code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import qiskit def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _snake_case : List[str] = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _snake_case : Tuple = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
652
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase_ : List[str] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Path , lowerCamelCase_ : Union[str, None] = None , lowerCamelCase_ : Union[List[str], None] = None , lowerCamelCase_ : Union[str, List[str], None] = None , lowerCamelCase_ : bool = True , ): '''simple docstring''' _snake_case : Tuple = [file for file in os.listdir(lowerCamelCase_ ) if os.path.isfile(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) )] if identifier is not None: _snake_case : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): for n_ in n_identifier: _snake_case : Tuple = [file for file in files if n_ not in file] else: _snake_case : List[str] = [file for file in files if n_identifier not in file] _snake_case : List[Any] = ignore_files or [] ignore_files.append('__init__.py' ) _snake_case : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowerCamelCase_ ) if only_modules: _snake_case : Dict = file.split('.' )[0] try: _snake_case : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = doctest.DocTestSuite(lowerCamelCase_ ) _snake_case : int = unittest.TextTestRunner().run(lowerCamelCase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: _snake_case : Tuple = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = Path('src/transformers' ) _snake_case : Union[str, Any] = 'modeling' _snake_case : Optional[int] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowerCamelCase_ , identifier=lowerCamelCase_ , ignore_files=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Dict = Path('src/transformers' ) _snake_case : int = 'tokenization' self.analyze_directory(lowerCamelCase_ , identifier=lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = Path('src/transformers' ) _snake_case : int = 'configuration' self.analyze_directory(lowerCamelCase_ , identifier=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Any = Path('src/transformers' ) _snake_case : Optional[Any] = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowerCamelCase_ , n_identifier=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = Path('docs/source' ) _snake_case : Optional[int] = ['favicon.ico'] self.analyze_directory(lowerCamelCase_ , ignore_files=lowerCamelCase_ , only_modules=lowerCamelCase_ )
652
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[int] = "timm_backbone" def __init__( self : Optional[int] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Optional[int]=None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Union[str, Any] = backbone _snake_case : str = num_channels _snake_case : Dict = features_only _snake_case : Union[str, Any] = use_pretrained_backbone _snake_case : Tuple = True _snake_case : str = out_indices if out_indices is not None else (-1,)
652
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = DDIMPipeline _UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : List[str] = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _snake_case : List[Any] = DDIMScheduler() _snake_case : Union[str, Any] = {'unet': unet, 'scheduler': scheduler} return components def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str]=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : str = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : int = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Dict = self.get_dummy_inputs(lowerCamelCase_ ) _snake_case : Optional[Any] = pipe(**lowerCamelCase_ ).images _snake_case : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _snake_case : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _snake_case : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ , 1e-3 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = 'google/ddpm-cifar10-32' _snake_case : Any = UNetaDModel.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = DDIMScheduler() _snake_case : List[str] = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddim.to(lowerCamelCase_ ) ddim.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : List[Any] = ddim(generator=lowerCamelCase_ , eta=0.0 , output_type='numpy' ).images _snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Union[str, Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = 'google/ddpm-ema-bedroom-256' _snake_case : Union[str, Any] = UNetaDModel.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = DDIMScheduler.from_pretrained(lowerCamelCase_ ) _snake_case : str = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddpm.to(lowerCamelCase_ ) ddpm.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : Optional[Any] = ddpm(generator=lowerCamelCase_ , output_type='numpy' ).images _snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _snake_case : Dict = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def A__( __lowerCAmelCase ): return input_array.reshape((input_array.size, 1) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = np.nan for i in range(__lowerCAmelCase ): _snake_case : List[Any] = features[:, labels == i] _snake_case : int = data.mean(1 ) # Centralize the data of class i _snake_case : List[Any] = data - column_reshape(__lowerCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__lowerCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case : List[str] = np.dot(__lowerCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = features.mean(1 ) _snake_case : Union[str, Any] = np.nan for i in range(__lowerCAmelCase ): _snake_case : str = features[:, labels == i] _snake_case : int = data.shape[1] _snake_case : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase ) , (column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case : List[Any] = device_data * np.dot( column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase ) , (column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase )).T , ) return covariance_sum / features.shape[1] def A__( __lowerCAmelCase , __lowerCAmelCase ): # Check if the features have been loaded if features.any(): _snake_case : Optional[Any] = features.mean(1 ) # Center the dataset _snake_case : int = features - np.reshape(__lowerCAmelCase , (data_mean.size, 1) ) _snake_case : Optional[int] = np.dot(__lowerCAmelCase , centered_data.T ) / features.shape[1] _snake_case , _snake_case : Any = np.linalg.eigh(__lowerCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _snake_case : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _snake_case : List[Any] = np.dot(filtered_eigenvectors.T , __lowerCAmelCase ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=__lowerCAmelCase ) logging.error('Dataset empty' ) raise AssertionError def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: _snake_case , _snake_case : Optional[int] = eigh( covariance_between_classes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , covariance_within_classes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , ) _snake_case : Optional[int] = eigenvectors[:, ::-1][:, :dimensions] _snake_case , _snake_case , _snake_case : Union[str, Any] = np.linalg.svd(__lowerCAmelCase ) _snake_case : int = svd_matrix[:, 0:dimensions] _snake_case : List[str] = np.dot(filtered_svd_matrix.T , __lowerCAmelCase ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=__lowerCAmelCase ) logging.error('Dataset empty' ) raise AssertionError def A__( ): # Create dummy dataset with 2 classes and 3 features _snake_case : str = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _snake_case : str = np.array([0, 0, 0, 1, 1] ) _snake_case : Union[str, Any] = 2 _snake_case : List[str] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__lowerCAmelCase ) as error_info: _snake_case : Optional[Any] = linear_discriminant_analysis( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if isinstance(__lowerCAmelCase , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def A__( ): _snake_case : str = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _snake_case : List[Any] = 2 _snake_case : Any = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(__lowerCAmelCase ) as error_info: _snake_case : Dict = principal_component_analysis(__lowerCAmelCase , __lowerCAmelCase ) if not np.allclose(__lowerCAmelCase , __lowerCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
652
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
1
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase ): if nth_term == "": return [""] _snake_case : int = int(__lowerCAmelCase ) _snake_case : Union[str, Any] = int(__lowerCAmelCase ) _snake_case : list[str] = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Dict = int(input('''Enter the last number (nth term) of the P-Series''')) lowercase_ : List[str] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
652
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ : Optional[Any] = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__( __lowerCAmelCase ): _snake_case : List[Any] = [] for line in lines: _snake_case : Any = re.sub(R'#.*' , '' , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) _snake_case : Dict = '\n'.join(__lowerCAmelCase ) # Make a hash from all this code _snake_case : Optional[Any] = full_str.encode('utf-8' ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching lowercase_ : Dict = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase_ : str = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase_ : str = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name lowercase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "transfo-xl" _UpperCamelCase : Dict = ["mems"] _UpperCamelCase : Union[str, Any] = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , lowerCamelCase_ : List[str]=26_77_35 , lowerCamelCase_ : List[str]=[2_00_00, 4_00_00, 20_00_00] , lowerCamelCase_ : List[Any]=10_24 , lowerCamelCase_ : Dict=10_24 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : int=64 , lowerCamelCase_ : List[Any]=40_96 , lowerCamelCase_ : str=4 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=18 , lowerCamelCase_ : List[Any]=16_00 , lowerCamelCase_ : Dict=10_00 , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=0 , lowerCamelCase_ : str=-1 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[str]="normal" , lowerCamelCase_ : Union[str, Any]=0.01 , lowerCamelCase_ : Optional[int]=0.01 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-5 , lowerCamelCase_ : int=0 , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' _snake_case : Union[str, Any] = vocab_size _snake_case : Any = [] self.cutoffs.extend(lowerCamelCase_ ) if proj_share_all_but_first: _snake_case : Any = [False] + [True] * len(self.cutoffs ) else: _snake_case : Union[str, Any] = [False] + [False] * len(self.cutoffs ) _snake_case : Any = d_model _snake_case : Tuple = d_embed _snake_case : Any = d_head _snake_case : int = d_inner _snake_case : Optional[Any] = div_val _snake_case : Dict = pre_lnorm _snake_case : Optional[Any] = n_layer _snake_case : Optional[int] = n_head _snake_case : Optional[Any] = mem_len _snake_case : Union[str, Any] = same_length _snake_case : str = attn_type _snake_case : str = clamp_len _snake_case : str = sample_softmax _snake_case : str = adaptive _snake_case : int = dropout _snake_case : Optional[Any] = dropatt _snake_case : str = untie_r _snake_case : Dict = init _snake_case : str = init_range _snake_case : Optional[Any] = proj_init_std _snake_case : Optional[Any] = init_std _snake_case : Any = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __UpperCAmelCase ( self : str , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] lowercase_ : int = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase="pt" ): _snake_case : Union[str, Any] = {'add_prefix_space': True} if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not line.startswith(' ' ) else {} _snake_case : str = padding_side return tokenizer( [line] , max_length=__lowerCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , ): _snake_case : List[Any] = input_ids.ne(__lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowercase ( a_ ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any]="train" , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[Any]="" , ): '''simple docstring''' super().__init__() _snake_case : int = Path(lowerCamelCase_ ).joinpath(type_path + '.source' ) _snake_case : Optional[Any] = Path(lowerCamelCase_ ).joinpath(type_path + '.target' ) _snake_case : str = self.get_char_lens(self.src_file ) _snake_case : List[str] = max_source_length _snake_case : List[str] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _snake_case : int = tokenizer _snake_case : Optional[Any] = prefix if n_obs is not None: _snake_case : Union[str, Any] = self.src_lens[:n_obs] _snake_case : Any = src_lang _snake_case : Optional[int] = tgt_lang def __len__( self : Dict ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Optional[int] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : List[Any] = index + 1 # linecache starts at 1 _snake_case : List[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase_ ).rstrip('\n' ) _snake_case : int = linecache.getline(str(self.tgt_file ) , lowerCamelCase_ ).rstrip('\n' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _snake_case : List[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer ) _snake_case : Tuple = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer _snake_case : List[str] = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_source_length , 'right' ) _snake_case : Any = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_target_length , 'right' ) _snake_case : Optional[int] = source_inputs['input_ids'].squeeze() _snake_case : Optional[Any] = target_inputs['input_ids'].squeeze() _snake_case : Any = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = torch.stack([x['input_ids'] for x in batch] ) _snake_case : Union[str, Any] = torch.stack([x['attention_mask'] for x in batch] ) _snake_case : Dict = torch.stack([x['decoder_input_ids'] for x in batch] ) _snake_case : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) _snake_case : Optional[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) _snake_case : Tuple = trim_batch(lowerCamelCase_ , lowerCamelCase_ ) _snake_case , _snake_case : Any = trim_batch(lowerCamelCase_ , lowerCamelCase_ , attention_mask=lowerCamelCase_ ) _snake_case : Any = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowercase_ : Optional[int] = getLogger(__name__) def A__( __lowerCAmelCase ): return list(itertools.chain.from_iterable(__lowerCAmelCase ) ) def A__( __lowerCAmelCase ): _snake_case : Tuple = get_git_info() save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , 'git_log.json' ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=4 , **__lowerCAmelCase ): with open(__lowerCAmelCase , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase , **__lowerCAmelCase ) def A__( __lowerCAmelCase ): with open(__lowerCAmelCase ) as f: return json.load(__lowerCAmelCase ) def A__( ): _snake_case : Any = git.Repo(search_parent_directories=__lowerCAmelCase ) _snake_case : Tuple = { 'repo_id': str(__lowerCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A__( __lowerCAmelCase , __lowerCAmelCase ): return list(map(__lowerCAmelCase , __lowerCAmelCase ) ) def A__( __lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCAmelCase , 'wb' ) as f: return pickle.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase ): def remove_articles(__lowerCAmelCase ): return re.sub(R'\b(a|an|the)\b' , ' ' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): _snake_case : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = normalize_answer(__lowerCAmelCase ).split() _snake_case : int = normalize_answer(__lowerCAmelCase ).split() _snake_case : Optional[Any] = Counter(__lowerCAmelCase ) & Counter(__lowerCAmelCase ) _snake_case : List[Any] = sum(common.values() ) if num_same == 0: return 0 _snake_case : str = 1.0 * num_same / len(__lowerCAmelCase ) _snake_case : Optional[int] = 1.0 * num_same / len(__lowerCAmelCase ) _snake_case : Any = (2 * precision * recall) / (precision + recall) return fa def A__( __lowerCAmelCase , __lowerCAmelCase ): return normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _snake_case : Dict = 0 for hypo, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): em += exact_match_score(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: em /= len(__lowerCAmelCase ) return {"em": em} def A__( __lowerCAmelCase ): return model_prefix.startswith('rag' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _snake_case : int = 'dropout_rate' for p in extra_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not hasattr(__lowerCAmelCase , __lowerCAmelCase ) and not hasattr(__lowerCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) continue _snake_case : Optional[Any] = p if hasattr(__lowerCAmelCase , __lowerCAmelCase ) else equivalent_param[p] setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) return hparams, config
652
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
1
