code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import defaultdict from math import ceil, sqrt def A__( __lowerCAmelCase = 1_00_00_00 , __lowerCAmelCase = 10 ): _snake_case : defaultdict = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _snake_case : List[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _snake_case : Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase_ : int = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowercase ( _snake_case ): """simple docstring""" def __init__( self : Union[str, Any] , **lowerCamelCase_ : str ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , lowerCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = {} if "candidate_labels" in kwargs: _snake_case : Tuple = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _snake_case : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' _snake_case : str = load_image(lowerCamelCase_ ) _snake_case : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework ) _snake_case : List[str] = candidate_labels _snake_case : Union[str, Any] = [hypothesis_template.format(lowerCamelCase_ ) for x in candidate_labels] _snake_case : int = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_ ) _snake_case : str = [text_inputs] return inputs def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Tuple = model_inputs.pop('candidate_labels' ) _snake_case : int = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCamelCase_ ): _snake_case : Dict = text_inputs[0] else: # Batching case. _snake_case : Any = text_inputs[0][0] _snake_case : str = self.model(**lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = model_outputs.pop('candidate_labels' ) _snake_case : Tuple = model_outputs['logits'][0] if self.framework == "pt": _snake_case : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) _snake_case : Any = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[str] = [scores] elif self.framework == "tf": _snake_case : List[Any] = stable_softmax(lowerCamelCase_ , axis=-1 ) _snake_case : Optional[int] = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) _snake_case : Any = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_ ) , key=lambda lowerCamelCase_ : -x[0] ) ] return result
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import requests from bsa import BeautifulSoup def A__( __lowerCAmelCase = "https://www.worldometers.info/coronavirus" ): _snake_case : Optional[int] = BeautifulSoup(requests.get(lowerCAmelCase__ ).text , 'html.parser' ) _snake_case : str = soup.findAll('h1' ) _snake_case : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCAmelCase__ , lowerCAmelCase__ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : str = RobertaTokenizer _UpperCamelCase : Any = RobertaTokenizerFast _UpperCamelCase : Any = True _UpperCamelCase : Optional[int] = {"cls_token": "<s>"} def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _snake_case : List[str] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _snake_case : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : Union[str, Any] = {"""unk_token""": """<unk>"""} _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Tuple = """lower newer""" _snake_case : Dict = """lower newer""" return input_text, output_text def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : List[Any] = """lower newer""" _snake_case : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : Any = tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : Optional[Any] = tokens + [tokenizer.unk_token] _snake_case : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) _snake_case : Dict = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : str = self.get_tokenizer() _snake_case : List[Any] = """Encode this sequence.""" _snake_case : Any = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments _snake_case : Any = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : List[str] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _snake_case : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case : Optional[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens _snake_case : Optional[Any] = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space _snake_case : int = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) _snake_case : str = """Encode <mask> sequence""" _snake_case : Union[str, Any] = """Encode <mask>sequence""" _snake_case : str = tokenizer.encode(_UpperCamelCase ) _snake_case : Optional[int] = encoded.index(_UpperCamelCase ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) _snake_case : Any = tokenizer.encode(_UpperCamelCase ) _snake_case : Any = encoded.index(_UpperCamelCase ) _snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _snake_case : Dict = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _snake_case : str = """A, <mask> AllenNLP sentence.""" _snake_case : int = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCamelCase ) def __UpperCAmelCase ( self : str ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : str = f'''{text_of_1_token} {text_of_1_token}''' _snake_case : int = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : List[str] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _snake_case : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _snake_case : Tuple = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def A__( __lowerCAmelCase ): _snake_case : Optional[int] = SwinConfig() _snake_case : Union[str, Any] = swin_name.split('_' ) _snake_case : Dict = name_split[1] _snake_case : Optional[Any] = int(name_split[4] ) _snake_case : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": _snake_case : str = 96 _snake_case : List[Any] = (2, 2, 6, 2) _snake_case : str = (3, 6, 12, 24) elif model_size == "small": _snake_case : Optional[Any] = 96 _snake_case : Dict = (2, 2, 18, 2) _snake_case : Tuple = (3, 6, 12, 24) elif model_size == "base": _snake_case : Union[str, Any] = 1_28 _snake_case : List[str] = (2, 2, 18, 2) _snake_case : int = (4, 8, 16, 32) else: _snake_case : Any = 1_92 _snake_case : str = (2, 2, 18, 2) _snake_case : Any = (6, 12, 24, 48) if "in22k" in swin_name: _snake_case : Dict = 2_18_41 else: _snake_case : Optional[int] = 10_00 _snake_case : Dict = 'huggingface/label-files' _snake_case : Any = 'imagenet-1k-id2label.json' _snake_case : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Dict = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _snake_case : Dict = idalabel _snake_case : Dict = {v: k for k, v in idalabel.items()} _snake_case : Any = img_size _snake_case : Dict = num_classes _snake_case : List[Any] = embed_dim _snake_case : Dict = depths _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size return config def A__( __lowerCAmelCase ): if "patch_embed.proj" in name: _snake_case : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case : Optional[Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _snake_case : List[Any] = 'encoder.' + name if "attn.proj" in name: _snake_case : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _snake_case : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: _snake_case : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case : Tuple = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _snake_case : Any = 'layernorm.weight' if name == "norm.bias": _snake_case : Union[str, Any] = 'layernorm.bias' if "head" in name: _snake_case : int = name.replace('head' , 'classifier' ) else: _snake_case : str = 'swin.' + name return name def A__( __lowerCAmelCase , __lowerCAmelCase ): for key in orig_state_dict.copy().keys(): _snake_case : Any = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: _snake_case : str = key.split('.' ) _snake_case : List[str] = int(key_split[1] ) _snake_case : Union[str, Any] = int(key_split[3] ) _snake_case : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _snake_case : str = val[:dim, :] _snake_case : int = val[ dim : dim * 2, : ] _snake_case : str = val[-dim:, :] else: _snake_case : Any = val[ :dim ] _snake_case : Union[str, Any] = val[ dim : dim * 2 ] _snake_case : str = val[ -dim: ] else: _snake_case : List[Any] = val return orig_state_dict def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : int = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() _snake_case : Optional[int] = get_swin_config(_lowerCamelCase ) _snake_case : Union[str, Any] = SwinForImageClassification(_lowerCamelCase ) model.eval() _snake_case : List[str] = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) _snake_case : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case : Dict = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) _snake_case : Optional[int] = image_processor(images=_lowerCamelCase , return_tensors='pt' ) _snake_case : List[Any] = timm_model(inputs['pixel_values'] ) _snake_case : int = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCamelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase_ : Dict = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if exponent == 1: return base if exponent % 2 == 0: _snake_case : Any = _modexpt(_lowerCamelCase , exponent // 2 , _lowerCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCamelCase , exponent - 1 , _lowerCamelCase )) % modulo_value def A__( __lowerCAmelCase = 17_77 , __lowerCAmelCase = 18_55 , __lowerCAmelCase = 8 ): _snake_case : Dict = base for _ in range(1 , _lowerCamelCase ): _snake_case : Optional[Any] = _modexpt(_lowerCamelCase , _lowerCamelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
import numpy as np def A__( __lowerCAmelCase ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : List[str] = int(_A ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : int = [] _snake_case : Any = 2 while len(_A ) < nth: if is_prime(_A ): primes.append(_A ) num += 1 else: num += 1 return primes[len(_A ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : int = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = KandinskyInpaintPipeline _UpperCamelCase : List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] _UpperCamelCase : List[str] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] _UpperCamelCase : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Tuple = False @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : int ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return 1_00 @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) _snake_case : List[Any] = MultilingualCLIP(_lowercase ) _snake_case : List[str] = text_encoder.eval() return text_encoder @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Any = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _snake_case : List[str] = UNetaDConditionModel(**_lowercase ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : int = self.dummy_text_encoder _snake_case : Tuple = self.dummy_tokenizer _snake_case : Union[str, Any] = self.dummy_unet _snake_case : Dict = self.dummy_movq _snake_case : Any = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=_lowercase , ) _snake_case : List[Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str]=0 ): '''simple docstring''' _snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase ) _snake_case : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase ) # create init_image _snake_case : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _snake_case : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Any = Image.fromarray(np.uinta(_lowercase ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask _snake_case : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) _snake_case : Tuple = 0 if str(_lowercase ).startswith('mps' ): _snake_case : List[str] = torch.manual_seed(_lowercase ) else: _snake_case : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _snake_case : Tuple = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : int = """cpu""" _snake_case : Optional[int] = self.get_dummy_components() _snake_case : Dict = self.pipeline_class(**_lowercase ) _snake_case : Optional[int] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _snake_case : List[str] = pipe(**self.get_dummy_inputs(_lowercase ) ) _snake_case : Any = output.images _snake_case : Dict = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _snake_case : Any = image[0, -3:, -3:, -1] _snake_case : List[str] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _snake_case : Union[str, Any] = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __UpperCAmelCase ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) _snake_case : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _snake_case : str = np.ones((7_68, 7_68) , dtype=np.floataa ) _snake_case : Union[str, Any] = 0 _snake_case : Any = """a hat""" _snake_case : str = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _snake_case : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) _snake_case : List[str] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _snake_case : Any = torch.Generator(device='cpu' ).manual_seed(0 ) _snake_case : Optional[Any] = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _snake_case : str = pipeline( _lowercase , image=_lowercase , mask_image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) _snake_case : Any = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : Tuple = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _snake_case : Optional[Any] = 0 count += depth_first_search(__SCREAMING_SNAKE_CASE , row + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , row - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col + 1 , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col - 1 , __SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
class lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Tuple = n _snake_case : Tuple = [None] * self.n _snake_case : Optional[int] = 0 # index of the first element _snake_case : Tuple = 0 _snake_case : Any = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return self.size == 0 def __UpperCAmelCase ( self : int ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _snake_case : int = data _snake_case : Dict = (self.rear + 1) % self.n self.size += 1 return self def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) _snake_case : str = self.array[self.front] _snake_case : int = None _snake_case : Any = (self.front + 1) % self.n self.size -= 1 return temp
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
import math def A__( __lowerCAmelCase = 1_00 ): _snake_case : Tuple = sum(i * i for i in range(1 , n + 1 ) ) _snake_case : Optional[int] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : int = 16 , lowerCamelCase_ : int = 88 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "geglu" , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : Dict = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , in_channels=lowerCamelCase_ , num_layers=lowerCamelCase_ , dropout=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , cross_attention_dim=lowerCamelCase_ , attention_bias=lowerCamelCase_ , sample_size=lowerCamelCase_ , num_vector_embeds=lowerCamelCase_ , activation_fn=lowerCamelCase_ , num_embeds_ada_norm=lowerCamelCase_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _snake_case : List[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _snake_case : Optional[Any] = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _snake_case : Optional[Any] = [1, 0] def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : bool = True , ): '''simple docstring''' _snake_case : List[str] = hidden_states _snake_case : str = [] _snake_case : List[str] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _snake_case : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _snake_case : str = self.transformer_index_for_condition[i] _snake_case : List[str] = self.transformers[transformer_index]( lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , timestep=lowerCamelCase_ , cross_attention_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _snake_case : str = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _snake_case : str = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCamelCase_ )
