code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = "dandelin/vilt-b32-finetuned-vqa" _UpperCamelCase : int = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) _UpperCamelCase : int = "image_qa" _UpperCamelCase : Dict = AutoProcessor _UpperCamelCase : Tuple = AutoModelForVisualQuestionAnswering _UpperCamelCase : str = ["image", "text"] _UpperCamelCase : List[Any] = ["text"] def __init__( self : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : "Image" , lowerCamelCase_ : str ): '''simple docstring''' return self.pre_processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int ): '''simple docstring''' with torch.no_grad(): return self.model(**lowerCamelCase_ ).logits def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _snake_case : Union[str, Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowerCamelCase_ , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _snake_case : str = controlnet_params _snake_case : Optional[Any] = 'bird' _snake_case : List[Any] = jax.device_count() _snake_case : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) _snake_case : List[str] = pipe.prepare_image_inputs([canny_image] * num_samples ) _snake_case : Optional[Any] = jax.random.PRNGKey(0 ) _snake_case : str = jax.random.split(lowerCamelCase_ , jax.device_count() ) _snake_case : int = replicate(lowerCamelCase_ ) _snake_case : Optional[Any] = shard(lowerCamelCase_ ) _snake_case : List[str] = shard(lowerCamelCase_ ) _snake_case : List[str] = pipe( prompt_ids=lowerCamelCase_ , image=lowerCamelCase_ , params=lowerCamelCase_ , prng_seed=lowerCamelCase_ , num_inference_steps=50 , jit=lowerCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : List[str] = images[0, 2_53:2_56, 2_53:2_56, -1] _snake_case : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : int = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _snake_case : str = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowerCamelCase_ , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _snake_case : List[Any] = controlnet_params _snake_case : Optional[int] = 'Chef in the kitchen' _snake_case : str = jax.device_count() _snake_case : str = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) _snake_case : int = pipe.prepare_image_inputs([pose_image] * num_samples ) _snake_case : str = jax.random.PRNGKey(0 ) _snake_case : Any = jax.random.split(lowerCamelCase_ , jax.device_count() ) _snake_case : Union[str, Any] = replicate(lowerCamelCase_ ) _snake_case : Any = shard(lowerCamelCase_ ) _snake_case : Any = shard(lowerCamelCase_ ) _snake_case : Tuple = pipe( prompt_ids=lowerCamelCase_ , image=lowerCamelCase_ , params=lowerCamelCase_ , prng_seed=lowerCamelCase_ , num_inference_steps=50 , jit=lowerCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _snake_case : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : List[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] _snake_case : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Optional[Any] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
from __future__ import annotations from math import pow, sqrt def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowerCAmelCase , 2 ) + pow(__lowerCAmelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' import datasets from .evaluate import evaluate lowercase_ : Union[str, Any] = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase_ : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase_ : Dict = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} _snake_case : Dict = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _snake_case : List[str] = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_ ) return score
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : torch.FloatTensor _UpperCamelCase : torch.FloatTensor class lowercase ( a_ , a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = 1 @register_to_config def __init__( self : Union[str, Any] , lowerCamelCase_ : int = 20_00 , lowerCamelCase_ : float = 0.15 , lowerCamelCase_ : float = 0.01 , lowerCamelCase_ : float = 1348.0 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : int = 1 , ): '''simple docstring''' _snake_case : Dict = sigma_max # setable values _snake_case : Union[str, Any] = None self.set_sigmas(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int] = None ): '''simple docstring''' return sample def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : float = None , lowerCamelCase_ : Union[str, torch.device] = None ): '''simple docstring''' _snake_case : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps _snake_case : Optional[int] = torch.linspace(1 , lowerCamelCase_ , lowerCamelCase_ , device=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : float = None , lowerCamelCase_ : float = None , lowerCamelCase_ : float = None ): '''simple docstring''' _snake_case : Dict = sigma_min if sigma_min is not None else self.config.sigma_min _snake_case : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _snake_case : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _snake_case : Tuple = torch.exp(torch.linspace(math.log(lowerCamelCase_ ) , math.log(lowerCamelCase_ ) , lowerCamelCase_ ) ) _snake_case : List[Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) _snake_case : Tuple = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _snake_case : Dict = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _snake_case : Optional[int] = timesteps.to(self.discrete_sigmas.device ) _snake_case : Tuple = self.discrete_sigmas[timesteps].to(sample.device ) _snake_case : Optional[Any] = self.get_adjacent_sigma(lowerCamelCase_ , lowerCamelCase_ ).to(sample.device ) _snake_case : List[str] = torch.zeros_like(lowerCamelCase_ ) _snake_case : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _snake_case : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _snake_case : List[Any] = diffusion.unsqueeze(-1 ) _snake_case : Tuple = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _snake_case : Optional[int] = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCamelCase_ , device=sample.device , dtype=sample.dtype ) _snake_case : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _snake_case : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCamelCase_ , prev_sample_mean=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _snake_case : Optional[Any] = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCamelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _snake_case : Optional[int] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _snake_case : Any = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _snake_case : str = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _snake_case : int = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _snake_case : Tuple = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _snake_case : Dict = step_size.unsqueeze(-1 ) _snake_case : Dict = sample + step_size * model_output _snake_case : Optional[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.FloatTensor , ): '''simple docstring''' _snake_case : Union[str, Any] = timesteps.to(original_samples.device ) _snake_case : Optional[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] _snake_case : Dict = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCamelCase_ ) * sigmas[:, None, None, None] ) _snake_case : int = noise + original_samples return noisy_samples def __len__( self : Dict ): '''simple docstring''' return self.config.num_train_timesteps
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Any = '''▁''' lowercase_ : str = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } lowercase_ : Dict = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } lowercase_ : Dict = { '''facebook/s2t-small-librispeech-asr''': 1024, } lowercase_ : List[Any] = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] lowercase_ : Optional[Any] = {'''mustc''': MUSTC_LANGS} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = MAX_MODEL_INPUT_SIZES _UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] _UpperCamelCase : List[int] = [] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]="<s>" , lowerCamelCase_ : str="</s>" , lowerCamelCase_ : Union[str, Any]="<pad>" , lowerCamelCase_ : int="<unk>" , lowerCamelCase_ : int=False , lowerCamelCase_ : Any=False , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' _snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , do_upper_case=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , lang_codes=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _snake_case : Union[str, Any] = do_upper_case _snake_case : List[str] = do_lower_case _snake_case : Tuple = load_json(lowerCamelCase_ ) _snake_case : int = {v: k for k, v in self.encoder.items()} _snake_case : List[str] = spm_file _snake_case : Dict = load_spm(lowerCamelCase_ , self.sp_model_kwargs ) if lang_codes is not None: _snake_case : int = lang_codes _snake_case : Optional[Any] = LANGUAGES[lang_codes] _snake_case : List[str] = [f'''<lang:{lang}>''' for lang in self.langs] _snake_case : int = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} _snake_case : Any = self.lang_tokens _snake_case : Optional[int] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _snake_case : List[Any] = {} @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return len(self.encoder ) @property def __UpperCAmelCase ( self : Any ): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Any = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Dict = self.lang_code_to_id[tgt_lang] _snake_case : Optional[Any] = [lang_code_id] def __UpperCAmelCase ( self : str , lowerCamelCase_ : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encoder.get(lowerCamelCase_ , self.encoder[self.unk_token] ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : int = [] _snake_case : List[str] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _snake_case : Dict = self.sp_model.decode(lowerCamelCase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _snake_case : Optional[int] = [] else: current_sub_tokens.append(lowerCamelCase_ ) _snake_case : Any = self.sp_model.decode(lowerCamelCase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) _snake_case : List[str] = [1] * len(self.prefix_tokens ) _snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Any = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = self.__dict__.copy() _snake_case : int = None return state def __setstate__( self : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case : List[str] = {} _snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[int] = Path(lowerCamelCase_ ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' _snake_case : Any = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _snake_case : Optional[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowerCamelCase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCamelCase_ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase_ , 'wb' ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (str(lowerCamelCase_ ), str(lowerCamelCase_ )) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = sentencepiece.SentencePieceProcessor(**__lowerCAmelCase ) spm.Load(str(__lowerCAmelCase ) ) return spm def A__( __lowerCAmelCase ): with open(__lowerCAmelCase , 'r' ) as f: return json.load(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCAmelCase , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=2 )