from __future__ import annotations from math import ceil, floor, sqrt def A__( __lowerCAmelCase = 2_00_00_00 ): _snake_case : list[int] = [0] _snake_case : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _snake_case : int = 0 # the area corresponding to the grid that gives the product closest to target _snake_case : int = 0 # an estimate of b, using the quadratic formula _snake_case : float # the largest integer less than b_estimate _snake_case : int # the largest integer less than b_estimate _snake_case : int # the triangle number corresponding to b_floor _snake_case : int # the triangle number corresponding to b_ceil _snake_case : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _snake_case : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _snake_case : List[str] = floor(__lowerCAmelCase ) _snake_case : Tuple = ceil(__lowerCAmelCase ) _snake_case : List[Any] = triangle_numbers[b_floor] _snake_case : List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _snake_case : Any = triangle_b_first_guess * triangle_a _snake_case : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _snake_case : List[str] = triangle_b_second_guess * triangle_a _snake_case : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : torch.FloatTensor class lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : Dict=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Optional[int]="silu" , lowerCamelCase_ : List[str]=True , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = layers_per_block _snake_case : str = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case : Optional[int] = None _snake_case : Optional[int] = nn.ModuleList([] ) # down _snake_case : Any = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): _snake_case : List[Any] = output_channel _snake_case : Tuple = block_out_channels[i] _snake_case : List[str] = i == len(lowerCamelCase_ ) - 1 _snake_case : List[str] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid _snake_case : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out _snake_case : int = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) _snake_case : Optional[int] = nn.SiLU() _snake_case : List[Any] = 2 * out_channels if double_z else out_channels _snake_case : int = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) _snake_case : str = False def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : str = x _snake_case : Tuple = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : List[Any] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: _snake_case : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle _snake_case : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: _snake_case : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle _snake_case : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: _snake_case : Tuple = down_block(lowerCamelCase_ ) # middle _snake_case : List[str] = self.mid_block(lowerCamelCase_ ) # post-process _snake_case : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) _snake_case : int = self.conv_act(lowerCamelCase_ ) _snake_case : Optional[Any] = self.conv_out(lowerCamelCase_ ) return sample class lowercase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : str=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Dict=("UpDecoderBlock2D",) , lowerCamelCase_ : Optional[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[Any]="group" , ): '''simple docstring''' super().__init__() _snake_case : Dict = layers_per_block _snake_case : Tuple = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _snake_case : str = None _snake_case : List[Any] = nn.ModuleList([] ) _snake_case : str = in_channels if norm_type == 'spatial' else None # mid _snake_case : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up _snake_case : Tuple = list(reversed(lowerCamelCase_ ) ) _snake_case : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): _snake_case : int = output_channel _snake_case : Any = reversed_block_out_channels[i] _snake_case : Any = i == len(lowerCamelCase_ ) - 1 _snake_case : Tuple = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) _snake_case : Dict = output_channel # out if norm_type == "spatial": _snake_case : Dict = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: _snake_case : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) _snake_case : Optional[Any] = nn.SiLU() _snake_case : Optional[int] = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) _snake_case : List[Any] = False def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=None ): '''simple docstring''' _snake_case : Tuple = z _snake_case : Any = self.conv_in(lowerCamelCase_ ) _snake_case : List[str] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : int ): def custom_forward(*lowerCamelCase_ : Dict ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle _snake_case : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) _snake_case : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _snake_case : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle _snake_case : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _snake_case : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle _snake_case : List[Any] = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: _snake_case : str = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: _snake_case : Tuple = self.conv_norm_out(lowerCamelCase_ ) else: _snake_case : List[Any] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = self.conv_act(lowerCamelCase_ ) _snake_case : Union[str, Any] = self.conv_out(lowerCamelCase_ ) return sample class lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[Any]="random" , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : str=True ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = n_e _snake_case : Dict = vq_embed_dim _snake_case : int = beta _snake_case : List[Any] = legacy _snake_case : Optional[int] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _snake_case : List[Any] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) _snake_case : str = self.used.shape[0] _snake_case : str = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _snake_case : Union[str, Any] = self.re_embed _snake_case : int = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: _snake_case : List[Any] = n_e _snake_case : List[str] = sane_index_shape def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = inds.shape assert len(lowerCamelCase_ ) > 1 _snake_case : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _snake_case : List[str] = self.used.to(lowerCamelCase_ ) _snake_case : List[Any] = (inds[:, :, None] == used[None, None, ...]).long() _snake_case : Union[str, Any] = match.argmax(-1 ) _snake_case : Optional[int] = match.sum(2 ) < 1 if self.unknown_index == "random": _snake_case : str = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _snake_case : Tuple = self.unknown_index return new.reshape(lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Dict = inds.shape assert len(lowerCamelCase_ ) > 1 _snake_case : str = inds.reshape(ishape[0] , -1 ) _snake_case : Dict = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token _snake_case : Tuple = 0 # simply set to zero _snake_case : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() _snake_case : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _snake_case : Optional[Any] = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) _snake_case : Any = self.embedding(lowerCamelCase_ ).view(z.shape ) _snake_case : Union[str, Any] = None _snake_case : Dict = None # compute loss for embedding if not self.legacy: _snake_case : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _snake_case : Optional[int] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _snake_case : Tuple = z + (z_q - z).detach() # reshape back to match original input shape _snake_case : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _snake_case : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _snake_case : Union[str, Any] = self.remap_to_used(lowerCamelCase_ ) _snake_case : Union[str, Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _snake_case : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: _snake_case : Union[str, Any] = indices.reshape(shape[0] , -1 ) # add batch axis _snake_case : Tuple = self.unmap_to_all(lowerCamelCase_ ) _snake_case : Optional[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors _snake_case : Any = self.embedding(lowerCamelCase_ ) if shape is not None: _snake_case : Tuple = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape _snake_case : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase ( a_ ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str]=False ): '''simple docstring''' _snake_case : List[str] = parameters _snake_case , _snake_case : Tuple = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) _snake_case : Dict = torch.clamp(self.logvar , -30.0 , 20.0 ) _snake_case : Optional[Any] = deterministic _snake_case : str = torch.exp(0.5 * self.logvar ) _snake_case : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: _snake_case : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' _snake_case : Tuple = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) _snake_case : Union[str, Any] = self.mean + self.std * sample return x def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) _snake_case : Optional[int] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' return self.mean
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @require_torch def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _snake_case : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Dict = image_classifier(lowerCamelCase_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase_ ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) _snake_case : Dict = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], ] , ) @require_tf def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Dict = image_classifier(lowerCamelCase_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) _snake_case : Optional[int] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], ] , ) @slow @require_torch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[str] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Any = image_classifier(lowerCamelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _snake_case : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _snake_case : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Tuple = image_classifier(lowerCamelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _snake_case : Tuple = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
652
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
652
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Union[str, Any] = MobileBertTokenizer _UpperCamelCase : Tuple = MobileBertTokenizerFast _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : Dict = filter_non_english _UpperCamelCase : Any = "google/mobilebert-uncased" def __UpperCAmelCase ( self : int ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _snake_case : Optional[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : Any = 'UNwant\u00E9d,running' _snake_case : Optional[Any] = 'unwanted, running' return input_text, output_text def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class(self.vocab_file ) _snake_case : int = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCamelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : str = self.get_tokenizer() _snake_case : Optional[int] = self.get_rust_tokenizer() _snake_case : str = 'UNwant\u00E9d,running' _snake_case : str = tokenizer.tokenize(lowerCamelCase_ ) _snake_case : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : Tuple = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : str = tokenizer.encode(lowerCamelCase_ ) _snake_case : Dict = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # With lower casing _snake_case : str = self.get_tokenizer(do_lower_case=lowerCamelCase_ ) _snake_case : Tuple = self.get_rust_tokenizer(do_lower_case=lowerCamelCase_ ) _snake_case : Tuple = 'UNwant\u00E9d,running' _snake_case : int = tokenizer.tokenize(lowerCamelCase_ ) _snake_case : Optional[int] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : str = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = self.get_rust_tokenizer() _snake_case : Optional[int] = tokenizer.encode(lowerCamelCase_ ) _snake_case : int = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : str = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[str] = BasicTokenizer(do_lower_case=lowerCamelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case : Any = {} for i, token in enumerate(lowerCamelCase_ ): _snake_case : Optional[Any] = i _snake_case : Any = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizer() _snake_case : str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) _snake_case : Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase_ ) _snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def __UpperCAmelCase ( self : str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[Any] = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case : Optional[int] = tokenizer_r.encode_plus( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , ) _snake_case : Optional[Any] = tokenizer_r.do_lower_case if hasattr(lowerCamelCase_ , 'do_lower_case' ) else False _snake_case : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : str = ['的', '人', '有'] _snake_case : Optional[int] = ''.join(lowerCamelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : Tuple = True _snake_case : Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Dict = tokenizer_p.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : int = tokenizer_r.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : Dict = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ ) _snake_case : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = False _snake_case : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Any = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Optional[int] = tokenizer_r.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : List[Any] = tokenizer_p.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : str = tokenizer_r.convert_ids_to_tokens(lowerCamelCase_ ) _snake_case : str = tokenizer_p.convert_ids_to_tokens(lowerCamelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case : Optional[Any] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCamelCase_ ) ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
652
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ : List[Any] = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
1
def A__( __lowerCAmelCase , __lowerCAmelCase ): # Check if the input is valid if not len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _snake_case , _snake_case , _snake_case : Optional[Any] = equationa _snake_case , _snake_case , _snake_case : List[str] = equationa # Calculate the determinants of the matrices _snake_case : Optional[int] = aa * ba - aa * ba _snake_case : Any = ca * ba - ca * ba _snake_case : Dict = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _snake_case : str = determinant_x / determinant _snake_case : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
652
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , **lowerCamelCase_ : Dict ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : List[str] , lowerCamelCase_ : Union[np.ndarray, bytes, str] , **lowerCamelCase_ : str ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : str , **lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : str = {} if "candidate_labels" in kwargs: _snake_case : List[Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _snake_case : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str=None , lowerCamelCase_ : Dict="This is a sound of {}." ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _snake_case : List[Any] = requests.get(lowerCamelCase_ ).content else: with open(lowerCamelCase_ , 'rb' ) as f: _snake_case : Optional[Any] = f.read() if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Optional[Any] = ffmpeg_read(lowerCamelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCamelCase_ , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) _snake_case : str = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) _snake_case : Optional[int] = candidate_labels _snake_case : int = [hypothesis_template.format(lowerCamelCase_ ) for x in candidate_labels] _snake_case : List[str] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_ ) _snake_case : Optional[Any] = [text_inputs] return inputs def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = model_inputs.pop('candidate_labels' ) _snake_case : List[Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCamelCase_ ): _snake_case : Dict = text_inputs[0] else: # Batching case. _snake_case : Optional[int] = text_inputs[0][0] _snake_case : Any = self.model(**lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : int = model_outputs.pop('candidate_labels' ) _snake_case : Optional[Any] = model_outputs['logits'][0] if self.framework == "pt": _snake_case : List[str] = logits.softmax(dim=0 ) _snake_case : Tuple = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) _snake_case : Dict = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_ ) , key=lambda lowerCamelCase_ : -x[0] ) ] return result
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase_ : int = logging.get_logger(__name__) class lowercase : """simple docstring""" _UpperCamelCase : str _UpperCamelCase : str = None @staticmethod def __UpperCAmelCase ( ): '''simple docstring''' raise NotImplementedError def __UpperCAmelCase ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Any ): '''simple docstring''' raise NotImplementedError def __UpperCAmelCase ( self : int , lowerCamelCase_ : str ): '''simple docstring''' raise NotImplementedError def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def __UpperCAmelCase ( cls : List[Any] ): '''simple docstring''' return f'''`pip install {cls.pip_package or cls.name}`''' class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[Any] = "optuna" @staticmethod def __UpperCAmelCase ( ): '''simple docstring''' return is_optuna_available() def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' return run_hp_search_optuna(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' return default_hp_space_optuna(lowerCamelCase_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = "ray" _UpperCamelCase : Optional[Any] = "'ray[tune]'" @staticmethod def __UpperCAmelCase ( ): '''simple docstring''' return is_ray_available() def __UpperCAmelCase ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return run_hp_search_ray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return default_hp_space_ray(lowerCamelCase_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = "sigopt" @staticmethod def __UpperCAmelCase ( ): '''simple docstring''' return is_sigopt_available() def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ): '''simple docstring''' return run_hp_search_sigopt(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple ): '''simple docstring''' return default_hp_space_sigopt(lowerCamelCase_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "wandb" @staticmethod def __UpperCAmelCase ( ): '''simple docstring''' return is_wandb_available() def __UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str , **lowerCamelCase_ : Dict ): '''simple docstring''' return run_hp_search_wandb(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' return default_hp_space_wandb(lowerCamelCase_ ) lowercase_ : Union[str, Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def A__( ): _snake_case : Any = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCAmelCase ) > 0: _snake_case : Dict = available_backends[0].name if len(__lowerCAmelCase ) > 1: logger.info( F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
652
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Optional[int] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowercase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
1
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if index == r: for j in range(__lowerCAmelCase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _snake_case : List[Any] = arr[i] combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # A temporary array to store all combination one by one _snake_case : Dict = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase_ : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
652
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
1
import random def A__( __lowerCAmelCase ): _snake_case : List[str] = num - 1 _snake_case : Optional[int] = 0 while s % 2 == 0: _snake_case : List[str] = s // 2 t += 1 for _ in range(5 ): _snake_case : Dict = random.randrange(2 , num - 1 ) _snake_case : int = pow(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if v != 1: _snake_case : Tuple = 0 while v != (num - 1): if i == t - 1: return False else: _snake_case : List[Any] = i + 1 _snake_case : Union[str, Any] = (v**2) % num return True def A__( __lowerCAmelCase ): if num < 2: return False _snake_case : Tuple = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowerCAmelCase ) def A__( __lowerCAmelCase = 10_24 ): while True: _snake_case : Optional[int] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__lowerCAmelCase ): return num if __name__ == "__main__": lowercase_ : List[str] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
652
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
1
import math def A__( __lowerCAmelCase ): _snake_case : int = [True] * n _snake_case : str = False _snake_case : int = False _snake_case : Optional[int] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _snake_case : List[str] = i * 2 while index < n: _snake_case : Optional[int] = False _snake_case : Tuple = index + i _snake_case : List[str] = [2] for i in range(3 , __lowerCAmelCase , 2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def A__( __lowerCAmelCase = 99_99_66_66_33_33 ): _snake_case : Dict = math.floor(math.sqrt(__lowerCAmelCase ) ) + 1_00 _snake_case : Dict = prime_sieve(__lowerCAmelCase ) _snake_case : Union[str, Any] = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: _snake_case : List[Any] = primes[prime_index + 1] _snake_case : Optional[int] = last_prime**2 _snake_case : List[Any] = next_prime**2 # Get numbers divisible by lps(current) _snake_case : Dict = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _snake_case : Dict = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _snake_case : Any = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _snake_case : Any = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