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: _snake_case : Union[str, Any] = ksize + 1 _snake_case : Union[str, Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center _snake_case : Optional[int] = x - ksize // 2 _snake_case : Any = y - ksize // 2 # degree to radiant _snake_case : Dict = theta / 1_80 * np.pi _snake_case : int = np.cos(_theta ) _snake_case : List[Any] = np.sin(_theta ) # get kernel x _snake_case : Dict = cos_theta * px + sin_theta * py # get kernel y _snake_case : Tuple = -sin_theta * px + cos_theta * py # fill kernel _snake_case : List[Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase_ : List[str] = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowercase_ : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase_ : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowercase_ : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase_ : int = out / out.max() * 255 lowercase_ : List[Any] = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A__( ): _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) return image def A__( __lowerCAmelCase ): _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def A__( __lowerCAmelCase , __lowerCAmelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) _snake_case : Tuple = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def A__( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case : List[str] = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if """opt""" in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) _snake_case : str = tokenizer('\n' , add_special_tokens=snake_case__ ).input_ids[0] _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case : List[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('Done!' ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith('Qformer.bert' ): _snake_case : str = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _snake_case : Any = key.replace('self' , 'attention' ) if "opt_proj" in key: _snake_case : List[str] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): _snake_case : List[Any] = key.replace('opt' , 'language' ) if key.startswith('t5' ): _snake_case : List[Any] = key.replace('t5' , 'language' ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors='pt' ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({'image': original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print('HF generation:' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() lowercase_ : str = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowercase_ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): if config_name_or_path is None: _snake_case : Optional[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: _snake_case : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _snake_case : str = question_encoder_name_or_path _snake_case : Optional[int] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. _snake_case : int = RagConfig.from_pretrained(__snake_case ) _snake_case : Any = AutoConfig.from_pretrained(__snake_case ) _snake_case : Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) _snake_case : List[Any] = gen_config _snake_case : Any = question_encoder_config _snake_case : Dict = model_class.from_pretrained_question_encoder_generator( __snake_case , __snake_case , config=__snake_case ) rag_model.save_pretrained(__snake_case ) # Sanity check. model_class.from_pretrained(__snake_case ) # Save tokenizers. _snake_case : List[str] = AutoTokenizer.from_pretrained(__snake_case ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(__snake_case ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) lowercase_ : List[str] = parser.parse_args() lowercase_ : List[str] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase_ : Dict = True except ImportError: lowercase_ : Any = False lowercase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def A__( __lowerCAmelCase ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowercase ( _UpperCAmelCase ): """simple docstring""" @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : ArgumentParser ): '''simple docstring''' _snake_case : int = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=lowercase_ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=lowercase_ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : Optional[int] , lowerCamelCase_ : bool , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None , *lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = testing _snake_case : List[Any] = testing_file _snake_case : int = path def __UpperCAmelCase ( self : Any ): '''simple docstring''' warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _snake_case : List[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowercase_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) _snake_case : str = ( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _snake_case : List[Any] = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: _snake_case : Union[str, Any] = json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) _snake_case : List[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: _snake_case : Optional[int] = json.load(lowercase_ ) _snake_case : List[Any] = configuration["""lowercase_modelname"""] _snake_case : List[Any] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'''{directory}/configuration.json''' ) _snake_case : Any = """PyTorch""" in generate_tensorflow_pytorch_and_flax _snake_case : Tuple = """TensorFlow""" in generate_tensorflow_pytorch_and_flax _snake_case : Any = """Flax""" in generate_tensorflow_pytorch_and_flax _snake_case : List[str] = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , 'w' ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowerCamelCase_ : int ): with open(lowercase_ , 'r' ) as f: _snake_case : Union[str, Any] = f.readlines() with open(lowercase_ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : List[str] ): # Create temp file _snake_case : Any = mkstemp() _snake_case : List[str] = False with fdopen(lowercase_ , 'w' ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: _snake_case : int = True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(lowerCamelCase_ : str ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase_ : int ): with open(lowercase_ ) as datafile: _snake_case : Optional[int] = [] _snake_case : List[Any] = False _snake_case : Dict = False for line in datafile: if "# To replace in: " in line and "##" not in line: _snake_case : Optional[Any] = line.split('\"' )[1] _snake_case : Optional[int] = skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: _snake_case : List[str] = line.split('\"' )[1] _snake_case : Union[str, Any] = skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) _snake_case : int = [] elif "# Replace with" in line and "##" not in line: _snake_case : Optional[int] = [] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowercase_ )
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' lowercase_ : Tuple = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Dict = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case : Union[str, Any] = 'The dog is cute and lives in the garden house' _snake_case : Union[str, Any] = jnp.array([tokenizer.encode(__lowerCAmelCase )] ) _snake_case : Optional[int] = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim _snake_case : Union[str, Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case : str = model(__lowerCAmelCase )['last_hidden_state'] self.assertEqual(output.shape , __lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __lowerCAmelCase , atol=1e-3 ) )
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(_snake_case , _snake_case ) or not all(isinstance(_snake_case , _snake_case ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_snake_case ) != 3 or not all(isinstance(_snake_case , _snake_case ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_snake_case ) == 0: return 0 if min(_snake_case ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_snake_case ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : List[Any] = set(_snake_case ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Any=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Tuple=6 , lowerCamelCase_ : int=17 , lowerCamelCase_ : List[str]=23 , lowerCamelCase_ : Optional[Any]=11 , lowerCamelCase_ : List[Any]=True , ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[int] = batch_size _snake_case : Any = seq_length _snake_case : int = act_dim _snake_case : Any = state_dim _snake_case : Dict = hidden_size _snake_case : Optional[Any] = max_length _snake_case : List[Any] = is_training def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _snake_case : Tuple = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _snake_case : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) _snake_case : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) _snake_case : str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) _snake_case : List[str] = random_attention_mask((self.batch_size, self.seq_length) ) _snake_case : List[str] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , ): '''simple docstring''' _snake_case : Tuple = DecisionTransformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _snake_case : List[str] = model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.prepare_config_and_inputs() ( _snake_case ) : Union[str, Any] = config_and_inputs _snake_case : Optional[Any] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Dict = (DecisionTransformerModel,) if is_torch_available() else () _UpperCamelCase : Dict = () _UpperCamelCase : Optional[int] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _UpperCamelCase : Dict = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _UpperCamelCase : List[Any] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[str] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False _UpperCamelCase : List[str] = False def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = DecisionTransformerModelTester(self ) _snake_case : Any = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = DecisionTransformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = model_class(UpperCamelCase__ ) _snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : str = [*signature.parameters.keys()] _snake_case : str = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(UpperCamelCase__ )] , UpperCamelCase__ ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : str = 2 # number of steps of autoregressive prediction we will perform _snake_case : Tuple = 10 # defined by the RL environment, may be normalized _snake_case : Optional[int] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) _snake_case : Any = model.to(UpperCamelCase__ ) _snake_case : int = model.config torch.manual_seed(0 ) _snake_case : Any = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase__ , dtype=torch.floataa ) # env.reset() _snake_case : Optional[int] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=UpperCamelCase__ ) _snake_case : Tuple = torch.tensor(UpperCamelCase__ , device=UpperCamelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _snake_case : Optional[int] = state _snake_case : Any = torch.zeros(1 , 0 , config.act_dim , device=UpperCamelCase__ , dtype=torch.floataa ) _snake_case : int = torch.zeros(1 , 0 , device=UpperCamelCase__ , dtype=torch.floataa ) _snake_case : Any = torch.tensor(0 , device=UpperCamelCase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCamelCase__ ): _snake_case : str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCamelCase__ )] , dim=1 ) _snake_case : Union[str, Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCamelCase__ )] , dim=1 ) _snake_case : Tuple = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _snake_case : str = model( states=UpperCamelCase__ , actions=UpperCamelCase__ , rewards=UpperCamelCase__ , returns_to_go=UpperCamelCase__ , timesteps=UpperCamelCase__ , attention_mask=UpperCamelCase__ , return_dict=UpperCamelCase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _snake_case : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCamelCase__ , dtype=torch.floataa ), 1.0, False, {}, ) _snake_case : Optional[Any] = action_pred[0, -1] _snake_case : Tuple = torch.cat([states, state] , dim=1 ) _snake_case : Tuple = returns_to_go[0, -1] - reward _snake_case : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _snake_case : List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCamelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : str = '''T5Config''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = jnp.zeros_like(__UpperCamelCase ) _snake_case : Any = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _snake_case : str = shifted_input_ids.at[:, 0].set(__UpperCamelCase ) _snake_case : Optional[int] = jnp.where(shifted_input_ids == -1_00 , __UpperCamelCase , __UpperCamelCase ) return shifted_input_ids class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "mt5" _UpperCamelCase : List[str] = MTaConfig class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[Any] = "mt5" _UpperCamelCase : Optional[int] = MTaConfig class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[Any] = "mt5" _UpperCamelCase : Tuple = MTaConfig
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from ... import PretrainedConfig lowercase_ : Any = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class lowercase ( UpperCAmelCase__ ): """simple docstring""" _UpperCamelCase : str = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _UpperCamelCase : Optional[Any] = 'nezha' def __init__( self : Dict , lowerCamelCase_ : List[str]=2_11_28 , lowerCamelCase_ : Any=7_68 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Optional[int]="gelu" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=5_12 , lowerCamelCase_ : Any=64 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : Union[str, Any]=0.02 , lowerCamelCase_ : List[Any]=1e-12 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : int=0 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : int=True , **lowerCamelCase_ : Dict , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Union[str, Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Any = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : Optional[int] = max_relative_position _snake_case : Union[str, Any] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : Any = layer_norm_eps _snake_case : List[str] = classifier_dropout _snake_case : str = use_cache
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from __future__ import annotations from typing import Generic, TypeVar lowercase_ : List[Any] = TypeVar('''T''') class lowercase ( Generic[T] ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : T ): '''simple docstring''' _snake_case : Tuple = data _snake_case : Tuple = self _snake_case : Union[str, Any] = 0 class lowercase ( Generic[T] ): """simple docstring""" def __init__( self : str ): '''simple docstring''' _snake_case : Optional[Any] = {} def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : T ): '''simple docstring''' _snake_case : List[Any] = DisjointSetTreeNode(__lowercase ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : T ): '''simple docstring''' _snake_case : str = self.map[data] if elem_ref != elem_ref.parent: _snake_case : int = self.find_set(elem_ref.parent.data ) return elem_ref.parent def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : DisjointSetTreeNode[T] , lowerCamelCase_ : DisjointSetTreeNode[T] ): '''simple docstring''' if nodea.rank > nodea.rank: _snake_case : Optional[int] = nodea else: _snake_case : str = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : T , lowerCamelCase_ : T ): '''simple docstring''' self.link(self.find_set(__lowercase ) , self.find_set(__lowercase ) ) class lowercase ( Generic[T] ): """simple docstring""" def __init__( self : int ): '''simple docstring''' _snake_case : Optional[Any] = {} def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : T ): '''simple docstring''' if node not in self.connections: _snake_case : Optional[int] = {} def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : T , lowerCamelCase_ : T , lowerCamelCase_ : int ): '''simple docstring''' self.add_node(__lowercase ) self.add_node(__lowercase ) _snake_case : str = weight _snake_case : Optional[Any] = weight def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = [] _snake_case : Optional[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda lowerCamelCase_ : x[2] ) # creating the disjoint set _snake_case : List[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__lowercase ) # MST generation _snake_case : str = 0 _snake_case : Optional[Any] = 0 _snake_case : Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _snake_case , _snake_case , _snake_case : Tuple = edges[index] index += 1 _snake_case : Optional[Any] = disjoint_set.find_set(__lowercase ) _snake_case : Optional[Any] = disjoint_set.find_set(__lowercase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__lowercase , __lowercase , __lowercase ) disjoint_set.union(__lowercase , __lowercase ) return graph
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCamelCase_ : Any = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def A__( __lowerCAmelCase = "mumbai" ): _snake_case : Tuple = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): _snake_case : Any = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() _snake_case : Tuple = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): """simple docstring""" _UpperCamelCase : Tuple = ["""image_processor""", """tokenizer"""] _UpperCamelCase : List[Any] = """BridgeTowerImageProcessor""" _UpperCamelCase : Optional[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] ): '''simple docstring''' super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict = None , lowerCamelCase_ : Tuple = True , lowerCamelCase_ : Any = False , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : List[str] = None , lowerCamelCase_ : List[str] = 0 , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Union[str, Any] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Tuple = False , lowerCamelCase_ : Optional[int] = False , lowerCamelCase_ : Union[str, Any] = False , lowerCamelCase_ : List[Any] = False , lowerCamelCase_ : List[Any] = True , lowerCamelCase_ : List[str] = None , **lowerCamelCase_ : List[str] , ): '''simple docstring''' _snake_case : Tuple = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) # add pixel_values + pixel_mask _snake_case : Optional[Any] = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , do_normalize=lowerCamelCase_ , do_center_crop=lowerCamelCase_ , **lowerCamelCase_ ) encoding.update(lowerCamelCase_ ) return encoding def __UpperCAmelCase ( self : Dict , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer.model_input_names _snake_case : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
def A__( __lowerCAmelCase ): _snake_case : Dict = [0] * len(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Dict = j return prefix_result def A__( __lowerCAmelCase ): return max(prefix_function(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=lowerCAmelCase_ , ) assert hasattr(self , 'env' ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings _snake_case : Optional[int] = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowerCAmelCase_ , instance_count=lowerCAmelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase_ , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase_ , py_version='py36' , ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' TrainingJobAnalytics(lowerCAmelCase_ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : str = self.create_estimator(lowerCAmelCase_ ) # run training estimator.fit() # result dataframe _snake_case : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _snake_case : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _snake_case : str = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _snake_case : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowerCAmelCase_ )
