output: _snake_case : Union[str, Any] = self._reader.save_binary(lowerCamelCase_ ) logger.warning(f'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(lowerCamelCase_ )
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
def A__( __lowerCAmelCase , __lowerCAmelCase ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _snake_case : Dict = (boundary[1] - boundary[0]) / steps _snake_case : List[str] = boundary[0] _snake_case : int = boundary[1] _snake_case : List[str] = make_points(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = 0.0 y += (h / 2.0) * f(__lowerCAmelCase ) for i in x_i: # print(i) y += h * f(__lowerCAmelCase ) y += (h / 2.0) * f(__lowerCAmelCase ) return y def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = a + h while x < (b - h): yield x _snake_case : Union[str, Any] = x + h def A__( __lowerCAmelCase ): # enter your function here _snake_case : Tuple = (x - 0) * (x - 0) return y def A__( ): _snake_case : Optional[int] = 0.0 # Lower bound of integration _snake_case : str = 1.0 # Upper bound of integration _snake_case : int = 10.0 # define number of steps or resolution _snake_case : List[str] = [a, b] # define boundary of integration _snake_case : Any = method_a(__lowerCAmelCase , __lowerCAmelCase ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
652
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
1
import doctest from collections import deque import numpy as np class lowercase : """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' _snake_case : int = [2, 1, 2, -1] _snake_case : Union[str, Any] = [1, 2, 3, 4] def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = len(self.first_signal ) _snake_case : Any = len(self.second_signal ) _snake_case : int = max(lowerCamelCase_ , lowerCamelCase_ ) # create a zero matrix of max_length x max_length _snake_case : List[str] = [[0] * max_length for i in range(lowerCamelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCamelCase_ ): _snake_case : List[Any] = deque(self.second_signal ) rotated_signal.rotate(lowerCamelCase_ ) for j, item in enumerate(lowerCamelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal _snake_case : int = np.matmul(np.transpose(lowerCamelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCamelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
652
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : str = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=7 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[str]=18 , lowerCamelCase_ : str=30 , lowerCamelCase_ : Optional[Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=True , lowerCamelCase_ : int=None , lowerCamelCase_ : int=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[Any]=False , ): '''simple docstring''' _snake_case : str = size if size is not None else {'height': 20, 'width': 20} _snake_case : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} _snake_case : List[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : List[Any] = num_channels _snake_case : Optional[int] = image_size _snake_case : Any = min_resolution _snake_case : str = max_resolution _snake_case : int = do_resize _snake_case : Tuple = size _snake_case : Union[str, Any] = do_center_crop _snake_case : int = crop_size _snake_case : Optional[int] = do_normalize _snake_case : Tuple = image_mean _snake_case : Any = image_std _snake_case : Union[str, Any] = do_reduce_labels def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A__( ): _snake_case : Union[str, Any] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _snake_case : Tuple = Image.open(dataset[0]['file'] ) _snake_case : Union[str, Any] = Image.open(dataset[1]['file'] ) return image, map def A__( ): _snake_case : Tuple = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _snake_case : Union[str, Any] = Image.open(ds[0]['file'] ) _snake_case : Dict = Image.open(ds[1]['file'] ) _snake_case : Optional[Any] = Image.open(ds[2]['file'] ) _snake_case : Union[str, Any] = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : str = BeitImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : int = BeitImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_std' ) ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) _snake_case : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : List[Any] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input _snake_case : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : Optional[int] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input _snake_case : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : List[str] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) _snake_case : Optional[int] = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _snake_case : str = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test batched _snake_case : Optional[int] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test not batched input (PIL images) _snake_case , _snake_case : Any = prepare_semantic_single_inputs() _snake_case : Optional[int] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test batched input (PIL images) _snake_case , _snake_case : Optional[int] = prepare_semantic_batch_inputs() _snake_case : Any = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _snake_case , _snake_case : str = prepare_semantic_single_inputs() _snake_case : List[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_50 ) _snake_case : int = True _snake_case : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 )
652
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : Tuple = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "git_vision_model" def __init__( self : Optional[int] , lowerCamelCase_ : List[str]=7_68 , lowerCamelCase_ : str=30_72 , lowerCamelCase_ : Dict=12 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : Optional[Any]=2_24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : str="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : Optional[Any]=0.0 , lowerCamelCase_ : Tuple=0.02 , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : List[Any] = hidden_size _snake_case : int = intermediate_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Union[str, Any] = num_channels _snake_case : str = patch_size _snake_case : Optional[int] = image_size _snake_case : List[Any] = initializer_range _snake_case : Tuple = attention_dropout _snake_case : str = layer_norm_eps _snake_case : int = hidden_act @classmethod def __UpperCAmelCase ( cls : Optional[int] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) _snake_case , _snake_case : List[Any] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": _snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[str] = "git" def __init__( self : Dict , lowerCamelCase_ : Dict=None , lowerCamelCase_ : str=3_05_22 , lowerCamelCase_ : str=7_68 , lowerCamelCase_ : Dict=6 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : int=10_24 , lowerCamelCase_ : str=0.02 , lowerCamelCase_ : Tuple=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Dict="absolute" , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : str=1_01 , lowerCamelCase_ : List[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: _snake_case : Dict = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) _snake_case : Optional[Any] = GitVisionConfig(**lowerCamelCase_ ) _snake_case : Tuple = vocab_size _snake_case : int = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Any = hidden_act _snake_case : Tuple = intermediate_size _snake_case : str = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[str] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : List[Any] = position_embedding_type _snake_case : Any = use_cache _snake_case : List[Any] = tie_word_embeddings _snake_case : str = num_image_with_embedding _snake_case : Optional[int] = bos_token_id _snake_case : List[Any] = eos_token_id def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Optional[int] = self.__class__.model_type return output