652
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
1
class lowercase : # Public class to implement a graph """simple docstring""" def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[bool]] ): '''simple docstring''' _snake_case : List[str] = row _snake_case : Tuple = col _snake_case : List[Any] = graph def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[bool]] ): '''simple docstring''' _snake_case : int = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _snake_case : Union[str, Any] = [-1, 0, 1, -1, 1, -1, 0, 1] _snake_case : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): # And finally, count all islands. '''simple docstring''' _snake_case : List[Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] _snake_case : List[str] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) count += 1 return count
652
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Dict = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = (UnCLIPScheduler,) def __UpperCAmelCase ( self : Optional[int] , **lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = { 'num_train_timesteps': 10_00, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : int ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase_ , prev_timestep=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config(variance_type='fixed_small_log' ) _snake_case : str = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1e-5 def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(variance_type='learned_range' ) _snake_case : Dict = scheduler_class(**lowerCamelCase_ ) _snake_case : List[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCamelCase_ ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=lowerCamelCase_ ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=lowerCamelCase_ ) - -0.001_0011 < 1e-5 def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : Tuple = scheduler.timesteps _snake_case : Dict = self.dummy_model() _snake_case : Any = self.dummy_sample_deter _snake_case : List[str] = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual _snake_case : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 _snake_case : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample _snake_case : Union[str, Any] = pred_prev_sample _snake_case : str = torch.sum(torch.abs(lowerCamelCase_ ) ) _snake_case : Dict = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.scheduler_classes[0] _snake_case : Optional[int] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(25 ) _snake_case : Union[str, Any] = scheduler.timesteps _snake_case : Tuple = self.dummy_model() _snake_case : str = self.dummy_sample_deter _snake_case : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual _snake_case : Any = model(lowerCamelCase_ , lowerCamelCase_ ) if i + 1 == timesteps.shape[0]: _snake_case : List[Any] = None else: _snake_case : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _snake_case : Any = scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , prev_timestep=lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample _snake_case : Optional[int] = pred_prev_sample _snake_case : Tuple = torch.sum(torch.abs(lowerCamelCase_ ) ) _snake_case : Dict = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' pass def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path _snake_case : Dict = quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' , revision=__lowerCAmelCase )
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import datasets from .evaluate import evaluate lowercase_ : Union[str, Any] = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase_ : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase_ : Dict = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} _snake_case : Dict = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _snake_case : List[str] = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_ ) return score
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
652
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowercase_ : Union[str, Any] = random.Random() def A__( __lowerCAmelCase , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=None ): if rng is None: _snake_case : str = global_rng _snake_case : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any=7 , lowerCamelCase_ : List[Any]=4_00 , lowerCamelCase_ : List[str]=20_00 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Dict=1_60 , lowerCamelCase_ : int=8 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : List[str]=40_00 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Any=True , ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Optional[Any] = batch_size _snake_case : int = min_seq_length _snake_case : Tuple = max_seq_length _snake_case : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case : List[str] = padding_value _snake_case : Optional[Any] = sampling_rate _snake_case : Optional[int] = return_attention_mask _snake_case : Optional[int] = do_normalize _snake_case : List[Any] = feature_size _snake_case : int = chunk_length _snake_case : Union[str, Any] = hop_length def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : str=False ): '''simple docstring''' def _flatten(lowerCamelCase_ : Dict ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: _snake_case : str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : Optional[Any] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = WhisperFeatureExtractor if is_speech_available() else None def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = WhisperFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Any = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) _snake_case : Tuple = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[Any] = feat_extract_first.to_dict() _snake_case : List[Any] = feat_extract_second.to_dict() _snake_case : List[Any] = feat_extract_first.mel_filters _snake_case : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Any = os.path.join(lowerCamelCase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCamelCase_ ) _snake_case : List[str] = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) _snake_case : str = feat_extract_first.to_dict() _snake_case : Union[str, Any] = feat_extract_second.to_dict() _snake_case : str = feat_extract_first.mel_filters _snake_case : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : List[str] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case : Dict = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size _snake_case : Dict = feature_extractor(lowerCamelCase_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _snake_case : Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _snake_case : str = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test batched _snake_case : Any = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _snake_case : List[Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _snake_case : Optional[int] = np.asarray(lowerCamelCase_ ) _snake_case : Union[str, Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _snake_case : str = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test truncation required _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] _snake_case : str = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] _snake_case : int = [x[: feature_extractor.n_samples] for x in speech_inputs] _snake_case : Dict = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs_truncated] _snake_case : str = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _snake_case : Optional[Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' import torch _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Any = np.random.rand(1_00 , 32 ).astype(np.floataa ) _snake_case : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case : Optional[Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _snake_case : Dict = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Dict = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _snake_case : Any = ds.sort('id' ).select(range(lowerCamelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _snake_case : str = self._load_datasamples(1 ) _snake_case : Any = WhisperFeatureExtractor() _snake_case : int = feature_extractor(lowerCamelCase_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase_ , atol=1e-4 ) ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Any = self._load_datasamples(1 )[0] _snake_case : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _snake_case : Dict = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase_ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ ) - 1 ) < 1e-3 ) )
652
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
1
def A__( __lowerCAmelCase ): return "".join([hex(__lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(__lowerCAmelCase )] ) def A__( __lowerCAmelCase ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(__lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : torch.FloatTensor class lowercase ( a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : int , lowerCamelCase_ : int = 32 , lowerCamelCase_ : int = 64 , lowerCamelCase_ : int = 20 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : str=77 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : str = "silu" , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[str] = "linear" , lowerCamelCase_ : Optional[str] = "prd" , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : Dict = num_attention_heads _snake_case : Optional[Any] = attention_head_dim _snake_case : Tuple = num_attention_heads * attention_head_dim _snake_case : Any = additional_embeddings _snake_case : Union[str, Any] = time_embed_dim or inner_dim _snake_case : Any = embedding_proj_dim or embedding_dim _snake_case : int = clip_embed_dim or embedding_dim _snake_case : Tuple = Timesteps(lowerCamelCase_ , lowerCamelCase_ , 0 ) _snake_case : int = TimestepEmbedding(lowerCamelCase_ , lowerCamelCase_ , out_dim=lowerCamelCase_ , act_fn=lowerCamelCase_ ) _snake_case : Any = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(lowerCamelCase_ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _snake_case : Any = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) if encoder_hid_proj_type is None: _snake_case : List[Any] = None elif encoder_hid_proj_type == "linear": _snake_case : str = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _snake_case : List[Any] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase_ ) ) if added_emb_type == "prd": _snake_case : Any = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase_ ) ) elif added_emb_type is None: _snake_case : Optional[Any] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _snake_case : Any = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dropout=lowerCamelCase_ , activation_fn='gelu' , attention_bias=lowerCamelCase_ , ) for d in range(lowerCamelCase_ ) ] ) if norm_in_type == "layer": _snake_case : Any = nn.LayerNorm(lowerCamelCase_ ) elif norm_in_type is None: _snake_case : List[str] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) _snake_case : Optional[int] = nn.LayerNorm(lowerCamelCase_ ) _snake_case : int = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) _snake_case : Dict = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase_ , persistent=lowerCamelCase_ ) _snake_case : Union[str, Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) _snake_case : Tuple = nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Any = {} def fn_recursive_add_processors(lowerCamelCase_ : str , lowerCamelCase_ : torch.nn.Module , lowerCamelCase_ : Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase_ , 'set_processor' ): _snake_case : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCamelCase_ , lowerCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return processors def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Dict = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCamelCase_ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCamelCase_ : str , lowerCamelCase_ : torch.nn.Module , lowerCamelCase_ : List[Any] ): if hasattr(lowerCamelCase_ , 'set_processor' ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): module.set_processor(lowerCamelCase_ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCamelCase_ , lowerCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[torch.Tensor, float, int] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[torch.BoolTensor] = None , lowerCamelCase_ : bool = True , ): '''simple docstring''' _snake_case : Any = hidden_states.shape[0] _snake_case : Tuple = timestep if not torch.is_tensor(lowerCamelCase_ ): _snake_case : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: _snake_case : List[Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : List[str] = timesteps * torch.ones(lowerCamelCase_ , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Any = self.time_proj(lowerCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : List[str] = timesteps_projected.to(dtype=self.dtype ) _snake_case : int = self.time_embedding(lowerCamelCase_ ) if self.embedding_proj_norm is not None: _snake_case : Dict = self.embedding_proj_norm(lowerCamelCase_ ) _snake_case : str = self.embedding_proj(lowerCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : int = self.encoder_hidden_states_proj(lowerCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : List[str] = self.proj_in(lowerCamelCase_ ) _snake_case : Union[str, Any] = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : Optional[int] = hidden_states[:, None, :] _snake_case : Tuple = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase_ , -1 , -1 ) additional_embeds.append(lowerCamelCase_ ) _snake_case : str = torch.cat( lowerCamelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Dict = F.pad( lowerCamelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Union[str, Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : List[str] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 _snake_case : str = F.pad(lowerCamelCase_ , (0, self.additional_embeddings) , value=0.0 ) _snake_case : List[str] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : Dict = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Optional[Any] = self.norm_in(lowerCamelCase_ ) for block in self.transformer_blocks: _snake_case : int = block(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) _snake_case : Dict = self.norm_out(lowerCamelCase_ ) if self.prd_embedding is not None: _snake_case : Optional[int] = hidden_states[:, -1] else: _snake_case : str = hidden_states[:, additional_embeddings_len:] _snake_case : List[str] = self.proj_to_clip_embeddings(lowerCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import math import unittest def A__( __lowerCAmelCase ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
652
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ : str = False @skip_mps class lowercase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = StableDiffusionAttendAndExcitePipeline _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) _UpperCamelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __UpperCAmelCase ( cls : Dict ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : int ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) _snake_case : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) _snake_case : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _snake_case : Optional[int] = CLIPTextModel(lowerCamelCase_ ) _snake_case : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : str = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : Any = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = self.get_dummy_inputs(lowerCamelCase_ ) _snake_case : Tuple = pipe(**lowerCamelCase_ ).images _snake_case : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) _snake_case : Optional[int] = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) _snake_case : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ , 1e-3 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def __UpperCAmelCase ( cls : Optional[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Dict = torch.manual_seed(51 ) _snake_case : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case : Union[str, Any] = 'a painting of an elephant with glasses' _snake_case : Union[str, Any] = [5, 7] _snake_case : int = pipe( prompt=lowerCamelCase_ , token_indices=lowerCamelCase_ , guidance_scale=7.5 , generator=lowerCamelCase_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] _snake_case : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
652
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Union[str, Any] = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[str] = "nllb-moe" _UpperCamelCase : Union[str, Any] = ["past_key_values"] _UpperCamelCase : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : str , lowerCamelCase_ : List[str]=12_81_12 , lowerCamelCase_ : Any=10_24 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=40_96 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Dict=12 , lowerCamelCase_ : Tuple=40_96 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[str]=0.05 , lowerCamelCase_ : Tuple=0.05 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Dict="relu" , lowerCamelCase_ : Optional[Any]=10_24 , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : List[Any]=0.02 , lowerCamelCase_ : int=2 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Dict="float32" , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : Union[str, Any]=1_28 , lowerCamelCase_ : Optional[Any]=64 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : int=4 , lowerCamelCase_ : Dict=0.001 , lowerCamelCase_ : Any=0.001 , lowerCamelCase_ : str="all" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Dict=1.0 , lowerCamelCase_ : Optional[int]=0.2 , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : List[str]=0 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : int=False , **lowerCamelCase_ : Any , ): '''simple docstring''' _snake_case : List[str] = vocab_size _snake_case : int = max_position_embeddings _snake_case : List[Any] = d_model _snake_case : Any = encoder_ffn_dim _snake_case : List[Any] = encoder_layers _snake_case : Any = encoder_attention_heads _snake_case : List[Any] = decoder_ffn_dim _snake_case : List[Any] = decoder_layers _snake_case : List[str] = decoder_attention_heads _snake_case : List[Any] = dropout _snake_case : Union[str, Any] = attention_dropout _snake_case : Optional[Any] = activation_dropout _snake_case : int = activation_function _snake_case : List[Any] = init_std _snake_case : Union[str, Any] = encoder_layerdrop _snake_case : Tuple = decoder_layerdrop _snake_case : Optional[Any] = use_cache _snake_case : List[Any] = encoder_layers _snake_case : Dict = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : Any = router_z_loss_coef _snake_case : Tuple = router_aux_loss_coef _snake_case : List[Any] = decoder_sparse_step _snake_case : Any = encoder_sparse_step _snake_case : Any = num_experts _snake_case : str = expert_capacity _snake_case : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _snake_case : Union[str, Any] = router_dtype _snake_case : int = router_ignore_padding_tokens _snake_case : Any = batch_prioritized_routing _snake_case : List[str] = second_expert_policy _snake_case : Optional[int] = normalize_router_prob_before_dropping _snake_case : int = moe_eval_capacity_token_fraction _snake_case : Tuple = moe_token_dropout _snake_case : Dict = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
652