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : Any = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase ( __lowercase ): """simple docstring""" _UpperCamelCase : int = '''trocr''' _UpperCamelCase : int = ['''past_key_values'''] _UpperCamelCase : Optional[Any] = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Union[str, Any] , lowerCamelCase_ : Dict=5_02_65 , lowerCamelCase_ : str=10_24 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : List[str]=16 , lowerCamelCase_ : List[str]=40_96 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : List[Any]=0.02 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Optional[int]=0 , lowerCamelCase_ : Any=2 , **lowerCamelCase_ : Any , ): '''simple docstring''' _snake_case : Optional[int] = vocab_size _snake_case : int = d_model _snake_case : Tuple = decoder_layers _snake_case : Optional[int] = decoder_attention_heads _snake_case : Tuple = decoder_ffn_dim _snake_case : List[str] = activation_function _snake_case : List[str] = max_position_embeddings _snake_case : Optional[Any] = dropout _snake_case : Dict = attention_dropout _snake_case : Dict = activation_dropout _snake_case : Any = init_std _snake_case : List[Any] = decoder_layerdrop _snake_case : Optional[int] = use_cache _snake_case : Tuple = scale_embedding _snake_case : int = use_learned_position_embeddings _snake_case : str = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _snake_case : Optional[int] = str(bin(_UpperCamelCase ) )[2:] # remove the leading "0b" _snake_case : Optional[int] = str(bin(_UpperCamelCase ) )[2:] # remove the leading "0b" _snake_case : List[str] = max(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCamelCase ) , b_binary.zfill(_UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase=False ) -> str: _snake_case : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _snake_case : Optional[Any] = '' else: _snake_case : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _snake_case : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _snake_case : Tuple = in_proj_bias[: config.hidden_size] _snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _snake_case : Dict = in_proj_bias[-config.hidden_size :] def A__( __lowerCAmelCase ) -> List[str]: _snake_case : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: _snake_case : Union[str, Any] = dct.pop(__lowerCAmelCase ) _snake_case : Optional[Any] = val def A__( ) -> List[str]: _snake_case : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case : Optional[Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: _snake_case : str = ViTConfig() _snake_case : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _snake_case : Optional[int] = True _snake_case : Optional[Any] = int(vit_name[-12:-10] ) _snake_case : str = int(vit_name[-9:-6] ) else: _snake_case : Any = 10_00 _snake_case : int = 'huggingface/label-files' _snake_case : Tuple = 'imagenet-1k-id2label.json' _snake_case : List[Any] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : Optional[int] = idalabel _snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} _snake_case : List[Any] = int(vit_name[-6:-4] ) _snake_case : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): _snake_case : List[Any] = 1_92 _snake_case : List[Any] = 7_68 _snake_case : List[str] = 12 _snake_case : Tuple = 3 elif vit_name[9:].startswith('small' ): _snake_case : Union[str, Any] = 3_84 _snake_case : Any = 15_36 _snake_case : Union[str, Any] = 12 _snake_case : List[Any] = 6 else: pass else: if vit_name[4:].startswith('small' ): _snake_case : List[str] = 7_68 _snake_case : int = 23_04 _snake_case : Any = 8 _snake_case : int = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): _snake_case : Any = 10_24 _snake_case : Optional[int] = 40_96 _snake_case : int = 24 _snake_case : Optional[int] = 16 elif vit_name[4:].startswith('huge' ): _snake_case : int = 12_80 _snake_case : List[Any] = 51_20 _snake_case : int = 32 _snake_case : Tuple = 16 # load original model from timm _snake_case : Any = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _snake_case : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) _snake_case : Optional[Any] = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _snake_case : Dict = ViTModel(__lowerCAmelCase ).eval() else: _snake_case : Any = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _snake_case : Optional[Any] = DeiTImageProcessor(size=config.image_size ) else: _snake_case : Optional[int] = ViTImageProcessor(size=config.image_size ) _snake_case : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case : Dict = encoding['pixel_values'] _snake_case : Any = model(__lowerCAmelCase ) if base_model: _snake_case : Tuple = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _snake_case : Optional[int] = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : int = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” lowercase_ : Any = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowercase_ : Dict = 0 lowercase_ : List[Any] = 0Xe_000 lowercase_ : Dict = 0Xe_001 lowercase_ : Union[str, Any] = 0Xe_002 lowercase_ : List[str] = 0Xe_003 lowercase_ : Dict = 0Xe_004 # Maps special codepoints to human-readable names. lowercase_ : List[str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. lowercase_ : List[Any] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=chr(lowerCamelCase_ ) , lowerCamelCase_ : Dict=chr(lowerCamelCase_ ) , lowerCamelCase_ : Any=chr(lowerCamelCase_ ) , lowerCamelCase_ : Union[str, Any]=chr(lowerCamelCase_ ) , lowerCamelCase_ : Optional[Any]=chr(lowerCamelCase_ ) , lowerCamelCase_ : Any=chr(lowerCamelCase_ ) , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : List[Any]=20_48 , **lowerCamelCase_ : Tuple , ): '''simple docstring''' _snake_case : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token _snake_case : Union[str, Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token _snake_case : List[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token _snake_case : List[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token _snake_case : Optional[int] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case : Tuple = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , model_max_length=lowerCamelCase_ , **lowerCamelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. _snake_case : Optional[int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _snake_case : Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _snake_case : List[str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _snake_case : Optional[int] = UNICODE_VOCAB_SIZE _snake_case : Union[str, Any] = len(self._special_codepoints ) @property def __UpperCAmelCase ( self : int ): '''simple docstring''' return self._unicode_vocab_size def __UpperCAmelCase ( self : int , lowerCamelCase_ : str ): '''simple docstring''' return list(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' try: return ord(lowerCamelCase_ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCamelCase_ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[Any] ): '''simple docstring''' return "".join(lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] _snake_case : int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) _snake_case : int = [1] + ([0] * len(lowerCamelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCamelCase_ )) + [1] return result def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[int] = [self.sep_token_id] _snake_case : Any = [self.cls_token_id] _snake_case : List[str] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' return ()
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
from collections import defaultdict def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = first_str.lower().strip() _snake_case : List[Any] = second_str.lower().strip() # Remove whitespace _snake_case : Optional[int] = first_str.replace(' ' , '' ) _snake_case : List[Any] = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 _snake_case : str = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowercase_ : int = input('''Enter the first string ''').strip() lowercase_ : int = input('''Enter the second string ''').strip() lowercase_ : List[str] = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase ( a__ ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = SMALL_MODEL_IDENTIFIER _snake_case : Optional[int] = '''pt''' _snake_case : Optional[Any] = '''tf''' def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[str] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase__ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Dict = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase__ ) model_tf.save_pretrained(lowercase__ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = '''mock_framework''' # Framework provided - return whatever the user provides _snake_case : Tuple = FeaturesManager.determine_framework(self.test_model , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) _snake_case : Optional[Any] = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) _snake_case : Tuple = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) _snake_case : Dict = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) _snake_case : Optional[int] = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase__ ): _snake_case : Union[str, Any] = FeaturesManager.determine_framework(lowercase__ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_tf_available' , lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _snake_case : Optional[Any] = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_torch_available' , lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_tf ) # Both in environment -> use PyTorch _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) _snake_case : str = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_tf_available' , lowercase__ ), patch( 'transformers.onnx.features.is_torch_available' , lowercase__ ): _snake_case : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # Both not in environment -> raise error _snake_case : Dict = MagicMock(return_value=lowercase__ ) _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_tf_available' , lowercase__ ), patch( 'transformers.onnx.features.is_torch_available' , lowercase__ ): with self.assertRaises(lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def A__( ): _snake_case : int = 10 _snake_case : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _snake_case : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(a_ ) ), } , features=a_ , ) return dataset @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files lowercase_ : Tuple = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : int = tmp_path_factory.mktemp('data' ) / '''file.txt''' _snake_case : Optional[int] = FILE_CONTENT with open(a_ , 'w' ) as f: f.write(a_ ) return filename @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): import bza _snake_case : List[Any] = tmp_path_factory.mktemp('data' ) / '''file.txt.bz2''' _snake_case : Any = bytes(a_ , 'utf-8' ) with bza.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): import gzip _snake_case : Any = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _snake_case : str = bytes(a_ , 'utf-8' ) with gzip.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): if datasets.config.LZ4_AVAILABLE: import lza.frame _snake_case : Union[str, Any] = tmp_path_factory.mktemp('data' ) / '''file.txt.lz4''' _snake_case : List[Any] = bytes(a_ , 'utf-8' ) with lza.frame.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _snake_case : Dict = tmp_path_factory.mktemp('data' ) / '''file.txt.7z''' with pyazr.SevenZipFile(a_ , 'w' ) as archive: archive.write(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): import tarfile _snake_case : Tuple = tmp_path_factory.mktemp('data' ) / '''file.txt.tar''' with tarfile.TarFile(a_ , 'w' ) as f: f.add(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): import lzma _snake_case : int = tmp_path_factory.mktemp('data' ) / '''file.txt.xz''' _snake_case : Tuple = bytes(a_ , 'utf-8' ) with lzma.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): import zipfile _snake_case : Dict = tmp_path_factory.mktemp('data' ) / '''file.txt.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _snake_case : str = tmp_path_factory.mktemp('data' ) / '''file.txt.zst''' _snake_case : Tuple = bytes(a_ , 'utf-8' ) with zstd.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : str = tmp_path_factory.mktemp('data' ) / '''file.xml''' _snake_case : int = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(a_ , 'w' ) as f: f.write(a_ ) return filename lowercase_ : Tuple = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] lowercase_ : List[str] = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] lowercase_ : Dict = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } lowercase_ : Tuple = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] lowercase_ : Dict = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def A__( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : List[str] = datasets.Dataset.from_dict(a_ ) _snake_case : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _snake_case : Union[str, Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(a_ , 'w' , newline='' ) as f: _snake_case : Optional[int] = csv.DictWriter(a_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(a_ , 'w' , newline='' ) as f: _snake_case : Dict = csv.DictWriter(a_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): import bza _snake_case : Optional[Any] = tmp_path_factory.mktemp('data' ) / '''dataset.csv.bz2''' with open(a_ , 'rb' ) as f: _snake_case : Union[str, Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_ , 'wb' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tmp_path_factory.mktemp('data' ) / '''dataset.csv.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename(a_ ) ) f.write(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = tmp_path_factory.mktemp('data' ) / '''dataset.csv.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(a_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.join('main_dir' , os.path.basename(a_ ) ) ) f.write(a_ , arcname=os.path.join('main_dir' , os.path.basename(a_ ) ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _snake_case : Any = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(a_ , 'wb' ) as f: _snake_case : Dict = pq.ParquetWriter(a_ , schema=a_ ) _snake_case : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]} , schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _snake_case : int = {'''data''': DATA} with open(a_ , 'w' ) as f: json.dump(a_ , a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _snake_case : str = {'''data''': DATA_DICT_OF_LISTS} with open(a_ , 'w' ) as f: json.dump(a_ , a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(a_ , 'w' ) as f: for item in DATA: f.write(json.dumps(a_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(a_ , 'w' ) as f: for item in DATA: f.write(json.dumps(a_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(a_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(a_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): import gzip _snake_case : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(a_ , 'rb' ) as orig_file: with gzip.open(a_ , 'wb' ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): import gzip _snake_case : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(a_ , 'rb' ) as orig_file: with gzip.open(a_ , 'wb' ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = tmp_path_factory.mktemp('data' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename(a_ ) ) f.write(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = tmp_path_factory.mktemp('data' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.join('nested' , os.path.basename(a_ ) ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.join('main_dir' , os.path.basename(a_ ) ) ) f.write(a_ , arcname=os.path.join('main_dir' , os.path.basename(a_ ) ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = tmp_path_factory.mktemp('data' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(a_ , 'w' ) as f: f.add(a_ , arcname=os.path.basename(a_ ) ) f.add(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = tmp_path_factory.mktemp('data' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(a_ , 'w' ) as f: f.add(a_ , arcname=os.path.join('nested' , os.path.basename(a_ ) ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : List[str] = ['''0''', '''1''', '''2''', '''3'''] _snake_case : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(a_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Optional[int] = ['''0''', '''1''', '''2''', '''3'''] _snake_case : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(a_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = ['''0''', '''1''', '''2''', '''3'''] _snake_case : Any = tmp_path_factory.mktemp('data' ) / '''dataset.abc''' with open(a_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = tmp_path_factory.mktemp('data' ) / '''dataset.text.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename(a_ ) ) f.write(a_ , arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : int = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.join('main_dir' , os.path.basename(a_ ) ) ) f.write(a_ , arcname=os.path.join('main_dir' , os.path.basename(a_ ) ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : int = tmp_path_factory.mktemp('data' ) / '''dataset.ext.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(a_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : Optional[int] = '''\n'''.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _snake_case : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(a_ , 'w' , encoding='utf-8' ) as f: f.write(a_ ) return path @pytest.fixture(scope='session' ) def A__( ): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def A__( ): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = tmp_path_factory.mktemp('data' ) / '''dataset.img.zip''' with zipfile.ZipFile(a_ , 'w' ) as f: f.write(a_ , arcname=os.path.basename(a_ ) ) f.write(a_ , arcname=os.path.basename(a_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def A__( __lowerCAmelCase ): _snake_case : List[str] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = np.full((len(__lowerCAmelCase ), sequence_length, 2) , __lowerCAmelCase ) else: _snake_case : List[str] = np.full((len(__lowerCAmelCase ), sequence_length) , __lowerCAmelCase ) for i, tensor in enumerate(__lowerCAmelCase ): if padding_side == "right": if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] return out_tensor.tolist() def A__( __lowerCAmelCase ): _snake_case : str = ord(__lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Tuple = unicodedata.category(__lowerCAmelCase ) if cat.startswith('P' ): return True return False @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : PreTrainedTokenizerBase _UpperCamelCase : Union[bool, str, PaddingStrategy] = True _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : int = -100 _UpperCamelCase : str = "pt" def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ): '''simple docstring''' import torch _snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' _snake_case : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : Dict = self.tokenizer.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch _snake_case : int = torch.tensor(batch['entity_ids'] ).shape[1] _snake_case : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": _snake_case : List[str] = [ list(lowerCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) for label in labels ] else: _snake_case : Optional[Any] = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) + list(lowerCamelCase_ ) for label in labels ] _snake_case : Tuple = [feature['ner_tags'] for feature in features] _snake_case : Dict = padding_tensor(lowerCamelCase_ , -1 , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = [feature['original_entity_spans'] for feature in features] _snake_case : Union[str, Any] = padding_tensor(lowerCamelCase_ , (-1, -1) , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = {k: torch.tensor(lowerCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