652
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[List[PIL.Image.Image], np.ndarray] _UpperCamelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
652
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ): '''simple docstring''' pass def A__( __lowerCAmelCase ): _snake_case : int = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A__( __lowerCAmelCase ): _snake_case : Tuple = np.array(__lowerCAmelCase ) _snake_case : str = npimg.shape return {"hash": hashimage(__lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Optional[int] = MaskGenerationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' pass @slow @require_torch def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _snake_case : Optional[Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_56 ) # Shortening by hashing _snake_case : int = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = 'facebook/sam-vit-huge' _snake_case : int = pipeline('mask-generation' , model=lowerCamelCase_ ) _snake_case : Tuple = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing _snake_case : str = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, ] , )
652
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : str = (UniPCMultistepScheduler,) _UpperCamelCase : int = (("num_inference_steps", 25),) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict=0 , **lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Optional[Any] = dict(self.forward_default_kwargs ) _snake_case : Union[str, Any] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : str = self.dummy_sample _snake_case : Optional[Any] = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : str = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Dict = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case : Dict = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): _snake_case : Dict = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Optional[Any] = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : str=0 , **lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = dict(self.forward_default_kwargs ) _snake_case : List[str] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : Dict = self.dummy_sample _snake_case : str = 0.1 * sample _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Any = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : List[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : str = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List[Any]=None , **lowerCamelCase_ : List[str] ): '''simple docstring''' if scheduler is None: _snake_case : List[Any] = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : str = scheduler_class(**lowerCamelCase_ ) _snake_case : Tuple = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : List[Any] = scheduler_class(**lowerCamelCase_ ) _snake_case : Any = 10 _snake_case : List[str] = self.dummy_model() _snake_case : str = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Tuple = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : int = dict(self.forward_default_kwargs ) _snake_case : Union[str, Any] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: _snake_case : Optional[int] = self.get_scheduler_config() _snake_case : Optional[Any] = scheduler_class(**lowerCamelCase_ ) _snake_case : List[Any] = self.dummy_sample _snake_case : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : List[str] = scheduler.timesteps[5] _snake_case : Tuple = scheduler.timesteps[6] _snake_case : Any = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : str = UniPCMultistepScheduler(**self.get_scheduler_config() ) _snake_case : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _snake_case : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : Any = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : Tuple = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def __UpperCAmelCase ( self : int ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __UpperCAmelCase ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) _snake_case : int = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Any = self.full_loop() _snake_case : Dict = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[str] = self.full_loop(prediction_type='v_prediction' ) _snake_case : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) _snake_case : Tuple = 10 _snake_case : str = self.dummy_model() _snake_case : str = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Tuple = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa def __UpperCAmelCase ( self : Union[str, Any] , **lowerCamelCase_ : int ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : int = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
652
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from __future__ import annotations import math import random from typing import Any class lowercase : """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' _snake_case : list[Any] = [] _snake_case : int = 0 _snake_case : int = 0 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return self.head == self.tail def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Any ): '''simple docstring''' self.data.append(lowerCamelCase_ ) _snake_case : Union[str, Any] = self.tail + 1 def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[str] = self.data[self.head] _snake_case : Union[str, Any] = self.head + 1 return ret def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return self.tail - self.head def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Tuple = data _snake_case : MyNode | None = None _snake_case : MyNode | None = None _snake_case : int = 1 def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.data def __UpperCAmelCase ( self : str ): '''simple docstring''' return self.left def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.right def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.height def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : int = data def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : MyNode | None ): '''simple docstring''' _snake_case : int = node def __UpperCAmelCase ( self : Any , lowerCamelCase_ : MyNode | None ): '''simple docstring''' _snake_case : Dict = node def __UpperCAmelCase ( self : str , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : int = height def A__( __lowerCAmelCase ): if node is None: return 0 return node.get_height() def A__( __lowerCAmelCase , __lowerCAmelCase ): if a > b: return a return b def A__( __lowerCAmelCase ): print('left rotation node:' , node.get_data() ) _snake_case : str = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__lowerCAmelCase ) _snake_case : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCAmelCase ) _snake_case : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCAmelCase ) return ret def A__( __lowerCAmelCase ): print('right rotation node:' , node.get_data() ) _snake_case : str = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__lowerCAmelCase ) _snake_case : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCAmelCase ) _snake_case : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCAmelCase ) return ret def A__( __lowerCAmelCase ): _snake_case : Union[str, Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(__lowerCAmelCase ) ) return right_rotation(__lowerCAmelCase ) def A__( __lowerCAmelCase ): _snake_case : Union[str, Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(__lowerCAmelCase ) ) return left_rotation(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): if node is None: return MyNode(__lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _snake_case : int = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _snake_case : Union[str, Any] = right_rotation(__lowerCAmelCase ) else: _snake_case : str = lr_rotation(__lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , __lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _snake_case : List[str] = node.get_right() assert right_child is not None if data < right_child.get_data(): _snake_case : Any = rl_rotation(__lowerCAmelCase ) else: _snake_case : Any = left_rotation(__lowerCAmelCase ) _snake_case : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCAmelCase ) return node def A__( __lowerCAmelCase ): while True: _snake_case : List[str] = root.get_right() if right_child is None: break _snake_case : Union[str, Any] = right_child return root.get_data() def A__( __lowerCAmelCase ): while True: _snake_case : Union[str, Any] = root.get_left() if left_child is None: break _snake_case : Tuple = left_child return root.get_data() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = root.get_left() _snake_case : Any = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _snake_case : List[Any] = get_left_most(__lowerCAmelCase ) root.set_data(__lowerCAmelCase ) root.set_right(del_node(__lowerCAmelCase , __lowerCAmelCase ) ) elif left_child is not None: _snake_case : List[str] = left_child elif right_child is not None: _snake_case : Optional[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__lowerCAmelCase , __lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__lowerCAmelCase , __lowerCAmelCase ) ) if get_height(__lowerCAmelCase ) - get_height(__lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _snake_case : List[Any] = left_rotation(__lowerCAmelCase ) else: _snake_case : Optional[Any] = rl_rotation(__lowerCAmelCase ) elif get_height(__lowerCAmelCase ) - get_height(__lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _snake_case : Optional[int] = right_rotation(__lowerCAmelCase ) else: _snake_case : str = lr_rotation(__lowerCAmelCase ) _snake_case : Tuple = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__lowerCAmelCase ) return root class lowercase : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' _snake_case : MyNode | None = None def __UpperCAmelCase ( self : Any ): '''simple docstring''' return get_height(self.root ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Any ): '''simple docstring''' print('insert:' + str(lowerCamelCase_ ) ) _snake_case : Any = insert_node(self.root , lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Any ): '''simple docstring''' print('delete:' + str(lowerCamelCase_ ) ) if self.root is None: print('Tree is empty!' ) return _snake_case : Dict = del_node(self.root , lowerCamelCase_ ) def __str__( self : Dict , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' _snake_case : Tuple = '' _snake_case : str = MyQueue() q.push(self.root ) _snake_case : int = self.get_height() if layer == 0: return output _snake_case : Union[str, Any] = 0 while not q.is_empty(): _snake_case : List[Any] = q.pop() _snake_case : str = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCamelCase_ ) q.push(lowerCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _snake_case : List[str] = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , lowerCamelCase_ ) - 1: _snake_case : List[str] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def A__( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase_ : int = AVLtree() lowercase_ : str = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from __future__ import annotations import bisect def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): if hi < 0: _snake_case : int = len(__lowerCAmelCase ) while lo < hi: _snake_case : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _snake_case : Optional[Any] = mid + 1 else: _snake_case : List[str] = mid return lo def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): if hi < 0: _snake_case : Dict = len(__lowerCAmelCase ) while lo < hi: _snake_case : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _snake_case : List[Any] = mid + 1 else: _snake_case : List[str] = mid return lo def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): sorted_collection.insert(bisect_left(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): sorted_collection.insert(bisect_right(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = 0 _snake_case : Optional[Any] = len(__lowerCAmelCase ) - 1 while left <= right: _snake_case : int = left + (right - left) // 2 _snake_case : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _snake_case : List[str] = midpoint - 1 else: _snake_case : Optional[int] = midpoint + 1 return None def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = bisect.bisect_left(__lowerCAmelCase , __lowerCAmelCase ) if index != len(__lowerCAmelCase ) and sorted_collection[index] == item: return index return None def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if right < left: return None _snake_case : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , midpoint + 1 , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : List[str] = input('''Enter numbers separated by comma:\n''').strip() lowercase_ : Any = sorted(int(item) for item in user_input.split(''',''')) lowercase_ : Tuple = int(input('''Enter a single number to be found in the list:\n''')) lowercase_ : Optional[int] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1