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[int] = ProphetNetTokenizer _UpperCamelCase : Any = False def __UpperCAmelCase ( self : int ): '''simple docstring''' super().setUp() _snake_case : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : Any = 'UNwant\u00E9d,running' _snake_case : List[str] = 'unwanted, running' return input_text, output_text def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class(self.vocab_file ) _snake_case : str = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCamelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : int = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = BasicTokenizer(do_lower_case=lowerCamelCase_ , strip_accents=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = BasicTokenizer(do_lower_case=lowerCamelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case : Optional[int] = {} for i, token in enumerate(lowerCamelCase_ ): _snake_case : Any = i _snake_case : Dict = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case : List[Any] = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] _snake_case : int = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _snake_case : List[str] = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase_ ) _snake_case : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase_ ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
652
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
1
def A__( __lowerCAmelCase ): _snake_case : Dict = int(__lowerCAmelCase ) if n_element < 1: _snake_case : Tuple = ValueError('a should be a positive number' ) raise my_error _snake_case : Dict = [1] _snake_case , _snake_case , _snake_case : Tuple = (0, 0, 0) _snake_case : List[Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowercase_ : Optional[Any] = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') lowercase_ : Optional[int] = hamming(int(n)) print('''-----------------------------------------------------''') print(F'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
652
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
1
from __future__ import annotations from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" _UpperCamelCase : float _UpperCamelCase : TreeNode | None = None _UpperCamelCase : TreeNode | None = None def A__( __lowerCAmelCase ): # Validation def is_valid_tree(__lowerCAmelCase ) -> bool: if node is None: return True if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__lowerCAmelCase ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __lowerCAmelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __lowerCAmelCase ) ) return is_binary_search_tree_recursive_check(__lowerCAmelCase , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = "dandelin/vilt-b32-finetuned-vqa" _UpperCamelCase : int = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) _UpperCamelCase : int = "image_qa" _UpperCamelCase : Dict = AutoProcessor _UpperCamelCase : Tuple = AutoModelForVisualQuestionAnswering _UpperCamelCase : str = ["image", "text"] _UpperCamelCase : List[Any] = ["text"] def __init__( self : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : "Image" , lowerCamelCase_ : str ): '''simple docstring''' return self.pre_processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int ): '''simple docstring''' with torch.no_grad(): return self.model(**lowerCamelCase_ ).logits def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
652
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
1
import numpy as np def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1E-12 , __lowerCAmelCase = 1_00 , ): assert np.shape(__lowerCAmelCase )[0] == np.shape(__lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCAmelCase )[0] == np.shape(__lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCAmelCase ) == np.iscomplexobj(__lowerCAmelCase ) _snake_case : Union[str, Any] = np.iscomplexobj(__lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _snake_case : Optional[Any] = False _snake_case : Optional[int] = 0 _snake_case : List[Any] = 0 _snake_case : Dict = 1E12 while not convergence: # Multiple matrix by the vector. _snake_case : Dict = np.dot(__lowerCAmelCase , __lowerCAmelCase ) # Normalize the resulting output vector. _snake_case : Dict = w / np.linalg.norm(__lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _snake_case : Dict = vector.conj().T if is_complex else vector.T _snake_case : Optional[int] = np.dot(__lowerCAmelCase , np.dot(__lowerCAmelCase , __lowerCAmelCase ) ) # Check convergence. _snake_case : Tuple = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _snake_case : Any = True _snake_case : int = lambda_ if is_complex: _snake_case : Optional[int] = np.real(lambda_ ) return lambda_, vector def A__( ): _snake_case : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _snake_case : int = np.array([41, 4, 20] ) _snake_case : Optional[Any] = real_input_matrix.astype(np.complexaaa ) _snake_case : int = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _snake_case : List[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _snake_case : Optional[Any] = real_input_matrix _snake_case : Dict = real_vector elif problem_type == "complex": _snake_case : str = complex_input_matrix _snake_case : Dict = complex_vector # Our implementation. _snake_case , _snake_case : Optional[Any] = power_iteration(__lowerCAmelCase , __lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _snake_case , _snake_case : Dict = np.linalg.eigh(__lowerCAmelCase ) # Last eigenvalue is the maximum one. _snake_case : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _snake_case : Optional[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCAmelCase ) - np.abs(__lowerCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
652
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = WavaVecaPhonemeCTCTokenizer _UpperCamelCase : Optional[Any] = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) _snake_case : Union[str, Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _snake_case : Any = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Union[str, Any]=20 , lowerCamelCase_ : Tuple=5 ): '''simple docstring''' _snake_case : Union[str, Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_ )) for i in range(len(lowerCamelCase_ ) )] _snake_case : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCamelCase_ ) , lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: _snake_case : Optional[Any] = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: _snake_case : Tuple = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Any = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: _snake_case : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = ' ' + output_txt _snake_case : Any = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] , **lowerCamelCase_ : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) _snake_case : Optional[int] = tokenizer('m xxx ɪ' , do_phonemize=lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) _snake_case : Any = tokenizer('m aaa ɪ ccc' , do_phonemize=lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa _snake_case : List[str] = tokenizer('maɪ c' , do_phonemize=lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , [3, 2_00] ) # mai should be <unk> (=3) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Optional[Any] = 'Hello how are you' _snake_case : int = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(lowerCamelCase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Tuple = 'Hello how are you' _snake_case : List[Any] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowerCamelCase_ ).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_ ).input_ids ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Union[str, Any] = 'Hello how are you' _snake_case : List[str] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) _snake_case : int = tokenizer.decode(tokenizer(lowerCamelCase_ ).input_ids ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _snake_case : int = tokenizer.decode(sample_ids[0] ) _snake_case : Dict = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch_tokens[0] ) self.assertEqual(lowerCamelCase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Any = 'Hello how are you' _snake_case : int = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(lowerCamelCase_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Optional[Any] = 'Hello how are you' _snake_case : str = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowerCamelCase_ ).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_ ).input_ids ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _snake_case : Tuple = tokenizer.decode(sample_ids[0] ) _snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch_tokens[0] ) self.assertEqual(lowerCamelCase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter _snake_case : Optional[int] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCamelCase_ ) _snake_case : str = tokenizer.batch_decode(lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch_tokens[0] ) self.assertEqual(lowerCamelCase_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Union[str, Any] = 'Hello how are you' _snake_case : List[Any] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) _snake_case : str = tokenizer.decode(tokenizer(lowerCamelCase_ ).input_ids , filter_word_delimiter_token=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Any = 'Hello how are you' _snake_case : Optional[int] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) _snake_case : Optional[int] = tokenizer.decode(tokenizer(lowerCamelCase_ ).input_ids , filter_word_delimiter_token=lowerCamelCase_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=lowerCamelCase_ ) _snake_case : Optional[int] = 'Hello how are you' _snake_case : Optional[Any] = tokenizer(lowerCamelCase_ , phonemizer_lang='en-us' ).input_ids _snake_case : Any = tokenizer(lowerCamelCase_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = tokenizer.decode(lowerCamelCase_ ) _snake_case : Union[str, Any] = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(lowerCamelCase_ , 'ɛ l o h aʊ a ʁ j u' ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Tuple = 'Hello how Are you' _snake_case : Any = 'hello how are you' _snake_case : Dict = tokenizer(lowerCamelCase_ ).input_ids _snake_case : Optional[Any] = tokenizer(lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off _snake_case : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on _snake_case : Union[str, Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : str = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _snake_case : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _snake_case : Any = tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(lowerCamelCase_ : Any , lowerCamelCase_ : Any ): self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCamelCase_ ) ) # transform list to ModelOutput _snake_case : Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(lowerCamelCase_ : Dict , lowerCamelCase_ : int ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): [recursive_check(lowerCamelCase_ , lowerCamelCase_ ) for la, la in zip(lowerCamelCase_ , lowerCamelCase_ )] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off _snake_case : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _snake_case : Tuple = tokenizer.batch_decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ ) _snake_case : Union[str, Any] = [tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ ) for ids in sample_ids] check_list_tuples_equal(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def __UpperCAmelCase ( self : int ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case : int = tokenizer.vocab_size _snake_case : Union[str, Any] = len(lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : Optional[int] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _snake_case : List[str] = tokenizer.add_tokens(lowerCamelCase_ ) _snake_case : Any = tokenizer.vocab_size _snake_case : Dict = len(lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , 0 ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , all_size + len(lowerCamelCase_ ) ) _snake_case : List[str] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowerCamelCase_ ) self.assertGreaterEqual(len(lowerCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _snake_case : List[str] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _snake_case : int = tokenizer.add_special_tokens(lowerCamelCase_ ) _snake_case : List[str] = tokenizer.vocab_size _snake_case : str = len(lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , 0 ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , all_size_a + len(lowerCamelCase_ ) ) _snake_case : Dict = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowerCamelCase_ ) self.assertGreaterEqual(len(lowerCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def __UpperCAmelCase ( self : int ): '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case : int = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] _snake_case : Union[str, Any] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(output['text'] , lowerCamelCase_ )
652
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
1
from math import factorial def A__( __lowerCAmelCase = 20 ): _snake_case : List[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _snake_case : int = n // 2 return int(factorial(__lowerCAmelCase ) / (factorial(__lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowercase_ : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
652
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A__( ): _snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=__lowerCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=__lowerCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=__lowerCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=__lowerCAmelCase , default=0 , help='cuda_id.' , ) _snake_case : int = parser.parse_args() return args def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not len(__lowerCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) _snake_case , _snake_case : Optional[Any] = imgs[0].size _snake_case : List[str] = Image.new('RGB' , size=(cols * w, rows * h) ) _snake_case , _snake_case : Dict = grid.size for i, img in enumerate(__lowerCAmelCase ): grid.paste(__lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def A__( __lowerCAmelCase , __lowerCAmelCase="robotic cat with wings" , __lowerCAmelCase=7.5 , __lowerCAmelCase=50 , __lowerCAmelCase=1 , __lowerCAmelCase=42 , ): _snake_case : List[Any] = torch.Generator(pipeline.device ).manual_seed(__lowerCAmelCase ) _snake_case : int = pipeline( __lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , generator=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , ).images _snake_case : Union[str, Any] = int(math.sqrt(__lowerCAmelCase ) ) _snake_case : Any = image_grid(__lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase_ : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion lowercase_ : Dict = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') lowercase_ : Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') lowercase_ : Optional[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') lowercase_ : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') lowercase_ : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase_ : List[Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): lowercase_ : str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: lowercase_ : Optional[Any] = unet.to(torch.device('''cuda''', args.cuda_id)) lowercase_ : List[str] = pipeline.to(unet.device) lowercase_ , lowercase_ : Any = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) lowercase_ : List[str] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
652
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
1
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): try: _snake_case : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case : str = default else: # KEY is set, convert it to True or False. try: _snake_case : Optional[int] = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value lowercase_ : str = parse_flag_from_env('''RUN_SLOW''', default=False) def A__( __lowerCAmelCase ): return unittest.skip('Test was skipped' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(_run_slow_tests , 'test is slow' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(__lowerCAmelCase ) def A__( __lowerCAmelCase=None , __lowerCAmelCase=None ): if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase ) return unittest.skipUnless(is_torch_version('>=' , __lowerCAmelCase ) , F'''test requires torch version >= {version}''' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(__lowerCAmelCase ) def A__( __lowerCAmelCase ): return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(__lowerCAmelCase ) lowercase_ : Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A__( __lowerCAmelCase ): return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(__lowerCAmelCase ) class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = True @classmethod def __UpperCAmelCase ( cls : List[Any] ): '''simple docstring''' _snake_case : str = tempfile.mkdtemp() @classmethod def __UpperCAmelCase ( cls : int ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCamelCase_ ) class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : str ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Union[mock.Mock, List[mock.Mock]] ): '''simple docstring''' _snake_case : Tuple = mocks if isinstance(lowerCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def A__( __lowerCAmelCase ): _snake_case : List[Any] = AcceleratorState() _snake_case : Union[str, Any] = tensor[None].clone().to(state.device ) _snake_case : str = gather(__lowerCAmelCase ).cpu() _snake_case : Optional[int] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowerCAmelCase ): return False return True class lowercase : """simple docstring""" def __init__( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = returncode _snake_case : Optional[Any] = stdout _snake_case : str = stderr async def A__( __lowerCAmelCase , __lowerCAmelCase ): while True: _snake_case : Optional[Any] = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def A__( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False ): if echo: print('\nRunning: ' , ' '.join(__lowerCAmelCase ) ) _snake_case : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case : List[str] = [] _snake_case : Optional[int] = [] def tee(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="" ): _snake_case : Tuple = line.decode('utf-8' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1_80 , __lowerCAmelCase=False , __lowerCAmelCase=True ): _snake_case : Optional[int] = asyncio.get_event_loop() _snake_case : Tuple = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) _snake_case : Optional[int] = ' '.join(__lowerCAmelCase ) if result.returncode > 0: _snake_case : Optional[int] = '\n'.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowercase ( a_ ): """simple docstring""" pass def A__( __lowerCAmelCase , __lowerCAmelCase=False ): try: _snake_case : Optional[Any] = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowerCAmelCase , 'decode' ): _snake_case : List[Any] = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
652
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : Tuple = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } lowercase_ : Optional[Any] = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } lowercase_ : int = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = SqueezeBertTokenizer def __init__( self : Tuple , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=True , lowerCamelCase_ : List[str]="[UNK]" , lowerCamelCase_ : List[Any]="[SEP]" , lowerCamelCase_ : Optional[Any]="[PAD]" , lowerCamelCase_ : Optional[int]="[CLS]" , lowerCamelCase_ : str="[MASK]" , lowerCamelCase_ : str=True , lowerCamelCase_ : List[Any]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) _snake_case : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars ): _snake_case : Dict = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) ) _snake_case : Union[str, Any] = do_lower_case _snake_case : str = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : List[Any] = normalizer_class(**lowerCamelCase_ ) _snake_case : Union[str, Any] = do_lower_case def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' _snake_case : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[int] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