def A__( ): return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowercase_ : List[str] = generate_large_matrix() lowercase_ : Optional[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__( __lowerCAmelCase ): assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = 0 _snake_case : str = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _snake_case : Dict = (left + right) // 2 _snake_case : str = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _snake_case : Optional[Any] = mid + 1 else: _snake_case : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def A__( __lowerCAmelCase ): _snake_case : Any = 0 _snake_case : List[str] = len(grid[0] ) for i in range(len(lowercase_ ) ): _snake_case : List[str] = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def A__( __lowerCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def A__( __lowerCAmelCase ): _snake_case : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def A__( ): from timeit import timeit print('Running benchmarks' ) _snake_case : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _snake_case : List[str] = timeit(F'''{func}(grid=grid)''' , setup=lowercase_ , number=5_00 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : int = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = "trocr" _UpperCamelCase : List[Any] = ["past_key_values"] _UpperCamelCase : List[Any] = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Tuple , lowerCamelCase_ : Any=5_02_65 , lowerCamelCase_ : Optional[Any]=10_24 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : str=40_96 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : List[Any]=5_12 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]=1 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Union[str, Any]=2 , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' _snake_case : Dict = vocab_size _snake_case : int = d_model _snake_case : Any = decoder_layers _snake_case : List[Any] = decoder_attention_heads _snake_case : str = decoder_ffn_dim _snake_case : Optional[int] = activation_function _snake_case : Tuple = max_position_embeddings _snake_case : Dict = dropout _snake_case : str = attention_dropout _snake_case : Optional[int] = activation_dropout _snake_case : List[str] = init_std _snake_case : Dict = decoder_layerdrop _snake_case : Dict = use_cache _snake_case : int = scale_embedding _snake_case : str = use_learned_position_embeddings _snake_case : List[Any] = layernorm_embedding super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , **_snake_case , )
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _snake_case : Union[str, Any] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(__lowerCAmelCase )}''' ) raise ValueError(__lowerCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def A__( __lowerCAmelCase ): _snake_case : List[Any] = split_dict._to_yaml_list() assert len(snake_case_ ) == len(snake_case_ ) _snake_case : Tuple = SplitDict._from_yaml_list(snake_case_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _snake_case : Optional[Any] = None # the split name of split_dict takes over the name of the split info object _snake_case : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name='my_dataset' )] ) def A__( __lowerCAmelCase ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _snake_case : List[str] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() lowercase_ : Any = logging.get_logger(__name__) lowercase_ : List[Any] = 'Hello, World!' lowercase_ : str = 'en_XX' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = Path('data_bin' ) _snake_case : int = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__UpperCamelCase ).parent ) , checkpoint_file=Path(__UpperCamelCase ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(__UpperCamelCase ) , bpe='sentencepiece' , sentencepiece_model=str(Path(__UpperCamelCase ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(__UpperCamelCase ) _snake_case : List[Any] = xmod.model.encoder.sentence_encoder _snake_case : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _snake_case : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('Our X-MOD config:' , __UpperCamelCase ) _snake_case : Optional[int] = XmodForSequenceClassification(__UpperCamelCase ) if classification_head else XmodForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings _snake_case : List[Any] = xmod_sent_encoder.embed_tokens.weight _snake_case : int = xmod_sent_encoder.embed_positions.weight _snake_case : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _snake_case : Optional[int] = xmod_sent_encoder.layernorm_embedding.weight _snake_case : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _snake_case : Optional[int] = model.roberta.encoder.layer[i] _snake_case : int = xmod_sent_encoder.layers[i] # self attention _snake_case : Any = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) _snake_case : Dict = xmod_layer.self_attn.q_proj.weight _snake_case : Optional[Any] = xmod_layer.self_attn.q_proj.bias _snake_case : Optional[Any] = xmod_layer.self_attn.k_proj.weight _snake_case : List[str] = xmod_layer.self_attn.k_proj.bias _snake_case : Any = xmod_layer.self_attn.v_proj.weight _snake_case : int = xmod_layer.self_attn.v_proj.bias # self-attention output _snake_case : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) _snake_case : Any = xmod_layer.self_attn.out_proj.weight _snake_case : List[Any] = xmod_layer.self_attn.out_proj.bias _snake_case : Tuple = xmod_layer.self_attn_layer_norm.weight _snake_case : Optional[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate _snake_case : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) _snake_case : List[str] = xmod_layer.fca.weight _snake_case : Any = xmod_layer.fca.bias # output _snake_case : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) _snake_case : Any = xmod_layer.fca.weight _snake_case : int = xmod_layer.fca.bias _snake_case : List[Any] = xmod_layer.final_layer_norm.weight _snake_case : List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _snake_case : Dict = xmod_layer.adapter_layer_norm.weight _snake_case : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _snake_case : List[str] = bert_output.adapter_modules[lang_code] _snake_case : Dict = xmod_layer.adapter_modules[lang_code] _snake_case : Dict = from_adapter.fca.weight _snake_case : List[str] = from_adapter.fca.bias _snake_case : Dict = from_adapter.fca.weight _snake_case : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _snake_case : Dict = xmod_sent_encoder.layer_norm.weight _snake_case : int = xmod_sent_encoder.layer_norm.bias if classification_head: _snake_case : Any = xmod.model.classification_heads['''mnli'''].dense.weight _snake_case : int = xmod.model.classification_heads['''mnli'''].dense.bias _snake_case : Union[str, Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight _snake_case : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _snake_case : List[str] = xmod.model.encoder.lm_head.dense.weight _snake_case : int = xmod.model.encoder.lm_head.dense.bias _snake_case : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight _snake_case : List[str] = xmod.model.encoder.lm_head.layer_norm.bias _snake_case : str = xmod.model.encoder.lm_head.weight _snake_case : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _snake_case : List[Any] = xmod.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__UpperCamelCase ) _snake_case : str = model(__UpperCamelCase )[0] if classification_head: _snake_case : Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__UpperCamelCase ) ) else: _snake_case : Optional[Any] = xmod.model(__UpperCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _snake_case : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _snake_case : int = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowercase_ : Dict = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def update_area_of_max_square(__lowerCAmelCase , __lowerCAmelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _snake_case : List[str] = update_area_of_max_square(lowerCamelCase_ , col + 1 ) _snake_case : Dict = update_area_of_max_square(row + 1 , col + 1 ) _snake_case : Any = update_area_of_max_square(row + 1 , lowerCamelCase_ ) if mat[row][col]: _snake_case : Dict = 1 + min([right, diagonal, down] ) _snake_case : Optional[int] = max(largest_square_area[0] , lowerCamelCase_ ) return sub_problem_sol else: return 0 _snake_case : List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def update_area_of_max_square_using_dp_array( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _snake_case : List[str] = update_area_of_max_square_using_dp_array(lowerCamelCase_ , col + 1 , lowerCamelCase_ ) _snake_case : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCamelCase_ ) _snake_case : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , lowerCamelCase_ , lowerCamelCase_ ) if mat[row][col]: _snake_case : List[Any] = 1 + min([right, diagonal, down] ) _snake_case : int = max(largest_square_area[0] , lowerCamelCase_ ) _snake_case : int = sub_problem_sol return sub_problem_sol else: return 0 _snake_case : Optional[Any] = [0] _snake_case : List[str] = [[-1] * cols for _ in range(lowerCamelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCamelCase_ ) return largest_square_area[0] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] _snake_case : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _snake_case : Tuple = dp_array[row][col + 1] _snake_case : Optional[int] = dp_array[row + 1][col + 1] _snake_case : str = dp_array[row + 1][col] if mat[row][col] == 1: _snake_case : int = 1 + min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = max(dp_array[row][col] , lowerCamelCase_ ) else: _snake_case : Optional[int] = 0 return largest_square_area def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = [0] * (cols + 1) _snake_case : Optional[Any] = [0] * (cols + 1) _snake_case : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _snake_case : Union[str, Any] = current_row[col + 1] _snake_case : Optional[int] = next_row[col + 1] _snake_case : int = next_row[col] if mat[row][col] == 1: _snake_case : Union[str, Any] = 1 + min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = max(current_row[col] , lowerCamelCase_ ) else: _snake_case : Optional[Any] = 0 _snake_case : str = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : List[str] = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowercase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A__( __lowerCAmelCase=None , __lowerCAmelCase=None ): return field(default_factory=lambda: default , metadata=a__ ) @dataclass class lowercase : """simple docstring""" _UpperCamelCase : str = field( metadata={"help": "The csv file to plot."} , ) _UpperCamelCase : bool = field( default=__lowercase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _UpperCamelCase : bool = field( default=__lowercase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _UpperCamelCase : bool = field( default=__lowercase , metadata={"help": "Disable logarithmic scale when plotting"} , ) _UpperCamelCase : bool = field( default=__lowercase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _UpperCamelCase : Optional[str] = field( default=__lowercase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _UpperCamelCase : Optional[List[str]] = list_field( default=__lowercase , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def A__( __lowerCAmelCase ): try: int(a__ ) return True except ValueError: return False def A__( __lowerCAmelCase ): try: float(a__ ) return True except ValueError: return False class lowercase : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : str = args _snake_case : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: _snake_case : Union[str, Any] = csv.DictReader(__A ) for row in reader: _snake_case : List[str] = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _snake_case : str = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _snake_case : List[Any] = float(row['result'] ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case , _snake_case : str = plt.subplots() _snake_case : List[Any] = 'Time usage' if self.args.is_time else 'Memory usage' _snake_case : Union[str, Any] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _snake_case : Any = sorted(set(self.result_dict[model_name]['bsz'] ) ) _snake_case : Dict = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _snake_case : int = self.result_dict[model_name]['result'] ((_snake_case) , (_snake_case)) : List[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _snake_case : str = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _snake_case : Dict = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__A , ) else: _snake_case : List[Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_snake_case) , (_snake_case)) : Dict = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _snake_case : Any = np.asarray(__A , __A )[: len(__A )] plt.scatter( __A , __A , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__A , __A , '--' ) title_str += f''' {label_model_name} vs.''' _snake_case : List[Any] = title_str[:-4] _snake_case : Optional[Any] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__A ) plt.xlabel(__A ) plt.ylabel(__A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A__( ): _snake_case : List[Any] = HfArgumentParser(a__ ) _snake_case : Optional[Any] = parser.parse_args_into_dataclasses()[0] _snake_case : int = Plot(args=a__ ) plot.plot() if __name__ == "__main__": main()
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
lowercase_ : Optional[Any] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = set() # keep track of all the paths to be checked _snake_case : Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _snake_case : Optional[int] = queue.pop(0 ) # get the last node from the path _snake_case : str = path[-1] if node not in explored: _snake_case : Any = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _snake_case : Optional[int] = list(UpperCamelCase__ ) new_path.append(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(UpperCamelCase__ ) # in case there's no path between the 2 nodes return [] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _snake_case : List[Any] = [start] _snake_case : List[Any] = set(UpperCamelCase__ ) # Keep tab on distances from `start` node. _snake_case : int = {start: 0, target: -1} while queue: _snake_case : Dict = queue.pop(0 ) if node == target: _snake_case : List[str] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) _snake_case : Optional[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
def A__( __lowerCAmelCase = 10_00 ): _snake_case : List[Any] = -1 _snake_case : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _snake_case : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) _snake_case : Any = n - a - b if c * c == (a * a + b * b): _snake_case : List[Any] = a * b * c if candidate >= product: _snake_case : str = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' def A__( __lowerCAmelCase , __lowerCAmelCase ): if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) _snake_case : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCAmelCase ) ) return round(__lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" _UpperCamelCase : str = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Dict = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) _snake_case : int = prefix_inner_dim _snake_case : List[Any] = prefix_hidden_dim _snake_case : Optional[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _snake_case : List[str] = ( nn.Linear(self.prefix_hidden_dim , __A ) if self.prefix_hidden_dim is not None else nn.Identity() ) _snake_case : str = GPTaConfig( vocab_size=__A , n_positions=__A , n_embd=__A , n_layer=__A , n_head=__A , n_inner=__A , activation_function=__A , resid_pdrop=__A , embd_pdrop=__A , attn_pdrop=__A , layer_norm_epsilon=__A , initializer_range=__A , scale_attn_weights=__A , use_cache=__A , scale_attn_by_inverse_layer_idx=__A , reorder_and_upcast_attn=__A , ) _snake_case : Optional[int] = GPTaLMHeadModel(__A ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' _snake_case : Optional[int] = self.transformer.transformer.wte(__A ) _snake_case : Optional[int] = self.encode_prefix(__A ) _snake_case : Tuple = self.decode_prefix(__A ) _snake_case : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _snake_case : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _snake_case : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1 ) _snake_case : Dict = self.transformer(inputs_embeds=__A , labels=__A , attention_mask=__A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(__A , self.prefix_length , dtype=torch.intaa , device=__A ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return self.encode_prefix(__A ) @torch.no_grad() def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : int = torch.split(__A , 1 , dim=0 ) _snake_case : int = [] _snake_case : Union[str, Any] = [] for feature in features: _snake_case : Any = self.decode_prefix(feature.to(__A ) ) # back to the clip feature # Only support beam search for now _snake_case , _snake_case : Dict = self.generate_beam( input_embeds=__A , device=__A , eos_token_id=__A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _snake_case : Any = torch.stack(__A ) _snake_case : Any = torch.stack(__A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __UpperCAmelCase ( self : str , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' _snake_case : Optional[int] = eos_token_id _snake_case : Dict = None _snake_case : List[Any] = None _snake_case : Any = torch.ones(__A , device=__A , dtype=torch.int ) _snake_case : Optional[Any] = torch.zeros(__A , device=__A , dtype=torch.bool ) if input_embeds is not None: _snake_case : List[Any] = input_embeds else: _snake_case : Tuple = self.transformer.transformer.wte(__A ) for i in range(__A ): _snake_case : int = self.transformer(inputs_embeds=__A ) _snake_case : str = outputs.logits _snake_case : Any = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _snake_case : Optional[int] = logits.softmax(-1 ).log() if scores is None: _snake_case , _snake_case : Dict = logits.topk(__A , -1 ) _snake_case : int = generated.expand(__A , *generated.shape[1:] ) _snake_case , _snake_case : Optional[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _snake_case : str = next_tokens else: _snake_case : List[str] = tokens.expand(__A , *tokens.shape[1:] ) _snake_case : Dict = torch.cat((tokens, next_tokens) , dim=1 ) else: _snake_case : Dict = -float(np.inf ) _snake_case : List[Any] = 0 _snake_case : Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _snake_case : str = scores_sum / seq_lengths[:, None] _snake_case , _snake_case : int = scores_sum_average.view(-1 ).topk(__A , -1 ) _snake_case : Dict = next_tokens // scores_sum.shape[1] _snake_case : Optional[Any] = seq_lengths[next_tokens_source] _snake_case : List[Any] = next_tokens % scores_sum.shape[1] _snake_case : Union[str, Any] = next_tokens.unsqueeze(1 ) _snake_case : Optional[int] = tokens[next_tokens_source] _snake_case : Dict = torch.cat((tokens, next_tokens) , dim=1 ) _snake_case : Any = generated[next_tokens_source] _snake_case : Optional[Any] = scores_sum_average * seq_lengths _snake_case : Any = is_stopped[next_tokens_source] _snake_case : Optional[int] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _snake_case : int = torch.cat((generated, next_token_embed) , dim=1 ) _snake_case : Union[str, Any] = is_stopped + next_tokens.eq(__A ).squeeze() if is_stopped.all(): break _snake_case : Optional[Any] = scores / seq_lengths _snake_case : Tuple = scores.argsort(descending=__A ) # tokens tensors are already padded to max_seq_length _snake_case : Optional[Any] = [tokens[i] for i in order] _snake_case : Optional[int] = torch.stack(__A , dim=0 ) _snake_case : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class lowercase ( __snake_case ): """simple docstring""" _UpperCamelCase : Any = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : int , **lowerCamelCase_ : Tuple ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : Optional[Any] = deprecated_arg[3:] _snake_case : Optional[int] = not kwargs.pop(_lowercase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) _snake_case : Union[str, Any] = kwargs.pop('tpu_name' , self.tpu_name ) _snake_case : List[Any] = kwargs.pop('device_idx' , self.device_idx ) _snake_case : Optional[Any] = kwargs.pop('eager_mode' , self.eager_mode ) _snake_case : Tuple = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**_lowercase ) _UpperCamelCase : Union[str, Any] = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) _UpperCamelCase : Optional[Any] = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCamelCase : Optional[Any] = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) _UpperCamelCase : str = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __UpperCAmelCase ( self : Any ): '''simple docstring''' requires_backends(self , ['tf'] ) _snake_case : List[Any] = None if self.tpu: try: if self.tpu_name: _snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _snake_case : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _snake_case : List[Any] = None return tpu @cached_property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _snake_case : Optional[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) _snake_case : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU _snake_case : Optional[Any] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' requires_backends(self , ['tf'] ) return self._setup_strategy @property def __UpperCAmelCase ( self : int ): '''simple docstring''' requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __UpperCAmelCase ( self : int ): '''simple docstring''' return self.n_gpu > 0
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
from __future__ import annotations from math import pi def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ : Dict = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _snake_case , _snake_case , _snake_case , _snake_case : Dict = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _snake_case : Tuple = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , force_download=not use_cached_models ) _snake_case : Tuple = config_class.from_json_file(lowerCAmelCase__ ) _snake_case : Optional[int] = True _snake_case : Any = True print(F'''Building TensorFlow model from configuration: {config}''' ) _snake_case : Optional[Any] = model_class(lowerCAmelCase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _snake_case : List[Any] = cached_file( lowerCAmelCase__ , lowerCAmelCase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _snake_case : Union[str, Any] = load_pytorch_checkpoint_in_tfa_model(lowerCAmelCase__ , lowerCAmelCase__ ) if compare_with_pt_model: _snake_case : str = tf_model(tf_model.dummy_inputs , training=lowerCAmelCase__ ) # build the network _snake_case : List[Any] = torch.load(lowerCAmelCase__ , map_location='cpu' ) _snake_case : Dict = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCAmelCase__ , config=lowerCAmelCase__ , state_dict=lowerCAmelCase__ ) with torch.no_grad(): _snake_case : Dict = pt_model(**pt_model.dummy_inputs ) _snake_case : Dict = pto[0].numpy() _snake_case : List[str] = tfo[0].numpy() _snake_case : Any = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(lowerCAmelCase__ , save_format='h5' ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ): if args_model_type is None: _snake_case : List[str] = list(MODEL_CLASSES.keys() ) else: _snake_case : Optional[Any] = [args_model_type] for j, model_type in enumerate(lowerCAmelCase__ , start=1 ): print('=' * 1_00 ) print(F''' Converting model type {j}/{len(lowerCAmelCase__ )}: {model_type}''' ) print('=' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _snake_case : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _snake_case : Any = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCAmelCase__ , lowerCAmelCase__ ) , start=1 ): print('-' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue _snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(lowerCAmelCase__ )}: {model_shortcut_name} - model_type {model_type}''' ) print('-' * 1_00 ) if config_shortcut_name in aws_config_map: _snake_case : List[str] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , force_download=not use_cached_models ) else: _snake_case : Tuple = config_shortcut_name if model_shortcut_name in aws_model_maps: _snake_case : Any = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , force_download=not use_cached_models ) else: _snake_case : Any = model_shortcut_name if os.path.isfile(lowerCAmelCase__ ): _snake_case : Dict = 'converted_model' convert_pt_checkpoint_to_tf( model_type=lowerCAmelCase__ , pytorch_checkpoint_path=lowerCAmelCase__ , config_file=lowerCAmelCase__ , tf_dump_path=os.path.join(lowerCAmelCase__ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=lowerCAmelCase__ , ) if remove_cached_files: os.remove(lowerCAmelCase__ ) os.remove(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowercase_ : str = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Dict = IFInpaintingSuperResolutionPipeline _UpperCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : Dict=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith('mps' ): _snake_case : str = torch.manual_seed(UpperCamelCase__ ) else: _snake_case : Optional[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _snake_case : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _snake_case : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _snake_case : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' self._test_save_load_local() def __UpperCAmelCase ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : """simple docstring""" _UpperCamelCase : torch.Tensor # [batch_size x 3] _UpperCamelCase : torch.Tensor # [batch_size x 3] _UpperCamelCase : torch.Tensor # [batch_size x 3] _UpperCamelCase : torch.Tensor # [batch_size x 3] _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : float _UpperCamelCase : float _UpperCamelCase : Tuple[int] def __UpperCAmelCase ( self : Any ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = torch.arange(self.height * self.width ) _snake_case : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase_ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , *_snake_case : Union[str, Any] = self.shape _snake_case : Any = int(np.prod(lowerCamelCase_ ) ) _snake_case : Union[str, Any] = self.get_image_coords() _snake_case : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _snake_case : Tuple = self.get_camera_rays(lowerCamelCase_ ) _snake_case : Optional[int] = rays.view(lowerCamelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case , *_snake_case , _snake_case : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _snake_case : List[str] = coords.view(lowerCamelCase_ , -1 , 2 ) _snake_case : Union[str, Any] = self.resolution() _snake_case : Union[str, Any] = self.fov() _snake_case : Optional[Any] = (flat.float() / (res - 1)) * 2 - 1 _snake_case : List[Any] = fracs * torch.tan(fov / 2 ) _snake_case : str = fracs.view(lowerCamelCase_ , -1 , 2 ) _snake_case : Union[str, Any] = ( self.z.view(lowerCamelCase_ , 1 , 3 ) + self.x.view(lowerCamelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _snake_case : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase_ ) _snake_case : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase_ , *lowerCamelCase_ , 2 , 3 ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase_ , height=lowerCamelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def A__( __lowerCAmelCase ): _snake_case : List[str] = [] _snake_case : str = [] _snake_case : Optional[Any] = [] _snake_case : int = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _snake_case : List[Any] = np.array([np.sin(__lowerCAmelCase ), np.cos(__lowerCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _snake_case : Any = -z * 4 _snake_case : Union[str, Any] = np.array([np.cos(__lowerCAmelCase ), -np.sin(__lowerCAmelCase ), 0.0] ) _snake_case : List[str] = np.cross(__lowerCAmelCase , __lowerCAmelCase ) origins.append(__lowerCAmelCase ) xs.append(__lowerCAmelCase ) ys.append(__lowerCAmelCase ) zs.append(__lowerCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , width=__lowerCAmelCase , height=__lowerCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCAmelCase )) , )
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
import argparse import copy def A__( __lowerCAmelCase ): _snake_case : Any = {} with open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _snake_case : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) _snake_case : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _snake_case : List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) _snake_case : Union[str, Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def A__( __lowerCAmelCase , __lowerCAmelCase ): with open(SCREAMING_SNAKE_CASE_ ) as f: _snake_case : Optional[Any] = f.read(1 ) _snake_case : Any = start_node _snake_case : Dict = [] _snake_case : Tuple = start_node _snake_case : Dict = 0 while visiting not in first_solution: _snake_case : List[Any] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE_ ) and k[0] not in first_solution: _snake_case : Dict = k[1] _snake_case : Tuple = k[0] first_solution.append(SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE_ ) _snake_case : int = best_node first_solution.append(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _snake_case : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : int = [] for n in solution[1:-1]: _snake_case : List[str] = solution.index(SCREAMING_SNAKE_CASE_ ) for kn in solution[1:-1]: _snake_case : Optional[Any] = solution.index(SCREAMING_SNAKE_CASE_ ) if n == kn: continue _snake_case : str = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) _snake_case : Tuple = kn _snake_case : Union[str, Any] = n _snake_case : Optional[Any] = 0 for k in _tmp[:-1]: _snake_case : Optional[Any] = _tmp[_tmp.index(SCREAMING_SNAKE_CASE_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _snake_case : Optional[int] = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _snake_case : Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = 1 _snake_case : int = first_solution _snake_case : Optional[Any] = [] _snake_case : int = distance_of_first_solution _snake_case : int = solution while count <= iters: _snake_case : str = find_neighborhood(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case : int = 0 _snake_case : Dict = neighborhood[index_of_best_solution] _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 _snake_case : Dict = False while not found: _snake_case : List[str] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): if best_solution[i] != solution[i]: _snake_case : Dict = best_solution[i] _snake_case : Optional[Any] = solution[i] break _snake_case : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _snake_case : Optional[Any] = True _snake_case : Any = best_solution[:-1] _snake_case : Optional[int] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _snake_case : Dict = cost _snake_case : Dict = solution else: _snake_case : List[Any] = index_of_best_solution + 1 _snake_case : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE_ ) >= size: tabu_list.pop(0 ) _snake_case : Union[str, Any] = count + 1 return best_solution_ever, best_cost def A__( __lowerCAmelCase=None ): _snake_case : int = generate_neighbours(args.File ) _snake_case : Dict = generate_first_solution( args.File , SCREAMING_SNAKE_CASE_ ) _snake_case : str = tabu_search( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowercase_ : Tuple = TypeVar('''KEY''') lowercase_ : Union[str, Any] = TypeVar('''VAL''') @dataclass(frozen=a_ , slots=a_ ) class lowercase ( Generic[KEY, VAL] ): """simple docstring""" _UpperCamelCase : List[Any] = 42 _UpperCamelCase : Optional[int] = 42 class lowercase ( _Item ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __bool__( self : Any ): '''simple docstring''' return False lowercase_ : Dict = _DeletedItem() class lowercase ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : int = 8 , lowerCamelCase_ : float = 0.75 ): '''simple docstring''' _snake_case : List[Any] = initial_block_size _snake_case : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _snake_case : List[str] = capacity_factor _snake_case : str = 0 def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : KEY ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : int ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : KEY , lowerCamelCase_ : VAL ): '''simple docstring''' _snake_case : Optional[Any] = self._buckets[ind] if not stored: _snake_case : Union[str, Any] = _Item(lowerCamelCase_ , lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: _snake_case : Any = _Item(lowerCamelCase_ , lowerCamelCase_ ) return True else: return False def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False _snake_case : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __UpperCAmelCase ( self : str , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Any = self._buckets _snake_case : List[str] = [None] * new_size _snake_case : Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : KEY ): '''simple docstring''' _snake_case : str = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind _snake_case : int = self._get_next_ind(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : KEY , lowerCamelCase_ : VAL ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): break def __setitem__( self : List[Any] , lowerCamelCase_ : KEY , lowerCamelCase_ : VAL ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_ , lowerCamelCase_ ) def __delitem__( self : List[str] , lowerCamelCase_ : KEY ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): _snake_case : Optional[int] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: _snake_case : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[Any] , lowerCamelCase_ : KEY ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): _snake_case : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__( self : int ): '''simple docstring''' return self._len def __iter__( self : Union[str, Any] ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : List[str] ): '''simple docstring''' _snake_case : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
import requests def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = {'Content-Type': 'application/json'} _snake_case : int = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase ) if response.status_code != 2_00: _snake_case : List[Any] = ( 'Request to slack returned an error ' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if index == number_of_items: return 0 _snake_case : Dict = 0 _snake_case : List[str] = 0 _snake_case : List[str] = knapsack(__snake_case , __snake_case , __snake_case , __snake_case , index + 1 ) if weights[index] <= max_weight: _snake_case : Optional[Any] = values[index] + knapsack( __snake_case , __snake_case , __snake_case , max_weight - weights[index] , index + 1 ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A__( __lowerCAmelCase ): _snake_case : List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def A__( __lowerCAmelCase ): _snake_case , _snake_case : List[Any] = emb.weight.shape _snake_case : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _snake_case : str = emb.weight.data return lin_layer def A__( __lowerCAmelCase ): _snake_case : str = torch.load(lowerCAmelCase__ , map_location='cpu' ) _snake_case : Optional[Any] = Namespace(**checkpoint['cfg']['model'] ) _snake_case : Optional[Any] = checkpoint['model'] remove_ignore_keys_(lowerCAmelCase__ ) _snake_case : Optional[int] = state_dict['decoder.embed_tokens.weight'].shape[0] _snake_case : Optional[Any] = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} _snake_case : Optional[Any] = XGLMConfig( vocab_size=lowerCAmelCase__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case : Tuple = XGLMForCausalLM(lowerCAmelCase__ ) _snake_case : str = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) print(lowerCAmelCase__ ) _snake_case : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : Optional[int] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase_ : Any = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase_ : Tuple = concatenate_datasets lowercase_ : Any = DownloadConfig lowercase_ : int = DownloadManager lowercase_ : Union[str, Any] = DownloadMode lowercase_ : Optional[int] = DownloadConfig lowercase_ : List[str] = DownloadMode lowercase_ : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowercase : """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' raise NotImplementedError() def __UpperCAmelCase ( self : Any ): '''simple docstring''' raise NotImplementedError() class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple = False , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = tokenizer _snake_case : Optional[int] = skip_prompt _snake_case : Tuple = decode_kwargs # variables used in the streaming process _snake_case : Dict = [] _snake_case : Dict = 0 _snake_case : Optional[Any] = True def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[str] ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: _snake_case : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _snake_case : Dict = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _snake_case : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): _snake_case : Tuple = text[self.print_len :] _snake_case : str = [] _snake_case : Optional[int] = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _snake_case : Union[str, Any] = text[self.print_len :] self.print_len += len(lowerCamelCase_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _snake_case : str = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(lowerCamelCase_ ) self.on_finalized_text(lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' if len(self.token_cache ) > 0: _snake_case : Any = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _snake_case : Union[str, Any] = text[self.print_len :] _snake_case : int = [] _snake_case : str = 0 else: _snake_case : Any = '' _snake_case : Optional[int] = True self.on_finalized_text(lowerCamelCase_ , stream_end=lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : int = False ): '''simple docstring''' print(lowerCamelCase_ , flush=lowerCamelCase_ , end='' if not stream_end else None ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : List[str] ): '''simple docstring''' if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False class lowercase ( a_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] = False , lowerCamelCase_ : List[str] = None , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' super().