652
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : str = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "t5" _UpperCamelCase : Optional[int] = ["past_key_values"] _UpperCamelCase : List[str] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[Any] , lowerCamelCase_ : Dict=3_21_28 , lowerCamelCase_ : Dict=5_12 , lowerCamelCase_ : Optional[int]=64 , lowerCamelCase_ : Union[str, Any]=20_48 , lowerCamelCase_ : Optional[Any]=6 , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=8 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Any=1_28 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Dict=1e-6 , lowerCamelCase_ : Any=1.0 , lowerCamelCase_ : Dict="relu" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=0 , lowerCamelCase_ : Dict=1 , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' _snake_case : str = vocab_size _snake_case : Tuple = d_model _snake_case : Union[str, Any] = d_kv _snake_case : Any = d_ff _snake_case : Dict = num_layers _snake_case : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _snake_case : Any = num_heads _snake_case : Tuple = relative_attention_num_buckets _snake_case : Union[str, Any] = relative_attention_max_distance _snake_case : List[str] = dropout_rate _snake_case : List[Any] = layer_norm_epsilon _snake_case : Dict = initializer_factor _snake_case : Any = feed_forward_proj _snake_case : Dict = use_cache _snake_case : Any = self.feed_forward_proj.split('-' ) _snake_case : Dict = act_info[-1] _snake_case : Dict = act_info[0] == 'gated' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _snake_case : Union[str, Any] = 'gelu_new' super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _snake_case : Union[str, Any] = 'past_encoder_sequence + sequence' _snake_case : Any = {0: 'batch'} _snake_case : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _snake_case : int = {0: 'batch', 1: 'decoder_sequence'} _snake_case : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='inputs' ) return common_inputs @property def __UpperCAmelCase ( self : str ): '''simple docstring''' return 13
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : Any , **lowerCamelCase_ : List[Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = ObjectDetectionPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Tuple = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase_ , { 'score': ANY(lowerCamelCase_ ), 'label': ANY(lowerCamelCase_ ), 'box': {'xmin': ANY(lowerCamelCase_ ), 'ymin': ANY(lowerCamelCase_ ), 'xmax': ANY(lowerCamelCase_ ), 'ymax': ANY(lowerCamelCase_ )}, } , ) import datasets _snake_case : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) _snake_case : str = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _snake_case : str = object_detector(lowerCamelCase_ , threshold=0.0 ) self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCamelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase_ , { 'score': ANY(lowerCamelCase_ ), 'label': ANY(lowerCamelCase_ ), 'box': {'xmin': ANY(lowerCamelCase_ ), 'ymin': ANY(lowerCamelCase_ ), 'xmax': ANY(lowerCamelCase_ ), 'ymax': ANY(lowerCamelCase_ )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @require_torch def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = 'hf-internal-testing/tiny-detr-mobilenetsv3' _snake_case : Any = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ ) _snake_case : List[str] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) _snake_case : List[str] = ObjectDetectionPipeline(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) _snake_case : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) _snake_case : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = 'facebook/detr-resnet-50' _snake_case : Tuple = AutoModelForObjectDetection.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) _snake_case : Tuple = ObjectDetectionPipeline(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) _snake_case : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) _snake_case : Tuple = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = 'facebook/detr-resnet-50' _snake_case : Any = pipeline('object-detection' , model=lowerCamelCase_ ) _snake_case : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) _snake_case : Optional[int] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = 0.9985 _snake_case : Optional[Any] = 'facebook/detr-resnet-50' _snake_case : str = pipeline('object-detection' , model=lowerCamelCase_ ) _snake_case : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = 'Narsil/layoutlmv3-finetuned-funsd' _snake_case : Optional[int] = 0.9993 _snake_case : List[Any] = pipeline('object-detection' , model=lowerCamelCase_ , threshold=lowerCamelCase_ ) _snake_case : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from scipy.stats import pearsonr import datasets lowercase_ : List[Any] = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' lowercase_ : Union[str, Any] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' lowercase_ : int = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=False ): '''simple docstring''' if return_pvalue: _snake_case : Tuple = pearsonr(lowerCamelCase_ , lowerCamelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] )}
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if len(__lowerCAmelCase ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(__lowerCAmelCase ) or left < -len(__lowerCAmelCase ) or right >= len(__lowerCAmelCase ) or right < -len(__lowerCAmelCase ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] _snake_case : int = (left + right) >> 1 # the middle _snake_case : List[str] = find_max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # find max in range[left, mid] _snake_case : int = find_max(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = ViTImageProcessor if is_vision_available() else None @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = (3, 32, 1_28) _snake_case : Dict = tempfile.mkdtemp() # fmt: off _snake_case : Dict = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _snake_case : List[str] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) _snake_case : Union[str, Any] = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 1_28}, } _snake_case : Optional[int] = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : Any ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : str = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) _snake_case : Union[str, Any] = Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) return image_input def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizer() _snake_case : Any = self.get_image_processor() _snake_case : str = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case : Optional[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizer() _snake_case : str = self.get_image_processor() _snake_case : Any = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case : Tuple = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) _snake_case : Optional[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.get_image_processor() _snake_case : int = self.get_tokenizer() _snake_case : Any = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : Tuple = image_processor(lowerCamelCase_ , return_tensors='np' ) _snake_case : List[str] = processor(images=lowerCamelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : Optional[int] = self.get_tokenizer() _snake_case : int = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : str = 'test' _snake_case : Any = processor(text=lowerCamelCase_ ) _snake_case : Any = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Dict = self.get_image_processor() _snake_case : str = self.get_tokenizer() _snake_case : Tuple = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[Any] = 'test' _snake_case : Union[str, Any] = self.prepare_image_inputs() _snake_case : List[Any] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : str = self.get_image_processor() _snake_case : str = self.get_tokenizer() _snake_case : Tuple = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _snake_case : int = processor.char_decode(lowerCamelCase_ ) _snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) _snake_case : List[Any] = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = self.get_image_processor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : Dict = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : List[str] = None _snake_case : Tuple = self.prepare_image_inputs() _snake_case : Dict = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[Any] = self.get_image_processor() _snake_case : Dict = self.get_tokenizer() _snake_case : Dict = MgpstrProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = torch.randn(1 , 27 , 38 ) _snake_case : Any = torch.randn(1 , 27 , 5_02_57 ) _snake_case : Any = torch.randn(1 , 27 , 3_05_22 ) _snake_case : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
652
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = ["input_ids", "attention_mask"] def __init__( self : str , lowerCamelCase_ : Optional[int]="</s>" , lowerCamelCase_ : Dict="<unk>" , lowerCamelCase_ : Tuple="<pad>" , lowerCamelCase_ : List[str]=1_25 , lowerCamelCase_ : List[Any]=None , **lowerCamelCase_ : int , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _snake_case : str = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _snake_case : Any = len(set(filter(lambda lowerCamelCase_ : bool('extra_id' in str(lowerCamelCase_ ) ) , lowerCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) _snake_case : Tuple = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token _snake_case : Dict = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token _snake_case : str = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token super().__init__( eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , extra_ids=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) _snake_case : Tuple = extra_ids _snake_case : Any = 2**8 # utf is 8 bits # define special tokens dict _snake_case : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _snake_case : Optional[int] = len(self.special_tokens_encoder ) _snake_case : Dict = len(lowerCamelCase_ ) for i, token in enumerate(lowerCamelCase_ ): _snake_case : Any = self.vocab_size + i - n _snake_case : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase_ )) + [1] return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List[int] ): '''simple docstring''' if len(lowerCamelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = self._add_eos_if_not_present(lowerCamelCase_ ) if token_ids_a is None: return token_ids_a else: _snake_case : Optional[int] = self._add_eos_if_not_present(lowerCamelCase_ ) return token_ids_a + token_ids_a def __UpperCAmelCase ( self : int , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Any = [chr(lowerCamelCase_ ) for i in text.encode('utf-8' )] return tokens def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' if token in self.special_tokens_encoder: _snake_case : Any = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _snake_case : str = self.added_tokens_encoder[token] elif len(lowerCamelCase_ ) != 1: _snake_case : List[str] = self.unk_token_id else: _snake_case : List[str] = ord(lowerCamelCase_ ) + self._num_special_tokens return token_id def __UpperCAmelCase ( self : str , lowerCamelCase_ : Optional[int] ): '''simple docstring''' if index in self.special_tokens_decoder: _snake_case : int = self.special_tokens_decoder[index] else: _snake_case : int = chr(index - self._num_special_tokens ) return token def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : int = b'' for token in tokens: if token in self.special_tokens_decoder: _snake_case : Optional[int] = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: _snake_case : int = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: _snake_case : str = token.encode('utf-8' ) elif token in self.added_tokens_encoder: _snake_case : str = token.encode('utf-8' ) else: _snake_case : List[Any] = bytes([ord(lowerCamelCase_ )] ) bstring += tok_string _snake_case : str = bstring.decode('utf-8' , errors='ignore' ) return string def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' return ()
652
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
1
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from collections.abc import Sequence def A__( __lowerCAmelCase , __lowerCAmelCase = False ): if not arr: return 0 _snake_case : Optional[int] = 0 if allow_empty_subarrays else float('-inf' ) _snake_case : List[Any] = 0.0 for num in arr: _snake_case : int = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case : Union[str, Any] = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowercase_ : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
652
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ : int = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Dict = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : str = logging.get_logger(__name__) lowercase_ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : int = "megatron-bert" def __init__( self : Union[str, Any] , lowerCamelCase_ : List[str]=2_90_56 , lowerCamelCase_ : Optional[Any]=10_24 , lowerCamelCase_ : Union[str, Any]=24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : int=40_96 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : Any=5_12 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Dict=0.02 , lowerCamelCase_ : Optional[Any]=1e-12 , lowerCamelCase_ : Any=0 , lowerCamelCase_ : Union[str, Any]="absolute" , lowerCamelCase_ : Dict=True , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[str] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Any = hidden_act _snake_case : Dict = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : Any = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : List[str] = use_cache
652
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
1
from __future__ import annotations import queue class lowercase : """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Tuple = data _snake_case : List[str] = None _snake_case : Tuple = None def A__( ): print('\n********Press N to stop entering at any point of time********\n' ) _snake_case : Any = input('Enter the value of the root node: ' ).strip().lower() _snake_case : queue.Queue = queue.Queue() _snake_case : str = TreeNode(int(__lowerCAmelCase ) ) q.put(__lowerCAmelCase ) while not q.empty(): _snake_case : List[str] = q.get() _snake_case : Optional[Any] = F'''Enter the left node of {node_found.data}: ''' _snake_case : Tuple = input(__lowerCAmelCase ).strip().lower() or 'n' if check == "n": return tree_node _snake_case : List[Any] = TreeNode(int(__lowerCAmelCase ) ) _snake_case : Dict = left_node q.put(__lowerCAmelCase ) _snake_case : int = F'''Enter the right node of {node_found.data}: ''' _snake_case : Dict = input(__lowerCAmelCase ).strip().lower() or 'n' if check == "n": return tree_node _snake_case : Union[str, Any] = TreeNode(int(__lowerCAmelCase ) ) _snake_case : Optional[Any] = right_node q.put(__lowerCAmelCase ) raise def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _snake_case : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): _snake_case : str = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _snake_case : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): _snake_case : List[str] = [] while not q.empty(): _snake_case : Tuple = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__lowerCAmelCase ) def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _snake_case : list[TreeNode] = [] _snake_case : List[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(__lowerCAmelCase ) _snake_case : Optional[Any] = n.left # end of while means current node doesn't have left child _snake_case : Tuple = stack.pop() # start to traverse its right child _snake_case : int = n.right def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _snake_case : list[TreeNode] = [] _snake_case : int = node while n or stack: while n: stack.append(__lowerCAmelCase ) _snake_case : Union[str, Any] = n.left _snake_case : str = stack.pop() print(n.data , end=',' ) _snake_case : Optional[int] = n.right def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return _snake_case , _snake_case : List[str] = [], [] _snake_case : Optional[int] = node stacka.append(__lowerCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _snake_case : Any = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__lowerCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def A__( __lowerCAmelCase = "" , __lowerCAmelCase=50 , __lowerCAmelCase="*" ): if not s: return "\n" + width * char _snake_case , _snake_case : Dict = divmod(width - len(__lowerCAmelCase ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) lowercase_ : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
652
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_ , 'depth_multiplier' ) ) class lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Optional[Any]=0.25 , lowerCamelCase_ : str=8 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : int=10_24 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : str="relu6" , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Union[str, Any]=0.02 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Dict=10 , lowerCamelCase_ : str=None , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : int = batch_size _snake_case : Optional[Any] = num_channels _snake_case : Optional[Any] = image_size _snake_case : Optional[Any] = depth_multiplier _snake_case : Tuple = min_depth _snake_case : Any = tf_padding _snake_case : Optional[Any] = int(last_hidden_size * depth_multiplier ) _snake_case : Any = output_stride _snake_case : str = hidden_act _snake_case : Dict = classifier_dropout_prob _snake_case : Union[str, Any] = use_labels _snake_case : Dict = is_training _snake_case : str = num_labels _snake_case : Union[str, Any] = initializer_range _snake_case : Optional[int] = scope def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[Any] = None _snake_case : Dict = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : str ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = MobileNetVaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.num_labels _snake_case : Tuple = MobileNetVaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Tuple = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Dict = config_and_inputs _snake_case : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _UpperCamelCase : str = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Tuple = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = MobileNetVaModelTester(self ) _snake_case : str = MobileNetVaConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' pass def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = model_class(lowerCamelCase_ ) _snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Any = [*signature.parameters.keys()] _snake_case : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): _snake_case : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): _snake_case : List[str] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _snake_case : str = outputs.hidden_states _snake_case : Tuple = 26 self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Dict = MobileNetVaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__( ): _snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : int = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(lowerCamelCase_ ) _snake_case : List[str] = self.default_image_processor _snake_case : Optional[int] = prepare_img() _snake_case : Optional[Any] = image_processor(images=lowerCamelCase_ , return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**lowerCamelCase_ ) # verify the logits _snake_case : Any = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _snake_case : List[str] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
652
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ : Tuple = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowercase_ : List[Any] = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowercase_ : Dict = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def A__( __lowerCAmelCase , __lowerCAmelCase ): return float((preds == labels).mean() ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : int = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] ) _snake_case : str = float(spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Dict ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase_ , lowerCamelCase_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
lowercase_ : int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowercase_ : Union[str, Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = True _snake_case : List[Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) order.append(__lowerCAmelCase ) return order def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = True _snake_case : Optional[int] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return component def A__( __lowerCAmelCase ): _snake_case : Any = len(__lowerCAmelCase ) * [False] _snake_case : dict[int, list[int]] = {vert: [] for vert in range(len(__lowerCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__lowerCAmelCase ) _snake_case : Optional[int] = [] for i, was_visited in enumerate(__lowerCAmelCase ): if not was_visited: order += topology_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = [] _snake_case : Dict = len(__lowerCAmelCase ) * [False] for i in range(len(__lowerCAmelCase ) ): _snake_case : List[Any] = order[len(__lowerCAmelCase ) - i - 1] if not visited[vert]: _snake_case : Union[str, Any] = find_components(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) components_list.append(__lowerCAmelCase ) return components_list
652
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
1
import math def A__( __lowerCAmelCase = 1_00 ): _snake_case : str = sum(i * i for i in range(1 , n + 1 ) ) _snake_case : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
652
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ : Union[str, Any] = 16 lowercase_ : Dict = 32 def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 16 ): _snake_case : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case : str = DatasetDict( { 'train': dataset['train'].select(__lowerCAmelCase ), 'validation': dataset['train'].select(__lowerCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) _snake_case : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : Optional[int] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : str = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : Optional[Any] = 16 elif accelerator.mixed_precision != "no": _snake_case : List[str] = 8 else: _snake_case : List[Any] = None return tokenizer.pad( __lowerCAmelCase , padding='longest' , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case : int = DataLoader( tokenized_datasets['train'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) _snake_case : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) _snake_case : Optional[int] = DataLoader( tokenized_datasets['test'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def A__( __lowerCAmelCase , __lowerCAmelCase ): # New Code # _snake_case : Union[str, Any] = [] # Download the dataset _snake_case : List[str] = load_dataset('glue' , 'mrpc' ) # Create our splits _snake_case : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _snake_case : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Any = config['lr'] _snake_case : List[str] = int(config['num_epochs'] ) _snake_case : Union[str, Any] = int(config['seed'] ) _snake_case : List[str] = int(config['batch_size'] ) _snake_case : int = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _snake_case : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _snake_case : List[str] = batch_size // MAX_GPU_BATCH_SIZE _snake_case : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) # New Code # # Create our folds: _snake_case : str = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) _snake_case : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = get_fold_dataloaders( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : int = model.to(accelerator.device ) # Instantiate optimizer _snake_case : Union[str, Any] = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler _snake_case : Dict = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[str] = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case : List[Any] = model(**__lowerCAmelCase ) _snake_case : str = outputs.loss _snake_case : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Dict = model(**__lowerCAmelCase ) _snake_case : Any = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) _snake_case : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) # New Code # # We also run predictions on the test set at the very end _snake_case : List[Any] = [] for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Dict = model(**__lowerCAmelCase ) _snake_case : str = outputs.logits _snake_case , _snake_case : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__lowerCAmelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _snake_case : Tuple = torch.cat(__lowerCAmelCase , dim=0 ) _snake_case : List[str] = torch.stack(__lowerCAmelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _snake_case : List[Any] = metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) accelerator.print('Average test metrics from all folds:' , __lowerCAmelCase ) def A__( ): _snake_case : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=__lowerCAmelCase , default=3 , help='The number of splits to perform across the dataset' ) _snake_case : Any = parser.parse_args() _snake_case : List[str] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ : Tuple = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = DebertaVaTokenizer _UpperCamelCase : List[str] = DebertaVaTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : Tuple = True def __UpperCAmelCase ( self : str ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : str = DebertaVaTokenizer(lowerCamelCase_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Optional[Any] = 'this is a test' _snake_case : str = 'this is a test' return input_text, output_text def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : int = '<pad>' _snake_case : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(lowerCamelCase_ ) , 3_00_01 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = ' \tHeLLo!how \n Are yoU? ' _snake_case : Dict = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _snake_case : Dict = DebertaVaTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = DebertaVaTokenizerFast(lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) _snake_case : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __UpperCAmelCase ( self : int ): '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = 'I was born in 92000, and this is falsé.' _snake_case : Dict = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _snake_case : Dict = DebertaVaTokenizer(lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = DebertaVaTokenizerFast(lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : int = 'I was born in 92000, and this is falsé.' _snake_case : Dict = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _snake_case : Any = DebertaVaTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = DebertaVaTokenizerFast(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = 'I was born in 92000, and this is falsé.' _snake_case : str = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _snake_case : Union[str, Any] = DebertaVaTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = DebertaVaTokenizerFast(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = 'I was born in 92000, and this is falsé.' _snake_case : Optional[int] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _snake_case : int = DebertaVaTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = DebertaVaTokenizerFast(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : str = ' \tHeLLo!how \n Are yoU? ' _snake_case : Any = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _snake_case : Any = DebertaVaTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Dict = DebertaVaTokenizerFast(lowerCamelCase_ , do_lower_case=lowerCamelCase_ , split_by_punct=lowerCamelCase_ ) _snake_case : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer() _snake_case : int = 'I was born in 92000, and this is falsé.' _snake_case : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) _snake_case : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = self.get_rust_tokenizer() _snake_case : Optional[Any] = tokenizer.encode(lowerCamelCase_ ) _snake_case : List[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = 'This is a test' _snake_case : Optional[Any] = [13, 1, 43_98, 25, 21, 12_89] _snake_case : Union[str, Any] = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _snake_case : str = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _snake_case : List[Any] = DebertaVaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _snake_case : List[Any] = DebertaVaTokenizerFast(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _snake_case : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # fmt: off _snake_case : Optional[Any] = 'I was born in 92000, and this is falsé.' _snake_case : Tuple = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] _snake_case : List[str] = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _snake_case : Dict = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _snake_case : Any = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = DebertaVaTokenizer(lowerCamelCase_ ) _snake_case : Dict = tokenizer.encode('sequence builders' ) _snake_case : Union[str, Any] = tokenizer.encode('multi-sequence build' ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCamelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCamelCase_ , ) @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = {'input_ids': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
652
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowercase_ : Tuple = get_logger(__name__) lowercase_ : Union[str, Any] = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class lowercase : """simple docstring""" @add_start_docstrings(lowerCamelCase_ ) def __call__( self : Any , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : """simple docstring""" @add_start_docstrings(lowerCamelCase_ ) def __call__( self : Dict , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( a_ ): """simple docstring""" @add_start_docstrings(lowerCamelCase_ ) def __call__( self : Tuple , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): '''simple docstring''' for processor in self: _snake_case : List[Any] = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) _snake_case : Dict = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) else: _snake_case : List[Any] = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : float ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) _snake_case : Tuple = temperature def __call__( self : Union[str, Any] , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : int = scores / self.temperature return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : float , lowerCamelCase_ : float = -float('Inf' ) , lowerCamelCase_ : int = 1 ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) _snake_case : str = top_p _snake_case : List[Any] = filter_value _snake_case : Optional[int] = min_tokens_to_keep def __call__( self : Dict , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case , _snake_case : Dict = lax.top_k(lowerCamelCase_ , scores.shape[-1] ) _snake_case : List[Any] = jnp.full_like(lowerCamelCase_ , self.filter_value ) _snake_case : str = jax.nn.softmax(lowerCamelCase_ , axis=-1 ).cumsum(axis=-1 ) _snake_case : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _snake_case : Optional[int] = jnp.roll(lowerCamelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep _snake_case : int = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) _snake_case : Optional[int] = jnp.where(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = jax.lax.sort_key_val(lowerCamelCase_ , lowerCamelCase_ )[-1] return next_scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : float = -float('Inf' ) , lowerCamelCase_ : int = 1 ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) _snake_case : List[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = filter_value def __call__( self : str , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case , _snake_case : str = scores.shape _snake_case : Any = jnp.full(batch_size * vocab_size , self.filter_value ) _snake_case : Dict = min(self.top_k , scores.shape[-1] ) # Safety check _snake_case , _snake_case : Optional[Any] = lax.top_k(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _snake_case : List[str] = topk_scores.flatten() _snake_case : Any = topk_indices.flatten() + shift _snake_case : Tuple = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) _snake_case : List[Any] = next_scores_flat.reshape(lowerCamelCase_ , lowerCamelCase_ ) return next_scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = bos_token_id def __call__( self : str , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = jnp.full(scores.shape , -float('inf' ) ) _snake_case : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) _snake_case : Any = jnp.where(lowerCamelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[int] = max_length _snake_case : Union[str, Any] = eos_token_id def __call__( self : Union[str, Any] , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Any = jnp.full(scores.shape , -float('inf' ) ) _snake_case : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _snake_case : str = jnp.where(lowerCamelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) _snake_case : str = min_length _snake_case : Optional[Any] = eos_token_id def __call__( self : Union[str, Any] , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _snake_case : Dict = jnp.where(lowerCamelCase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = list(lowerCamelCase_ ) _snake_case : int = begin_index def __call__( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Any = 1 - jnp.bool_(cur_len - self.begin_index ) _snake_case : Union[str, Any] = jnp.where(lowerCamelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : list ): '''simple docstring''' _snake_case : Optional[Any] = list(lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[int] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _snake_case : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _snake_case : Any = force_token_array.at[index].set(lowerCamelCase_ ) _snake_case : Union[str, Any] = jnp.intaa(lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' def _force_token(lowerCamelCase_ : Any ): _snake_case : int = scores.shape[0] _snake_case : List[str] = self.force_token_array[generation_idx] _snake_case : List[Any] = jnp.ones_like(lowerCamelCase_ , dtype=scores.dtype ) * -float('inf' ) _snake_case : int = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _snake_case : List[Any] = lax.dynamic_update_slice(lowerCamelCase_ , lowerCamelCase_ , (0, current_token) ) return new_scores _snake_case : Optional[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase_ ) , lambda: scores , ) , ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Dict = generate_config.eos_token_id _snake_case : Any = generate_config.no_timestamps_token_id _snake_case : Optional[Any] = generate_config.no_timestamps_token_id + 1 _snake_case : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ , 'max_initial_timestamp_index' ): _snake_case : str = generate_config.max_initial_timestamp_index else: _snake_case : Union[str, Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: _snake_case : List[Any] = model_config.vocab_size def __call__( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): _snake_case : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase_ , ) _snake_case : Any = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase_ , lowerCamelCase_ , ) return jnp.where( lowerCamelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , lowerCamelCase_ , ) _snake_case : Optional[Any] = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = jnp.where(cur_len == self.begin_index , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase_ , ) _snake_case : Any = self.timestamp_begin + self.max_initial_timestamp_index _snake_case : str = jnp.where( lowerCamelCase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , lowerCamelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp _snake_case : List[Any] = jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] ): _snake_case : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _snake_case : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , lowerCamelCase_ , ) _snake_case : Optional[int] = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) return scores
652
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
1
from math import factorial def A__( __lowerCAmelCase = 1_00 ): return sum(map(__lowerCAmelCase , str(factorial(__lowerCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
652
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "perceiver" def __init__( self : Union[str, Any] , lowerCamelCase_ : List[Any]=2_56 , lowerCamelCase_ : Optional[int]=12_80 , lowerCamelCase_ : int=7_68 , lowerCamelCase_ : str=1 , lowerCamelCase_ : List[Any]=26 , lowerCamelCase_ : Optional[int]=8 , lowerCamelCase_ : Tuple=8 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : str="kv" , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=2_62 , lowerCamelCase_ : Any=20_48 , lowerCamelCase_ : str=56 , lowerCamelCase_ : Any=[3_68, 4_96] , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : str=19_20 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : Tuple=[1, 16, 2_24, 2_24] , **lowerCamelCase_ : Any , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Tuple = num_latents _snake_case : Tuple = d_latents _snake_case : int = d_model _snake_case : Tuple = num_blocks _snake_case : List[str] = num_self_attends_per_block _snake_case : List[Any] = num_self_attention_heads _snake_case : str = num_cross_attention_heads _snake_case : Any = qk_channels _snake_case : Dict = v_channels _snake_case : List[Any] = cross_attention_shape_for_attention _snake_case : List[Any] = self_attention_widening_factor _snake_case : Union[str, Any] = cross_attention_widening_factor _snake_case : Union[str, Any] = hidden_act _snake_case : str = attention_probs_dropout_prob _snake_case : Dict = initializer_range _snake_case : Optional[int] = layer_norm_eps _snake_case : str = use_query_residual # masked language modeling attributes _snake_case : Union[str, Any] = vocab_size _snake_case : int = max_position_embeddings # image classification attributes _snake_case : Optional[Any] = image_size # flow attributes _snake_case : Any = train_size # multimodal autoencoding attributes _snake_case : Optional[int] = num_frames _snake_case : Union[str, Any] = audio_samples_per_frame _snake_case : List[Any] = samples_per_patch _snake_case : Optional[Any] = output_shape class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return 1e-4 def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : int = 40 , ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : str = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : List[Any] = preprocessor.num_special_tokens_to_add(lowerCamelCase_ ) _snake_case : Union[str, Any] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence _snake_case : int = [' '.join(['a'] ) * seq_length] * batch_size _snake_case : List[str] = dict(preprocessor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) _snake_case : str = inputs.pop('input_ids' ) return inputs elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : str = compute_effective_axis_dimension(lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) _snake_case : List[str] = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Dict = dict(preprocessor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) _snake_case : int = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