__init__(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Optional[int] = Queue() _snake_case : Union[str, Any] = None _snake_case : int = timeout def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : int = False ): '''simple docstring''' self.text_queue.put(lowerCamelCase_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Dict ): '''simple docstring''' return self def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[int] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _snake_case : Optional[int] = TOKENIZER_CLASSES else: _snake_case : Optional[int] = {tokenizer_name: getattr(_A , tokenizer_name + 'Fast' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _snake_case : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] _snake_case : List[Any] = True if checkpoint_name is None: _snake_case : Dict = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _snake_case : List[str] = tokenizer_class.from_pretrained(_A , force_download=_A ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Union[str, Any] = checkpoint.split('/' ) _snake_case : Optional[Any] = os.path.join(_A , _A ) elif add_prefix: _snake_case : List[Any] = checkpoint _snake_case : List[Any] = dump_path else: _snake_case : Optional[Any] = None _snake_case : Any = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Any = file_path.split(_A )[-1][0] if next_char == "/": _snake_case : str = os.path.join(_A , _A ) _snake_case : List[str] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _snake_case : Tuple = tokenizer.save_pretrained( _A , legacy_format=_A , filename_prefix=_A ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(_A ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowercase_ : str = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _A , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = FunnelTokenizer _UpperCamelCase : Tuple = FunnelTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = True def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().setUp() _snake_case : Any = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : Tuple ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __UpperCAmelCase ( self : str , **lowerCamelCase_ : str ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Optional[Any] = 'UNwant\u00E9d,running' _snake_case : List[Any] = 'unwanted, running' return input_text, output_text def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.tokenizer_class(self.vocab_file ) _snake_case : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(UpperCamelCase__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: _snake_case : Union[str, Any] = tokenizer('UNwant\u00E9d,running' ) _snake_case : str = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) _snake_case : Any = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=18 , lowerCamelCase_ : Optional[Any]=30 , lowerCamelCase_ : str=4_00 , lowerCamelCase_ : int=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Tuple=True , ): '''simple docstring''' _snake_case : Dict = size if size is not None else {'height': 18, 'width': 18} _snake_case : Union[str, Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Any = num_channels _snake_case : Tuple = image_size _snake_case : Optional[Any] = min_resolution _snake_case : List[str] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Dict = size _snake_case : str = apply_ocr def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase ( snake_case__, unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'apply_ocr' ) ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' pass def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _A ) self.assertIsInstance(encoding.boxes , _A ) # Test batched _snake_case : Optional[Any] = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case : int = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input _snake_case : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _snake_case : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = LayoutLMvaImageProcessor() from datasets import load_dataset _snake_case : Tuple = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) _snake_case : str = Image.open(ds[0]['file'] ).convert('RGB' ) _snake_case : Optional[int] = image_processing(_A , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _snake_case : Optional[int] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _snake_case : Optional[int] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _A ) self.assertListEqual(encoding.boxes , _A ) # with apply_OCR = False _snake_case : str = LayoutLMvaImageProcessor(apply_ocr=_A ) _snake_case : int = image_processing(_A , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : List[str] = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "gpt_neo" _UpperCamelCase : List[str] = ["past_key_values"] _UpperCamelCase : Optional[Any] = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , lowerCamelCase_ : Dict=5_02_57 , lowerCamelCase_ : List[Any]=20_48 , lowerCamelCase_ : Union[str, Any]=20_48 , lowerCamelCase_ : List[Any]=24 , lowerCamelCase_ : Union[str, Any]=[[["global", "local"], 12]] , lowerCamelCase_ : Tuple=16 , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Tuple=2_56 , lowerCamelCase_ : List[Any]="gelu_new" , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Union[str, Any]=1e-5 , lowerCamelCase_ : Dict=0.02 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=5_02_56 , lowerCamelCase_ : int=5_02_56 , **lowerCamelCase_ : Any , ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Any = max_position_embeddings _snake_case : Any = hidden_size _snake_case : Union[str, Any] = num_layers _snake_case : Union[str, Any] = num_heads _snake_case : Any = intermediate_size _snake_case : Union[str, Any] = window_size _snake_case : str = activation_function _snake_case : List[str] = resid_dropout _snake_case : Union[str, Any] = embed_dropout _snake_case : List[Any] = attention_dropout _snake_case : Dict = classifier_dropout _snake_case : Tuple = layer_norm_epsilon _snake_case : Tuple = initializer_range _snake_case : List[Any] = use_cache _snake_case : Optional[int] = bos_token_id _snake_case : Any = eos_token_id _snake_case : List[Any] = attention_types _snake_case : Tuple = self.expand_attention_types_params(__a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): import torch _snake_case : List[Any] = input.size() _snake_case : Tuple = len(__snake_case ) _snake_case : List[Any] = shape[dimension] _snake_case : List[Any] = torch.arange(0 , __snake_case , __snake_case ) _snake_case : Dict = torch.div(sizedim - size , __snake_case , rounding_mode='floor' ) + 1 _snake_case : int = torch.arange(__snake_case ) + low_indices[:min_length][:, None] _snake_case : Optional[Any] = [slice(__snake_case )] * rank _snake_case : Any = indices _snake_case : Optional[Any] = input[s] _snake_case : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__snake_case ) def A__( __lowerCAmelCase , __lowerCAmelCase ): import torch _snake_case : int = torch.arange(1 , __snake_case ) _snake_case : Optional[Any] = torch.remainder(__snake_case , __snake_case ) _snake_case : Any = remainders == 0 _snake_case : Tuple = candidates[divisor_indices] _snake_case : List[Any] = torch.max(__snake_case ) return largest_divisor, torch.div(__snake_case , __snake_case , rounding_mode='floor' ) class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) _snake_case : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case : str = {0: 'batch', 1: 'sequence'} return common_inputs @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return self._config.num_heads def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : Union[str, Any] = False , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' _snake_case : List[Any] = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() _snake_case : Any = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case : Optional[Any] = seqlen + 2 _snake_case : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case : List[str] = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] _snake_case : Optional[Any] = common_inputs['attention_mask'] if self.use_past: _snake_case : List[str] = ordered_inputs['attention_mask'].dtype _snake_case : Any = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return 13
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
def A__( __lowerCAmelCase ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True _snake_case : Optional[int] = 4 _snake_case : Tuple = (1 << p) - 1 for _ in range(p - 2 ): _snake_case : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Any = '''Hello world! cécé herlolip''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = FairseqRobertaModel.from_pretrained(A__ ) roberta.eval() # disable dropout _snake_case : Dict = roberta.model.encoder.sentence_encoder _snake_case : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: _snake_case : str = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , A__ ) _snake_case : Optional[int] = XLMRobertaXLForSequenceClassification(A__ ) if classification_head else XLMRobertaXLForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings _snake_case : List[str] = roberta_sent_encoder.embed_tokens.weight _snake_case : Optional[int] = roberta_sent_encoder.embed_positions.weight _snake_case : Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _snake_case : Optional[int] = roberta_sent_encoder.layer_norm.weight _snake_case : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _snake_case : int = model.roberta.encoder.layer[i] _snake_case : Any = roberta_sent_encoder.layers[i] _snake_case : Any = layer.attention _snake_case : Tuple = roberta_layer.self_attn_layer_norm.weight _snake_case : Optional[Any] = roberta_layer.self_attn_layer_norm.bias # self attention _snake_case : Dict = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _snake_case : int = roberta_layer.self_attn.q_proj.weight _snake_case : List[str] = roberta_layer.self_attn.q_proj.bias _snake_case : List[Any] = roberta_layer.self_attn.k_proj.weight _snake_case : str = roberta_layer.self_attn.k_proj.bias _snake_case : List[str] = roberta_layer.self_attn.v_proj.weight _snake_case : Dict = roberta_layer.self_attn.v_proj.bias # self-attention output _snake_case : Optional[Any] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _snake_case : int = roberta_layer.self_attn.out_proj.weight _snake_case : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _snake_case : Union[str, Any] = roberta_layer.final_layer_norm.weight _snake_case : List[str] = roberta_layer.final_layer_norm.bias # intermediate _snake_case : Optional[Any] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _snake_case : Optional[int] = roberta_layer.fca.weight _snake_case : Dict = roberta_layer.fca.bias # output _snake_case : Optional[int] = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _snake_case : Tuple = roberta_layer.fca.weight _snake_case : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: _snake_case : Tuple = roberta.model.classification_heads['mnli'].dense.weight _snake_case : Union[str, Any] = roberta.model.classification_heads['mnli'].dense.bias _snake_case : int = roberta.model.classification_heads['mnli'].out_proj.weight _snake_case : Union[str, Any] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head _snake_case : Union[str, Any] = roberta.model.encoder.lm_head.dense.weight _snake_case : str = roberta.model.encoder.lm_head.dense.bias _snake_case : Any = roberta.model.encoder.lm_head.layer_norm.weight _snake_case : Any = roberta.model.encoder.lm_head.layer_norm.bias _snake_case : Tuple = roberta.model.encoder.lm_head.weight _snake_case : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _snake_case : int = roberta.encode(A__ ).unsqueeze(0 ) # batch of size 1 _snake_case : List[Any] = model(A__ )[0] if classification_head: _snake_case : int = roberta.model.classification_heads['mnli'](roberta.extract_features(A__ ) ) else: _snake_case : List[Any] = roberta.model(A__ )[0] print(our_output.shape , their_output.shape ) _snake_case : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _snake_case : List[Any] = torch.allclose(A__ , A__ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowercase_ : Optional[int] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : int = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) _snake_case : List[str] = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _snake_case : str = model(lowerCamelCase_ )["last_hidden_state"] _snake_case : List[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice. _snake_case : Optional[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
from numpy import exp, pi, sqrt def A__( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : List[Any] = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase ( __lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Union[str, Any] = '''speech_to_text''' _UpperCamelCase : List[str] = ['''past_key_values'''] _UpperCamelCase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , lowerCamelCase_ : Tuple=1_00_00 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Optional[Any]=20_48 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : str=6 , lowerCamelCase_ : List[Any]=20_48 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Union[str, Any]="relu" , lowerCamelCase_ : Any=2_56 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : int=True , lowerCamelCase_ : str=1 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=60_00 , lowerCamelCase_ : Any=10_24 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Union[str, Any]=(5, 5) , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : Union[str, Any]=80 , lowerCamelCase_ : str=1 , **lowerCamelCase_ : Dict , ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Union[str, Any] = d_model _snake_case : List[str] = encoder_ffn_dim _snake_case : List[Any] = encoder_layers _snake_case : Union[str, Any] = encoder_attention_heads _snake_case : Any = decoder_ffn_dim _snake_case : Dict = decoder_layers _snake_case : Tuple = decoder_attention_heads _snake_case : int = dropout _snake_case : Optional[Any] = attention_dropout _snake_case : Optional[int] = activation_dropout _snake_case : Optional[Any] = activation_function _snake_case : int = init_std _snake_case : Dict = encoder_layerdrop _snake_case : Optional[Any] = decoder_layerdrop _snake_case : Dict = use_cache _snake_case : Any = encoder_layers _snake_case : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = max_source_positions _snake_case : List[Any] = max_target_positions _snake_case : int = num_conv_layers _snake_case : Any = list(lowerCAmelCase_ ) _snake_case : str = conv_channels _snake_case : str = input_feat_per_channel _snake_case : str = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[Any] = logging.get_logger() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": _snake_case : int = timm.create_model('levit_128s' , pretrained=__lowerCAmelCase ) else: _snake_case : List[Any] = timm.create_model('levit_128' , pretrained=__lowerCAmelCase ) if hidden_sizes == 1_92: _snake_case : Union[str, Any] = timm.create_model('levit_192' , pretrained=__lowerCAmelCase ) if hidden_sizes == 2_56: _snake_case : Optional[int] = timm.create_model('levit_256' , pretrained=__lowerCAmelCase ) if hidden_sizes == 3_84: _snake_case : int = timm.create_model('levit_384' , pretrained=__lowerCAmelCase ) from_model.eval() _snake_case : List[Any] = LevitForImageClassificationWithTeacher(__lowerCAmelCase ).eval() _snake_case : Optional[Any] = OrderedDict() _snake_case : Any = from_model.state_dict() _snake_case : int = list(from_model.state_dict().keys() ) _snake_case : Union[str, Any] = list(our_model.state_dict().keys() ) print(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for i in range(len(__lowerCAmelCase ) ): _snake_case : Tuple = weights[og_keys[i]] our_model.load_state_dict(__lowerCAmelCase ) _snake_case : Union[str, Any] = torch.randn((2, 3, 2_24, 2_24) ) _snake_case : Tuple = from_model(__lowerCAmelCase ) _snake_case : Any = our_model(__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ), "The model logits don't match the original one." _snake_case : Optional[Any] = name print(__lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _snake_case : str = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def A__( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ): _snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' _snake_case : List[Any] = 10_00 _snake_case : Dict = (1, num_labels) _snake_case : Dict = '''huggingface/label-files''' _snake_case : Optional[Any] = num_labels _snake_case : int = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Union[str, Any] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : Dict = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} _snake_case : Optional[int] = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) _snake_case : Union[str, Any] = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } _snake_case : List[str] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowercase_ : Dict = parser.parse_args() lowercase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase_ : int = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