652
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def A__( __lowerCAmelCase=None ): if subparsers is not None: _snake_case : List[str] = subparsers.add_parser('env' ) else: _snake_case : Optional[int] = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=__lowerCAmelCase , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def A__( __lowerCAmelCase ): _snake_case : List[Any] = torch.__version__ _snake_case : Any = torch.cuda.is_available() _snake_case : Tuple = is_xpu_available() _snake_case : Tuple = is_npu_available() _snake_case : Tuple = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(__lowerCAmelCase ): _snake_case : Any = load_config_from_file(args.config_file ).to_dict() _snake_case : str = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'PyTorch XPU available': str(__lowerCAmelCase ), 'PyTorch NPU available': str(__lowerCAmelCase ), 'System RAM': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: _snake_case : Union[str, Any] = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) _snake_case : Optional[int] = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else F'''\t{accelerate_config}''' ) print(__lowerCAmelCase ) _snake_case : List[str] = accelerate_config return info def A__( ): _snake_case : List[str] = env_command_parser() _snake_case : Dict = parser.parse_args() env_command(__lowerCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
652
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Union[str, Any] = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
from __future__ import annotations def A__( __lowerCAmelCase ): return [ord(__lowerCAmelCase ) - 96 for elem in plain] def A__( __lowerCAmelCase ): return "".join(chr(elem + 96 ) for elem in encoded ) def A__( ): _snake_case : int = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , __lowerCAmelCase ) print('Decoded:' , decode(__lowerCAmelCase ) ) if __name__ == "__main__": main()
652
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase_ : str = False class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Dict=32 ): '''simple docstring''' set_seed(0 ) _snake_case : List[Any] = UNetaDModel(sample_size=lowerCamelCase_ , in_channels=3 , out_channels=3 ) _snake_case : Dict = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _snake_case : Optional[int] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=lowerCamelCase_ , ) _snake_case : Dict = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=lowerCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _snake_case : Tuple = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowerCamelCase_ ) for _ in range(4 )] _snake_case : Any = [torch.randn((4, 3, 32, 32) ).to(lowerCamelCase_ ) for _ in range(4 )] _snake_case : int = [torch.randint(0 , 10_00 , (4,) ).long().to(lowerCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler _snake_case , _snake_case : Tuple = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase_ ) for i in range(4 ): optimizer.zero_grad() _snake_case : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _snake_case : Optional[int] = model(lowerCamelCase_ , timesteps[i] ).sample _snake_case : str = torch.nn.functional.mse_loss(lowerCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _snake_case , _snake_case : Any = self.get_model_optimizer(resolution=32 ) model.train().to(lowerCamelCase_ ) for i in range(4 ): optimizer.zero_grad() _snake_case : List[str] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _snake_case : str = model(lowerCamelCase_ , timesteps[i] ).sample _snake_case : Any = torch.nn.functional.mse_loss(lowerCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) )
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
lowercase_ : int = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ : int = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ : List[str] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert len(str(__lowerCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case : Dict = year // 1_00 _snake_case : List[Any] = (5 * (century % 4) + 2) % 7 _snake_case : int = year % 1_00 _snake_case : Any = centurian % 12 _snake_case : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case : Tuple = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case : str = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1
from string import ascii_uppercase lowercase_ : Optional[int] = {str(ord(c) - 55): c for c in ascii_uppercase} def A__( __lowerCAmelCase , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) _snake_case : Any = '' _snake_case : int = 0 _snake_case : int = 0 while div != 1: _snake_case , _snake_case : str = divmod(__lowerCAmelCase , __lowerCAmelCase ) if base >= 11 and 9 < mod < 36: _snake_case : List[Any] = ALPHABET_VALUES[str(__lowerCAmelCase )] else: _snake_case : List[str] = str(__lowerCAmelCase ) new_value += actual_value _snake_case : Any = num // base _snake_case : Dict = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
652
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ : Optional[Any] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Construct model if openai_config_file == "": _snake_case : Optional[Any] = OpenAIGPTConfig() else: _snake_case : Union[str, Any] = OpenAIGPTConfig.from_json_file(__lowerCAmelCase ) _snake_case : int = OpenAIGPTModel(__lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model _snake_case : Any = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _snake_case : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) lowercase_ : Dict = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : List[Any] = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger(__name__) def A__( __lowerCAmelCase ): print('Loading config file...' ) def flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase="." ): _snake_case : Tuple = [] for k, v in d.items(): _snake_case : str = parent_key + sep + k if parent_key else k if isinstance(__lowerCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase , sep=__lowerCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(__lowerCAmelCase ) _snake_case : Dict = argparse.Namespace() with open(__lowerCAmelCase , 'r' ) as yaml_file: try: _snake_case : Tuple = yaml.load(__lowerCAmelCase , Loader=yaml.FullLoader ) _snake_case : Tuple = flatten_yaml_as_dict(__lowerCAmelCase ) for k, v in flat_cfg.items(): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__lowerCAmelCase , str(__lowerCAmelCase ) ) ) return config def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = MobileViTVaConfig() _snake_case : List[str] = False # dataset if task_name.startswith('imagenet1k_' ): _snake_case : int = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: _snake_case : Optional[int] = 3_84 else: _snake_case : Dict = 2_56 _snake_case : List[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _snake_case : int = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: _snake_case : Optional[int] = 3_84 else: _snake_case : Tuple = 2_56 _snake_case : int = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _snake_case : int = 1_51 _snake_case : int = 5_12 _snake_case : Tuple = 'ade20k-id2label.json' _snake_case : List[str] = True elif task_name.startswith('voc_' ): _snake_case : Union[str, Any] = 21 _snake_case : str = 5_12 _snake_case : int = 'pascal-voc-id2label.json' _snake_case : Union[str, Any] = True # orig_config _snake_case : Tuple = load_orig_config_file(__lowerCAmelCase ) assert getattr(__lowerCAmelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : int = getattr(__lowerCAmelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__lowerCAmelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : str = getattr(__lowerCAmelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Any = getattr(__lowerCAmelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: _snake_case : Optional[int] = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) _snake_case : Dict = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) _snake_case : Optional[int] = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _snake_case : Any = 'huggingface/label-files' _snake_case : Optional[int] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : List[Any] = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = dct.pop(__lowerCAmelCase ) _snake_case : int = val def A__( __lowerCAmelCase , __lowerCAmelCase=False ): if base_model: _snake_case : Optional[int] = '' else: _snake_case : List[Any] = 'mobilevitv2.' _snake_case : List[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[Any] = k[8:] else: _snake_case : Optional[Any] = k if ".block." in k: _snake_case : List[str] = k_new.replace('.block.' , '.' ) if ".conv." in k: _snake_case : Optional[int] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _snake_case : Any = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _snake_case : Dict = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: _snake_case : Any = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _snake_case : List[str] = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _snake_case : Union[str, Any] = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: _snake_case : Union[str, Any] = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: _snake_case : List[Any] = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: _snake_case : Optional[int] = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _snake_case : str = [0, 1] elif i == 4: _snake_case : str = [0, 1, 2, 3] elif i == 5: _snake_case : Tuple = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: _snake_case : Optional[Any] = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: _snake_case : List[Any] = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: _snake_case : Any = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _snake_case : Union[str, Any] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _snake_case : Dict = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _snake_case : List[str] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _snake_case : Dict = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _snake_case : int = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _snake_case : Dict = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _snake_case : str = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _snake_case : Optional[int] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A__( __lowerCAmelCase ): _snake_case : Any = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__lowerCAmelCase ) for k in keys_to_ignore: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( ): _snake_case : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : List[Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = get_mobilevitva_config(__lowerCAmelCase , __lowerCAmelCase ) # load original state_dict _snake_case : Optional[int] = torch.load(__lowerCAmelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _snake_case : Union[str, Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ).eval() _snake_case : Tuple = False else: _snake_case : Any = MobileViTVaForImageClassification(__lowerCAmelCase ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Any = checkpoint remove_unused_keys(__lowerCAmelCase ) _snake_case : str = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load modified state_dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case : Tuple = model(**__lowerCAmelCase ) # verify classification model if task_name.startswith('imagenet' ): _snake_case : Union[str, Any] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ : Optional[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
652
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
1
from __future__ import annotations from math import pow, sqrt def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowerCAmelCase , 2 ) + pow(__lowerCAmelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
652
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ : Optional[Any] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def __UpperCAmelCase ( cls : int ): '''simple docstring''' _snake_case : Optional[Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _snake_case : Dict = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_ , repo_id='test-config' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) _snake_case : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _snake_case : Optional[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_ , repo_id='valid_org/test-config-org' , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) _snake_case : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : str ): '''simple docstring''' CustomConfig.register_for_auto_class() _snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _snake_case : int = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _snake_case : Dict = c.n_embd + 1 # int _snake_case : Union[str, Any] = c.resid_pdrop + 1.0 # float _snake_case : int = not c.scale_attn_weights # bool _snake_case : Dict = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_ , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_ , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_ , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_ , c.summary_type , 'mismatch for key: summary_type' ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = PretrainedConfig() _snake_case : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_ , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _snake_case : int = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_ , lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder _snake_case : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _snake_case : Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = mock.Mock() _snake_case : Optional[int] = 5_00 _snake_case : Any = {} _snake_case : List[str] = HTTPError _snake_case : Any = {} # Download this model to make sure it's in the cache. _snake_case : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCamelCase_ ) as mock_head: _snake_case : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = AutoConfig.from_pretrained('bert-base-cased' ) _snake_case : Union[str, Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) _snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase_ , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _snake_case : int = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _snake_case : List[str] = ['config.42.0.0.json'] _snake_case : Dict = 7_68 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_ , 'config.4.0.0.json' ) , os.path.join(lowerCamelCase_ , 'config.42.0.0.json' ) ) _snake_case : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _snake_case : Union[str, Any] = 'v4.0.0' _snake_case , _snake_case : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _snake_case : Tuple = 'v3.0.0' _snake_case : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
652
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
1
from jiwer import compute_measures import datasets lowercase_ : Union[str, Any] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowercase_ : Any = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowercase_ : Optional[int] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowerCamelCase_ , lowerCamelCase_ )["wer"] else: _snake_case : str = 0 _snake_case : Dict = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = compute_measures(lowerCamelCase_ , lowerCamelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
652
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ : Optional[int] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowercase_ : Union[str, Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowercase_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase_ : Any = dict(zip(vocab, range(len(vocab)))) lowercase_ : List[str] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Tuple = Path(tmpdirname) lowercase_ : List[Any] = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowercase_ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowercase_ : List[Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowercase_ : List[str] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowercase_ : Tuple = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowercase_ : List[str] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test lowercase_ : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowercase_ : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
652
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowercase_ : List[str] = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" _UpperCamelCase : Union[str, Any] = 42 _UpperCamelCase : Optional[int] = 42 _UpperCamelCase : Optional[int] = 42 @dataclass class lowercase : """simple docstring""" _UpperCamelCase : Tuple = 42 _UpperCamelCase : Dict = 42 _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = None class lowercase ( _lowerCamelCase ): """simple docstring""" _UpperCamelCase : Dict = "train" _UpperCamelCase : Union[str, Any] = "dev" _UpperCamelCase : str = "test" class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ): '''simple docstring''' raise NotImplementedError @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Any=False , lowerCamelCase_ : List[Any]="[CLS]" , lowerCamelCase_ : Optional[int]=1 , lowerCamelCase_ : Optional[int]="[SEP]" , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : Optional[int]=0 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Dict=-1_00 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Union[str, Any]=True , ): '''simple docstring''' _snake_case : Any = {label: i for i, label in enumerate(A__ )} _snake_case : int = [] for ex_index, example in enumerate(A__ ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d of %d' , A__ , len(A__ ) ) _snake_case : List[str] = [] _snake_case : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): _snake_case : Union[str, Any] = tokenizer.tokenize(A__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A__ ) > 0: tokens.extend(A__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _snake_case : List[Any] = tokenizer.num_special_tokens_to_add() if len(A__ ) > max_seq_length - special_tokens_count: _snake_case : Optional[Any] = tokens[: (max_seq_length - special_tokens_count)] _snake_case : List[str] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _snake_case : Optional[int] = [sequence_a_segment_id] * len(A__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _snake_case : List[str] = [cls_token] + tokens _snake_case : str = [pad_token_label_id] + label_ids _snake_case : Dict = [cls_token_segment_id] + segment_ids _snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(A__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _snake_case : Optional[Any] = [1 if mask_padding_with_zero else 0] * len(A__ ) # Zero-pad up to the sequence length. _snake_case : Tuple = max_seq_length - len(A__ ) if pad_on_left: _snake_case : Any = ([pad_token] * padding_length) + input_ids _snake_case : Tuple = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _snake_case : List[Any] = ([pad_token_segment_id] * padding_length) + segment_ids _snake_case : Optional[int] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(A__ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(A__ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(A__ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(A__ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(A__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _snake_case : Any = None features.append( InputFeatures( input_ids=A__ , attention_mask=A__ , token_type_ids=A__ , label_ids=A__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _lowerCamelCase ): """simple docstring""" _UpperCamelCase : Tuple = 42 _UpperCamelCase : Union[str, Any] = nn.CrossEntropyLoss().ignore_index def __init__( self : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : int = None , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str] = Split.train , ): '''simple docstring''' _snake_case : Optional[Any] = os.path.join( A__ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(A__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case : Any = cached_features_file + '.lock' with FileLock(A__ ): if os.path.exists(A__ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _snake_case : int = torch.load(A__ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _snake_case : Optional[int] = token_classification_task.read_examples_from_file(A__ , A__ ) # TODO clean up all this to leverage built-in features of tokenizers _snake_case : Dict = token_classification_task.convert_examples_to_features( A__ , A__ , A__ , A__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , A__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : str , lowerCamelCase_ : int ): '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : """simple docstring""" _UpperCamelCase : str = 42 _UpperCamelCase : str = -100 def __init__( self : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Union[str, Any] = Split.train , ): '''simple docstring''' _snake_case : Dict = token_classification_task.read_examples_from_file(A__ , A__ ) # TODO clean up all this to leverage built-in features of tokenizers _snake_case : Tuple = token_classification_task.convert_examples_to_features( A__ , A__ , A__ , A__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _snake_case : Any = tf.data.Dataset.from_generator( A__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _snake_case : Dict = tf.data.Dataset.from_generator( A__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' return self.features[i]
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
import numpy as np from PIL import Image def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = np.array(__A ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _snake_case : List[str] = 0 _snake_case : Optional[int] = 0 _snake_case : Any = 0 _snake_case : Tuple = 0 # compute the shape of the output matrix _snake_case : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _snake_case : Optional[int] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _snake_case : Tuple = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _snake_case : List[str] = 0 _snake_case : Dict = 0 return updated_arr def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = np.array(__A ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _snake_case : str = 0 _snake_case : List[str] = 0 _snake_case : Union[str, Any] = 0 _snake_case : Any = 0 # compute the shape of the output matrix _snake_case : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _snake_case : int = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _snake_case : Union[str, Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _snake_case : str = 0 _snake_case : Optional[int] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image lowercase_ : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
from functools import lru_cache @lru_cache def A__( __lowerCAmelCase ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , __lowerCAmelCase ) _snake_case : Optional[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _snake_case : List[Any] = dataset_size < in_memory_max_size else: _snake_case : List[Any] = False _snake_case : Any = is_small_dataset(__lowerCAmelCase ) assert result == expected
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Dict = {'''vocab_file''': '''spiece.model'''} lowercase_ : Union[str, Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowercase_ : Tuple = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowercase_ : List[str] = 0 lowercase_ : List[str] = 1 lowercase_ : List[str] = 2 lowercase_ : Tuple = 3 lowercase_ : Optional[int] = 4 class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = "left" def __init__( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict=False , lowerCamelCase_ : int=True , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : List[str]="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : Optional[Any]="<unk>" , lowerCamelCase_ : int="<sep>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : Optional[int]="<cls>" , lowerCamelCase_ : int="<mask>" , lowerCamelCase_ : Optional[int]=["<eop>", "<eod>"] , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' _snake_case : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token _snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) _snake_case : List[Any] = 3 _snake_case : List[str] = do_lower_case _snake_case : List[Any] = remove_space _snake_case : Union[str, Any] = keep_accents _snake_case : Optional[Any] = vocab_file _snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): '''simple docstring''' _snake_case : int = self.__dict__.copy() _snake_case : Optional[int] = None return state def __setstate__( self : List[Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case : int = {} _snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' if self.remove_space: _snake_case : Optional[int] = ' '.join(inputs.strip().split() ) else: _snake_case : List[str] = inputs _snake_case : int = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _snake_case : Tuple = unicodedata.normalize('NFKD' , UpperCamelCase_ ) _snake_case : Any = ''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase_ )] ) if self.do_lower_case: _snake_case : int = outputs.lower() return outputs def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Tuple = self.preprocess_text(UpperCamelCase_ ) _snake_case : Dict = self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) _snake_case : List[Any] = [] for piece in pieces: if len(UpperCamelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _snake_case : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _snake_case : Optional[int] = cur_pieces[1:] else: _snake_case : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase_ ) else: new_pieces.append(UpperCamelCase_ ) return new_pieces def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase_ ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : List[Any] = ''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ' ' ).strip() return out_string def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = None , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' _snake_case : Union[str, Any] = kwargs.pop('use_source_tokenizer' , UpperCamelCase_ ) _snake_case : int = self.convert_ids_to_tokens(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _snake_case : List[Any] = [] _snake_case : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) ) _snake_case : Optional[int] = [] sub_texts.append(UpperCamelCase_ ) else: current_sub_text.append(UpperCamelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _snake_case : Tuple = ''.join(UpperCamelCase_ ) _snake_case : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _snake_case : List[str] = self.clean_up_tokenization(UpperCamelCase_ ) return clean_text else: return text def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Any = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] return ([0] * len(UpperCamelCase_ )) + [1, 1] def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , 'wb' ) as fi: _snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase ( lowercase__ , lowercase__ ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int = 7_68 , ): '''simple docstring''' super().__init__() _snake_case : List[Any] = nn.Parameter(torch.zeros(1 , __lowerCamelCase ) ) _snake_case : int = nn.Parameter(torch.ones(1 , __lowerCamelCase ) ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[Union[str, torch.device]] = None , lowerCamelCase_ : Optional[torch.dtype] = None , ): '''simple docstring''' _snake_case : Dict = nn.Parameter(self.mean.to(__lowerCamelCase ).to(__lowerCamelCase ) ) _snake_case : Union[str, Any] = nn.Parameter(self.std.to(__lowerCamelCase ).to(__lowerCamelCase ) ) return self def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : str = (embeds - self.mean) * 1.0 / self.std return embeds def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = (embeds * self.std) + self.mean return embeds
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import requests lowercase_ : Tuple = "YOUR API KEY" def A__( __lowerCAmelCase , __lowerCAmelCase = giphy_api_key ): _snake_case : Dict = '+'.join(query.split() ) _snake_case : str = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' _snake_case : str = requests.get(__lowerCAmelCase ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": _snake_case : Tuple = timm.create_model('levit_128s' , pretrained=__A ) else: _snake_case : int = timm.create_model('levit_128' , pretrained=__A ) if hidden_sizes == 1_92: _snake_case : List[Any] = timm.create_model('levit_192' , pretrained=__A ) if hidden_sizes == 2_56: _snake_case : str = timm.create_model('levit_256' , pretrained=__A ) if hidden_sizes == 3_84: _snake_case : Optional[int] = timm.create_model('levit_384' , pretrained=__A ) from_model.eval() _snake_case : List[str] = LevitForImageClassificationWithTeacher(__A ).eval() _snake_case : Optional[Any] = OrderedDict() _snake_case : Any = from_model.state_dict() _snake_case : Union[str, Any] = list(from_model.state_dict().keys() ) _snake_case : List[str] = list(our_model.state_dict().keys() ) print(len(__A ) , len(__A ) ) for i in range(len(__A ) ): _snake_case : int = weights[og_keys[i]] our_model.load_state_dict(__A ) _snake_case : Dict = torch.randn((2, 3, 2_24, 2_24) ) _snake_case : Optional[int] = from_model(__A ) _snake_case : Union[str, Any] = our_model(__A ).logits assert torch.allclose(__A , __A ), "The model logits don't match the original one." _snake_case : List[Any] = name print(__A ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _snake_case : Tuple = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def A__( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ): _snake_case : Tuple = '''imagenet-1k-id2label.json''' _snake_case : List[Any] = 10_00 _snake_case : List[str] = (1, num_labels) _snake_case : int = '''huggingface/label-files''' _snake_case : Any = num_labels _snake_case : Optional[int] = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) _snake_case : Union[str, Any] = {int(__A ): v for k, v in idalabel.items()} _snake_case : int = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : Optional[Any] = partial(__A , num_labels=__A , idalabel=__A , labelaid=__A ) _snake_case : Dict = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } _snake_case : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __A , names_to_config[model_name] , __A , __A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __A , __A , __A , __A ) return config, expected_shape if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowercase_ : Dict = parser.parse_args() lowercase_ : List[str] = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' from __future__ import annotations from typing import Any def A__( __lowerCAmelCase ): if not postfix_notation: return 0 _snake_case : List[Any] = {'+', '-', '*', '/'} _snake_case : int = [] for token in postfix_notation: if token in operations: _snake_case , _snake_case : Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__lowerCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' from collections.abc import Generator from math import sin def A__( __lowerCAmelCase ): if len(lowerCamelCase__ ) != 32: raise ValueError('Input must be of length 32' ) _snake_case : Dict = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def A__( __lowerCAmelCase ): if i < 0: raise ValueError('Input must be non-negative' ) _snake_case : Dict = format(lowerCamelCase__ , '08x' )[-8:] _snake_case : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def A__( __lowerCAmelCase ): _snake_case : Tuple = b"" for char in message: bit_string += format(lowerCamelCase__ , '08b' ).encode('utf-8' ) _snake_case : str = format(len(lowerCamelCase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCamelCase__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def A__( __lowerCAmelCase ): if len(lowerCamelCase__ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowerCamelCase__ ) , 5_12 ): _snake_case : Dict = bit_string[pos : pos + 5_12] _snake_case : int = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def A__( __lowerCAmelCase ): if i < 0: raise ValueError('Input must be non-negative' ) _snake_case : Union[str, Any] = format(lowerCamelCase__ , '032b' ) _snake_case : Tuple = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCamelCase__ , 2 ) def A__( __lowerCAmelCase , __lowerCAmelCase ): return (a + b) % 2**32 def A__( __lowerCAmelCase , __lowerCAmelCase ): if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def A__( __lowerCAmelCase ): _snake_case : Any = preprocess(lowerCamelCase__ ) _snake_case : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _snake_case : Tuple = 0X6745_2301 _snake_case : str = 0Xefcd_ab89 _snake_case : Dict = 0X98ba_dcfe _snake_case : str = 0X1032_5476 _snake_case : Optional[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCamelCase__ ): _snake_case : str = aa _snake_case : Optional[int] = ba _snake_case : Optional[int] = ca _snake_case : Tuple = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _snake_case : Union[str, Any] = d ^ (b & (c ^ d)) _snake_case : Tuple = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _snake_case : Optional[int] = c ^ (d & (b ^ c)) _snake_case : Tuple = (5 * i + 1) % 16 elif i <= 47: _snake_case : str = b ^ c ^ d _snake_case : Union[str, Any] = (3 * i + 5) % 16 else: _snake_case : str = c ^ (b | not_aa(lowerCamelCase__ )) _snake_case : Tuple = (7 * i) % 16 _snake_case : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 _snake_case : Tuple = d _snake_case : Any = c _snake_case : str = b _snake_case : Any = sum_aa(lowerCamelCase__ , left_rotate_aa(lowerCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total _snake_case : Dict = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) _snake_case : Union[str, Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) _snake_case : Optional[Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) _snake_case : Optional[Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) _snake_case : List[str] = reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A__( __lowerCAmelCase ): if "img_encoder.pos_embed" in name: _snake_case : List[str] = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: _snake_case : Dict = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: _snake_case : Optional[int] = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: _snake_case : Optional[Any] = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: _snake_case : List[Any] = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: _snake_case : str = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: _snake_case : Tuple = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: _snake_case : Union[str, Any] = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: _snake_case : Optional[Any] = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: _snake_case : Optional[int] = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: _snake_case : Dict = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: _snake_case : List[str] = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: _snake_case : Optional[Any] = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: _snake_case : Any = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: _snake_case : str = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _snake_case : Optional[int] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _snake_case : List[Any] = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _snake_case : Tuple = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: _snake_case : Tuple = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: _snake_case : Optional[Any] = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: _snake_case : int = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: _snake_case : Tuple = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: _snake_case : Optional[Any] = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: _snake_case : str = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def A__( __lowerCAmelCase , __lowerCAmelCase ): for key in orig_state_dict.copy().keys(): _snake_case : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case : Any = key.split('.' ) _snake_case : List[str] = int(key_split[2] ), int(key_split[4] ) _snake_case : List[Any] = config.vision_config.hidden_size if "weight" in key: _snake_case : List[Any] = val[:dim, :] _snake_case : int = val[dim : dim * 2, :] _snake_case : str = val[-dim:, :] else: _snake_case : Optional[int] = val[:dim] _snake_case : str = val[dim : dim * 2] _snake_case : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case : Optional[Any] = key.split('.' ) _snake_case : int = int(key_split[3] ) _snake_case : Tuple = config.text_config.hidden_size if "weight" in key: _snake_case : List[Any] = val[:dim, :] _snake_case : str = val[ dim : dim * 2, : ] _snake_case : Optional[int] = val[-dim:, :] else: _snake_case : str = val[:dim] _snake_case : Optional[Any] = val[dim : dim * 2] _snake_case : Optional[int] = val[-dim:] else: _snake_case : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _snake_case : Any = val.squeeze_() else: _snake_case : Union[str, Any] = val return orig_state_dict def A__( ): _snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _snake_case : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="groupvit-gcc-yfcc" , __lowerCAmelCase=False ): _snake_case : List[str] = GroupViTConfig() _snake_case : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _snake_case : Any = torch.load(_lowerCAmelCase , map_location='cpu' )["model"] _snake_case : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _snake_case : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _snake_case : List[Any] = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) _snake_case : List[str] = prepare_img() _snake_case : Any = processor(text=['a photo of a cat', 'a photo of a dog'] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='pt' ) with torch.no_grad(): _snake_case : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _snake_case : List[Any] = torch.tensor([[13.35_23, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": _snake_case : Optional[Any] = torch.tensor([[16.18_73, 8.6_230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print('Successfully saved processor and model to' , _lowerCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(_lowerCAmelCase , organization='nielsr' ) model.push_to_hub(_lowerCAmelCase , organization='nielsr' ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowercase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0