from collections.abc import Callable import numpy as np def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) _snake_case : Tuple = np.zeros((n + 1,) ) _snake_case : int = ya _snake_case : List[Any] = xa for k in range(__a ): _snake_case : Tuple = y[k] + step_size * ode_func(__a , y[k] ) _snake_case : Dict = y[k] + ( (step_size / 2) * (ode_func(__a , y[k] ) + ode_func(x + step_size , __a )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if height >= 1: move_tower(height - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) move_disk(__lowerCAmelCase , __lowerCAmelCase ) move_tower(height - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): print('moving disk from' , __lowerCAmelCase , 'to' , __lowerCAmelCase ) def A__( ): _snake_case : Dict = int(input('Height of hanoi: ' ).strip() ) move_tower(__lowerCAmelCase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
from datetime import datetime import matplotlib.pyplot as plt import torch def A__( __lowerCAmelCase ) -> Dict: for param in module.parameters(): _snake_case : List[str] = False def A__( ) -> List[str]: _snake_case : Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _snake_case : Optional[int] = '''mps''' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A__( __lowerCAmelCase ) -> str: _snake_case : Optional[int] = plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def A__( ) -> List[Any]: _snake_case : Any = datetime.now() _snake_case : Dict = current_time.strftime('%H:%M:%S' ) return timestamp
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
from datetime import datetime as dt import os from github import Github lowercase_ : List[Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def A__( ): _snake_case : Union[str, Any] = Github(os.environ['GITHUB_TOKEN'] ) _snake_case : Tuple = g.get_repo('huggingface/transformers' ) _snake_case : Optional[Any] = repo.get_issues(state='open' ) for issue in open_issues: _snake_case : Dict = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=_lowerCAmelCase ) _snake_case : Dict = comments[0] if len(_lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
def A__( __lowerCAmelCase ): return "".join([hex(lowerCamelCase_ )[2:].zfill(2 ).upper() for byte in list(lowerCamelCase_ )] ) def A__( __lowerCAmelCase ): if (len(lowerCamelCase_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCamelCase_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCamelCase_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any]=13 , lowerCamelCase_ : Any=64 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : List[str]=5 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : Dict=37 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : int=[1, 16, 4, 4] , lowerCamelCase_ : int=None , ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = batch_size _snake_case : Optional[Any] = image_size _snake_case : List[str] = patch_size _snake_case : Any = num_channels _snake_case : List[str] = is_training _snake_case : str = use_labels _snake_case : Optional[Any] = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : List[str] = intermediate_size _snake_case : str = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : List[Any] = type_sequence_label_size _snake_case : Tuple = initializer_range _snake_case : Union[str, Any] = scope _snake_case : str = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _snake_case : List[str] = (self.image_size // 32) ** 2 _snake_case : List[str] = num_patches + 1 def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Tuple = None if self.use_labels: _snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : int = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_lowercase , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : List[str] = ViTHybridModel(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : int = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.type_sequence_label_size _snake_case : str = ViTHybridForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Any = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : int = config_and_inputs _snake_case : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _UpperCamelCase : Tuple = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Dict = False _UpperCamelCase : int = False def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = ViTHybridModelTester(self ) _snake_case : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(_lowercase ) _snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[str] = [*signature.parameters.keys()] _snake_case : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Optional[Any] = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: _snake_case : int = model_class(config=_lowercase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _snake_case : Tuple = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = ViTHybridModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def A__( ): _snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : int ): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _lowercase ) _snake_case : Dict = self.default_image_processor _snake_case : int = prepare_img() _snake_case : Any = image_processor(images=_lowercase , return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**_lowercase ) # verify the logits _snake_case : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowercase ) _snake_case : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @slow @require_accelerate def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) _snake_case : Any = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) _snake_case : Tuple = prepare_img() _snake_case : Dict = image_processor(images=_lowercase , return_tensors='pt' ) _snake_case : List[str] = model(**_lowercase ) _snake_case : List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes _snake_case : Any = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase ): return int(input_a == input_a == 0 ) def A__( ): print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=13 , lowerCamelCase_ : Optional[Any]=30 , lowerCamelCase_ : Dict=2 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : str=32 , lowerCamelCase_ : List[Any]=5 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Dict=37 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[str]=0.02 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : str = batch_size _snake_case : Tuple = image_size _snake_case : Optional[Any] = patch_size _snake_case : Optional[int] = num_channels _snake_case : Dict = is_training _snake_case : List[str] = use_labels _snake_case : Optional[int] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : List[Any] = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : Any = type_sequence_label_size _snake_case : List[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Union[str, Any] = (image_size // patch_size) ** 2 _snake_case : int = num_patches + 1 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Dict = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, pixel_values def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Any = FlaxViTModel(config=A_ ) _snake_case : Dict = model(A_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _snake_case : Optional[Any] = (self.image_size, self.image_size) _snake_case : str = (self.patch_size, self.patch_size) _snake_case : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : List[str] = self.type_sequence_label_size _snake_case : Optional[Any] = FlaxViTForImageClassification(config=A_ ) _snake_case : Optional[Any] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Tuple = 1 _snake_case : int = FlaxViTForImageClassification(A_ ) _snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : List[str] = model(A_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = config_and_inputs _snake_case : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = FlaxViTModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = model_class(A_ ) _snake_case : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[int] = [*signature.parameters.keys()] _snake_case : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Union[str, Any] = self._prepare_for_class(A_ , A_ ) _snake_case : Union[str, Any] = model_class(A_ ) @jax.jit def model_jitted(lowerCamelCase_ : str , **lowerCamelCase_ : int ): return model(pixel_values=A_ , **A_ ) with self.subTest('JIT Enabled' ): _snake_case : Optional[Any] = model_jitted(**A_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _snake_case : Union[str, Any] = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case : Optional[int] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _snake_case : Any = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(A_ )
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ : int = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class lowercase ( __lowercase ): """simple docstring""" def __init__( self : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Any=None ): '''simple docstring''' _snake_case : Dict = {} if top_k is not None: _snake_case : Optional[int] = top_k return {}, {}, postprocess_params def __call__( self : Tuple , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : int ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : int = load_image(lowerCamelCase_ ) _snake_case : str = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) return model_inputs def __UpperCAmelCase ( self : int , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Any = self.model(**lowerCamelCase_ ) return model_outputs def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: _snake_case : Dict = self.model.config.num_labels if self.framework == "pt": _snake_case : Tuple = model_outputs.logits.softmax(-1 )[0] _snake_case : int = probs.topk(lowerCamelCase_ ) elif self.framework == "tf": _snake_case : Optional[int] = stable_softmax(model_outputs.logits , axis=-1 )[0] _snake_case : Optional[Any] = tf.math.top_k(lowerCamelCase_ , k=lowerCamelCase_ ) _snake_case : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) _snake_case : int = scores.tolist() _snake_case : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase_ , lowerCamelCase_ )]
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase ( a_ ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__( __UpperCamelCase , split=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , num_proc=__UpperCamelCase , **__UpperCamelCase , ) _snake_case : Union[str, Any] = path_or_paths if isinstance(__UpperCamelCase , __UpperCamelCase ) else {self.split: path_or_paths} _snake_case : Union[str, Any] = Text( cache_dir=__UpperCamelCase , data_files=__UpperCamelCase , features=__UpperCamelCase , **__UpperCamelCase , ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.streaming: _snake_case : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : str = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=__UpperCamelCase , download_mode=__UpperCamelCase , verification_mode=__UpperCamelCase , base_path=__UpperCamelCase , num_proc=self.num_proc , ) _snake_case : str = self.builder.as_dataset( split=self.split , verification_mode=__UpperCamelCase , in_memory=self.keep_in_memory ) return dataset
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import requests lowercase_ : Optional[int] = '''''' # <-- Put your OpenWeatherMap appid here! lowercase_ : Optional[int] = '''https://api.openweathermap.org/data/2.5/''' def A__( __lowerCAmelCase = "Chicago" , __lowerCAmelCase = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def A__( __lowerCAmelCase = "Kolkata, India" , __lowerCAmelCase = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def A__( __lowerCAmelCase = 55.68 , __lowerCAmelCase = 12.57 , __lowerCAmelCase = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase_ : List[str] = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A__( __lowerCAmelCase , __lowerCAmelCase ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ('weight',) _snake_case : str = torch.permute(lowerCAmelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase__ ): # linear layer _snake_case : Dict = flax_key_tuple[:-1] + ('weight',) _snake_case : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : Optional[int] = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if "metadata" in layer: _snake_case : List[Any] = layer.split('metadata' ) _snake_case : Any = ''.join(split_layer[0] )[:-1] _snake_case : Any = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: _snake_case : int = layer.split('kvstore' ) _snake_case : Dict = ''.join(split_layer[0] )[:-1] _snake_case : Union[str, Any] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: _snake_case : List[str] = layer.split('/' ) _snake_case : int = '/'.join(split_layer[:-1] ) _snake_case : List[str] = (split_layer[-1],) if "kvstore/path" in layer: _snake_case : Dict = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _snake_case : str = 'file' else: _snake_case : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = rename_keys(lowerCAmelCase__ ) _snake_case : Any = {} for k, v in current_block.items(): _snake_case : Any = v _snake_case : Dict = new_current_block torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ): _snake_case : str = convert_file_size_to_int(lowerCAmelCase__ ) _snake_case : Tuple = [] _snake_case : List[Any] = {} _snake_case : List[Any] = 0 _snake_case : int = 0 os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: _snake_case : Optional[Any] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] _snake_case : Dict = flatten_dict(lowerCAmelCase__ , sep='/' ) _snake_case : int = {} for layer in checkpoint_info.keys(): _snake_case : Union[str, Any] = get_key_and_tensorstore_dict( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if curr_real_layer_name in all_layers: _snake_case : Any = content else: _snake_case : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case : Union[str, Any] = torch.tensor(lowerCAmelCase__ ) _snake_case : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case : Optional[int] = rename_base_flax_keys(tuple(key.split('/' ) ) , lowerCAmelCase__ ) _snake_case : Optional[Any] = '/'.join(lowerCAmelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case : List[Any] = os.path.join( lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case : Union[str, Any] = {} _snake_case : str = 0 _snake_case : Optional[int] = raw_weights.to(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case : List[str] = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case : Union[str, Any] = {} _snake_case : Optional[int] = {} for idx, shard in enumerate(lowerCAmelCase__ ): _snake_case : int = weights_name.replace( '.bin' , F'''-{idx+1:05d}-of-{len(lowerCAmelCase__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _snake_case : str = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) _snake_case : Optional[int] = shard for key in shard: _snake_case : Optional[Any] = shard_file # Add the metadata _snake_case : Optional[int] = {'total_size': total_size} _snake_case : int = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' ) as f: _snake_case : Union[str, Any] = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n' f.write(lowerCAmelCase__ ) return metadata, index if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) lowercase_ : Union[str, Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A__( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case : Optional[Any] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) _snake_case : int = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) _snake_case : Any = TaTokenizer.from_pretrained('t5-small' ) _snake_case : Dict = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' _snake_case : int = tokenizer(lowerCAmelCase__ , return_tensors='pt' ).input_ids _snake_case : List[Any] = model.generate(lowerCAmelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__( __lowerCAmelCase ): _snake_case : List[str] = int(number**0.5 ) return number == sq * sq def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _snake_case : str = x_den * y_den * z_den _snake_case : Optional[Any] = gcd(__lowerCAmelCase , __lowerCAmelCase ) top //= hcf bottom //= hcf return top, bottom def A__( __lowerCAmelCase = 35 ): _snake_case : Optional[Any] = set() _snake_case : int = 42 _snake_case : Optional[int] = Fraction(0 ) _snake_case : Optional[Any] = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _snake_case : str = x_num * y_den + x_den * y_num _snake_case : Dict = x_den * y_den _snake_case : Optional[Any] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _snake_case : str = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) # n=2 _snake_case : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _snake_case : Dict = x_den * x_den * y_den * y_den if is_sq(__lowerCAmelCase ) and is_sq(__lowerCAmelCase ): _snake_case : List[Any] = int(sqrt(__lowerCAmelCase ) ) _snake_case : Tuple = int(sqrt(__lowerCAmelCase ) ) _snake_case : Union[str, Any] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _snake_case : int = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) # n=-1 _snake_case : List[Any] = x_num * y_num _snake_case : Optional[int] = x_den * y_num + x_num * y_den _snake_case : List[str] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _snake_case : List[Any] = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) # n=2 _snake_case : List[Any] = x_num * x_num * y_num * y_num _snake_case : Dict = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCAmelCase ) and is_sq(__lowerCAmelCase ): _snake_case : Optional[int] = int(sqrt(__lowerCAmelCase ) ) _snake_case : int = int(sqrt(__lowerCAmelCase ) ) _snake_case : List[str] = gcd(__lowerCAmelCase , __lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _snake_case : Dict = add_three( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) unique_s.add(__lowerCAmelCase ) for num, den in unique_s: total += Fraction(__lowerCAmelCase , __lowerCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : str = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowercase_ : int = None lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase_ : Tuple = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 lowercase_ : Dict = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class lowercase ( __UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = ["input_ids", "attention_mask"] _UpperCamelCase : List[str] = TaTokenizer _UpperCamelCase : str = [] def __init__( self : str , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : str="</s>" , lowerCamelCase_ : List[str]="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : Optional[int]=1_00 , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Any , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _snake_case : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _snake_case : List[Any] = len(set(filter(lambda lowerCamelCase_ : bool('extra_id_' in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case : str = vocab_file _snake_case : int = False if not self.vocab_file else True _snake_case : int = extra_ids @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _snake_case : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowerCAmelCase_ , ) return max_model_length def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _snake_case : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCAmelCase ( self : Any ): '''simple docstring''' return list( set(filter(lambda lowerCamelCase_ : bool(re.search(R'<extra_id_\d+>' , lowerCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()]
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _UpperCamelCase ): """simple docstring""" _UpperCamelCase : str = ["image_processor", "tokenizer"] _UpperCamelCase : int = "Pix2StructImageProcessor" _UpperCamelCase : int = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : List[Any] = False super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Any , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : List[Any] = True , lowerCamelCase_ : Tuple = False , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : int = None , lowerCamelCase_ : Optional[Any] = 20_48 , lowerCamelCase_ : Any = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Any = False , lowerCamelCase_ : Any = False , lowerCamelCase_ : Optional[Any] = False , lowerCamelCase_ : str = False , lowerCamelCase_ : int = False , lowerCamelCase_ : str = True , lowerCamelCase_ : Optional[Any] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _snake_case : int = self.tokenizer _snake_case : List[str] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _snake_case : Optional[Any] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , max_patches=_UpperCAmelCase , **_UpperCAmelCase ) else: # add pixel_values and bbox _snake_case : Dict = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , max_patches=_UpperCAmelCase , header_text=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _snake_case : Dict = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) if "attention_mask" in text_encoding: _snake_case : List[str] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _snake_case : Dict = text_encoding.pop('input_ids' ) else: _snake_case : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def __UpperCAmelCase ( self : int , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def __UpperCAmelCase ( self : Dict , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Any ): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from bisect import bisect from itertools import accumulate def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = sorted(zip(UpperCAmelCase__ , UpperCAmelCase__ ) , key=lambda __lowerCAmelCase : x[0] / x[1] , reverse=UpperCAmelCase__ ) _snake_case , _snake_case : Optional[int] = [i[0] for i in r], [i[1] for i in r] _snake_case : Any = list(accumulate(UpperCAmelCase__ ) ) _snake_case : Union[str, Any] = bisect(UpperCAmelCase__ , UpperCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if height >= 1: move_tower(height - 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) move_disk(UpperCAmelCase__ , UpperCAmelCase__ ) move_tower(height - 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def A__( __lowerCAmelCase , __lowerCAmelCase ): print('moving disk from' , UpperCAmelCase__ , 'to' , UpperCAmelCase__ ) def A__( ): _snake_case : List[str] = int(input('Height of hanoi: ' ).strip() ) move_tower(UpperCAmelCase__ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : List[str] = logging.get_logger(__name__) UpperCamelCase_ : List[Any] = '''▁''' UpperCamelCase_ : List[str] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} UpperCamelCase_ : Union[str, Any] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } UpperCamelCase_ : Union[str, Any] = {'''vinai/bartpho-syllable''': 1024} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]="<s>" , lowerCamelCase_ : int="</s>" , lowerCamelCase_ : Union[str, Any]="</s>" , lowerCamelCase_ : Optional[int]="<s>" , lowerCamelCase_ : int="<unk>" , lowerCamelCase_ : Union[str, Any]="<pad>" , lowerCamelCase_ : Optional[int]="<mask>" , lowerCamelCase_ : Union[str, Any] = None , **lowerCamelCase_ : List[str] , ): '''simple docstring''' _snake_case : List[str] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token _snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _snake_case : Optional[int] = vocab_file _snake_case : Optional[Any] = monolingual_vocab_file _snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _snake_case : Dict = {} _snake_case : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: _snake_case : Optional[Any] = cnt cnt += 1 with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): _snake_case : Union[str, Any] = line.strip().split()[0] _snake_case : Dict = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: _snake_case : Union[str, Any] = len(self.fairseq_tokens_to_ids ) _snake_case : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ): '''simple docstring''' _snake_case : List[str] = self.__dict__.copy() _snake_case : Optional[Any] = None _snake_case : int = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case : int = {} _snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Tuple = [self.cls_token_id] _snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : int = None , lowerCamelCase_ : int = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : str = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : str , lowerCamelCase_ : int ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : List[str] = ''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ' ' ).strip() return out_string def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : str = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , 'wb' ) as fi: _snake_case : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ : Union[str, Any] = None lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ : Dict = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ : Any = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } lowercase_ : Optional[Any] = """▁""" class lowercase ( __UpperCAmelCase ): """simple docstring""" _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : str = ["input_ids", "attention_mask"] _UpperCamelCase : Any = BarthezTokenizer def __init__( self : Union[str, Any] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : int="</s>" , lowerCamelCase_ : Optional[Any]="</s>" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : Union[str, Any]="<unk>" , lowerCamelCase_ : Optional[Any]="<pad>" , lowerCamelCase_ : str="<mask>" , **lowerCamelCase_ : Tuple , ): '''simple docstring''' _snake_case : List[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) _snake_case : int = vocab_file _snake_case : str = False if not self.vocab_file else True def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] _snake_case : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Any = None ): '''simple docstring''' _snake_case : Any = [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : List[str] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Any = ["flax"] def __init__( self : Optional[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Optional[int] = ["flax"] def __init__( self : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Any , *lowerCamelCase_ : int , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = ["flax"] def __init__( self : Tuple , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : str , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Any , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Dict = ["flax"] def __init__( self : List[str] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : int = ["flax"] def __init__( self : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : int , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Any = ["flax"] def __init__( self : Any , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : str , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = ["flax"] def __init__( self : Any , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = ["flax"] def __init__( self : List[str] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : int , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : str = ["flax"] def __init__( self : Union[str, Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = ["flax"] def __init__( self : List[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Optional[int] = ["flax"] def __init__( self : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : int , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : str = ["flax"] def __init__( self : Optional[int] , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['flax'] ) class lowercase ( metaclass=__lowerCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = ["flax"] def __init__( self : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : List[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ['flax'] )
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase_ : int = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def A__( __lowerCAmelCase=None ): if subparsers is not None: _snake_case : int = subparsers.add_parser('tpu-config' , description=_description ) else: _snake_case : Tuple = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _snake_case : Optional[int] = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=snake_case_ , default=snake_case_ , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=snake_case_ , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=snake_case_ , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _snake_case : Any = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=snake_case_ , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def A__( __lowerCAmelCase ): _snake_case : Dict = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(snake_case_ ): _snake_case : str = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _snake_case : int = defaults.command_file if not args.command and defaults.commands is not None: _snake_case : Tuple = defaults.commands if not args.tpu_name: _snake_case : int = defaults.tpu_name if not args.tpu_zone: _snake_case : Tuple = defaults.tpu_zone if args.accelerate_version == "dev": _snake_case : str = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": _snake_case : Any = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , snake_case_ ): _snake_case : Dict = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _snake_case : List[str] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , snake_case_ ): _snake_case : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _snake_case : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command _snake_case : List[Any] = '''; '''.join(snake_case_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _snake_case : int = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {' '.join(snake_case_ )}''' ) return subprocess.run(snake_case_ ) print('Successfully setup pod.' ) def A__( ): _snake_case : Union[str, Any] = tpu_command_parser() _snake_case : Tuple = parser.parse_args() tpu_command_launcher(snake_case_ )
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : str = logging.get_logger(__name__) class lowercase ( lowercase_ ): """simple docstring""" _UpperCamelCase : int = '''encoder-decoder''' _UpperCamelCase : Dict = True def __init__( self : Tuple , **lowerCamelCase_ : List[str] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _snake_case : int = kwargs.pop('encoder' ) _snake_case : Tuple = encoder_config.pop('model_type' ) _snake_case : Union[str, Any] = kwargs.pop('decoder' ) _snake_case : List[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _snake_case : int = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Optional[int] = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[str] = True @classmethod def __UpperCAmelCase ( cls : int , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _snake_case : Optional[Any] = True _snake_case : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = copy.deepcopy(self.__dict__ ) _snake_case : str = self.encoder.to_dict() _snake_case : Dict = self.decoder.to_dict() _snake_case : List[Any] = self.__class__.model_type return output
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase_ : Tuple = logging.get_logger(__name__) lowercase_ : int = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = """perceiver""" def __init__( self : Optional[Any] , lowerCamelCase_ : str=2_56 , lowerCamelCase_ : Optional[int]=12_80 , lowerCamelCase_ : Optional[int]=7_68 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : int=26 , lowerCamelCase_ : Any=8 , lowerCamelCase_ : Union[str, Any]=8 , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[str]="kv" , lowerCamelCase_ : str=1 , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : List[Any]=0.02 , lowerCamelCase_ : Optional[Any]=1e-12 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Any=2_62 , lowerCamelCase_ : List[str]=20_48 , lowerCamelCase_ : Dict=56 , lowerCamelCase_ : Tuple=[3_68, 4_96] , lowerCamelCase_ : int=16 , lowerCamelCase_ : Any=19_20 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : Dict=[1, 16, 2_24, 2_24] , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Optional[int] = num_latents _snake_case : str = d_latents _snake_case : Dict = d_model _snake_case : int = num_blocks _snake_case : str = num_self_attends_per_block _snake_case : Any = num_self_attention_heads _snake_case : int = num_cross_attention_heads _snake_case : str = qk_channels _snake_case : List[Any] = v_channels _snake_case : Dict = cross_attention_shape_for_attention _snake_case : Union[str, Any] = self_attention_widening_factor _snake_case : Tuple = cross_attention_widening_factor _snake_case : str = hidden_act _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : int = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : List[Any] = use_query_residual # masked language modeling attributes _snake_case : int = vocab_size _snake_case : int = max_position_embeddings # image classification attributes _snake_case : Dict = image_size # flow attributes _snake_case : Optional[int] = train_size # multimodal autoencoding attributes _snake_case : Tuple = num_frames _snake_case : int = audio_samples_per_frame _snake_case : List[str] = samples_per_patch _snake_case : Any = output_shape class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return 1e-4 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : int = 40 , ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Tuple = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : List[Any] = preprocessor.num_special_tokens_to_add(lowerCamelCase_ ) _snake_case : List[Any] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence _snake_case : int = [' '.join(['a'] ) * seq_length] * batch_size _snake_case : int = dict(preprocessor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) _snake_case : Union[str, Any] = inputs.pop('input_ids' ) return inputs elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Tuple = compute_effective_axis_dimension(lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) _snake_case : Optional[int] = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = dict(preprocessor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) _snake_case : List[Any] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @require_torch def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _snake_case : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Dict = image_classifier(lowerCamelCase_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase_ ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) _snake_case : Dict = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], ] , ) @require_tf def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Dict = image_classifier(lowerCamelCase_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) _snake_case : Optional[int] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], [ {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, {'score': 0.333, 'label': ANY(lowerCamelCase_ )}, ], ] , ) @slow @require_torch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[str] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Any = image_classifier(lowerCamelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _snake_case : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _snake_case : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : Tuple = image_classifier(lowerCamelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _snake_case : Tuple = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__( __lowerCAmelCase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def A__( __lowerCAmelCase ): # word like '180' or '身高' or '神' for char in word: _snake_case : List[str] = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def A__( __lowerCAmelCase ): _snake_case : List[str] = set() for token in tokens: _snake_case : Optional[Any] = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) _snake_case : Any = list(__lowerCAmelCase ) return word_list def A__( __lowerCAmelCase , __lowerCAmelCase ): if not chinese_word_set: return bert_tokens _snake_case : int = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) _snake_case : Any = bert_tokens _snake_case : Any = 0, len(__lowerCAmelCase ) while start < end: _snake_case : str = True if is_chinese(bert_word[start] ): _snake_case : str = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): _snake_case : Any = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _snake_case : Tuple = '##' + bert_word[j] _snake_case : List[Any] = start + i _snake_case : Any = False break if single_word: start += 1 return bert_word def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): _snake_case : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['cws'] ).cws _snake_case : Dict = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _snake_case : Any = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): _snake_case : Union[str, Any] = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _snake_case : List[Any] = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = [] for id in input_ids: _snake_case : Union[str, Any] = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) _snake_case : str = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": _snake_case : Dict = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def A__( __lowerCAmelCase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: _snake_case : Tuple = f.readlines() _snake_case : Any = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _snake_case : str = LTP(args.ltp ) # faster in GPU device _snake_case : int = BertTokenizer.from_pretrained(args.bert ) _snake_case : List[str] = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _snake_case : int = [json.dumps(__lowerCAmelCase ) + '\n' for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) lowercase_ : List[str] = parser.parse_args() main(args)
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0