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = k_size // 2 _snake_case : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _snake_case : int = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) ) return g def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = image.shape[0], image.shape[1] # dst image height and width _snake_case : int = height - k_size + 1 _snake_case : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _snake_case : Union[str, Any] = zeros((dst_height * dst_width, k_size * k_size) ) _snake_case : int = 0 for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ): _snake_case : Optional[Any] = ravel(image[i : i + k_size, j : j + k_size] ) _snake_case : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) _snake_case : List[str] = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = ravel(__lowerCAmelCase ) # reshape and get the dst image _snake_case : Any = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) return dst if __name__ == "__main__": # read original image lowercase_ : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value lowercase_ : Tuple = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase_ : int = gaussian_filter(gray, 3, sigma=1) lowercase_ : Union[str, Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ : Optional[Any] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[int] = "timm_backbone" def __init__( self : Optional[int] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Optional[int]=None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Union[str, Any] = backbone _snake_case : str = num_channels _snake_case : Dict = features_only _snake_case : Union[str, Any] = use_pretrained_backbone _snake_case : Tuple = True _snake_case : str = out_indices if out_indices is not None else (-1,)
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase_ : List[Any] = logging.get_logger(__name__) # General docstring lowercase_ : Tuple = '''MobileNetV1Config''' # Base docstring lowercase_ : Any = '''google/mobilenet_v1_1.0_224''' lowercase_ : Any = [1, 1024, 7, 7] # Image classification docstring lowercase_ : Optional[int] = '''google/mobilenet_v1_1.0_224''' lowercase_ : Dict = '''tabby, tabby cat''' lowercase_ : Optional[int] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): _snake_case : List[Any] = {} if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = model.mobilenet_va else: _snake_case : Tuple = model _snake_case : List[Any] = 'MobilenetV1/Conv2d_0/' _snake_case : Optional[int] = backbone.conv_stem.convolution.weight _snake_case : Union[str, Any] = backbone.conv_stem.normalization.bias _snake_case : Optional[int] = backbone.conv_stem.normalization.weight _snake_case : Any = backbone.conv_stem.normalization.running_mean _snake_case : int = backbone.conv_stem.normalization.running_var for i in range(13 ): _snake_case : int = i + 1 _snake_case : List[Any] = i * 2 _snake_case : List[Any] = backbone.layer[pt_index] _snake_case : Tuple = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _snake_case : Dict = pointer.convolution.weight _snake_case : Union[str, Any] = pointer.normalization.bias _snake_case : int = pointer.normalization.weight _snake_case : Dict = pointer.normalization.running_mean _snake_case : int = pointer.normalization.running_var _snake_case : str = backbone.layer[pt_index + 1] _snake_case : Optional[int] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _snake_case : Any = pointer.convolution.weight _snake_case : Optional[Any] = pointer.normalization.bias _snake_case : Any = pointer.normalization.weight _snake_case : Tuple = pointer.normalization.running_mean _snake_case : str = pointer.normalization.running_var if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = 'MobilenetV1/Logits/Conv2d_1c_1x1/' _snake_case : Any = model.classifier.weight _snake_case : Union[str, Any] = model.classifier.bias return tf_to_pt_map def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _snake_case : Tuple = tf.train.list_variables(__lowerCAmelCase ) _snake_case : List[str] = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) _snake_case : Any = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = array # Build TF to PyTorch weights loading map _snake_case : Dict = _build_tf_to_pytorch_map(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue _snake_case : int = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _snake_case : int = np.transpose(__lowerCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _snake_case : int = array.squeeze().transpose() else: _snake_case : Tuple = np.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) _snake_case : str = torch.from_numpy(__lowerCAmelCase ) tf_weights.pop(__lowerCAmelCase , __lowerCAmelCase ) tf_weights.pop(name + '/RMSProp' , __lowerCAmelCase ) tf_weights.pop(name + '/RMSProp_1' , __lowerCAmelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , __lowerCAmelCase ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = features.shape[-2:] _snake_case : Optional[Any] = conv_layer.stride _snake_case : Optional[Any] = conv_layer.kernel_size if in_height % stride_height == 0: _snake_case : Any = max(kernel_height - stride_height , 0 ) else: _snake_case : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _snake_case : List[str] = max(kernel_width - stride_width , 0 ) else: _snake_case : Union[str, Any] = max(kernel_width - (in_width % stride_width) , 0 ) _snake_case : Tuple = pad_along_width // 2 _snake_case : Any = pad_along_width - pad_left _snake_case : Union[str, Any] = pad_along_height // 2 _snake_case : Optional[int] = pad_along_height - pad_top _snake_case : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__lowerCAmelCase , __lowerCAmelCase , 'constant' , 0.0 ) class lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : MobileNetVaConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[bool] = True , lowerCamelCase_ : Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _snake_case : str = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _snake_case : List[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _snake_case : str = nn.Convad( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=lowerCamelCase_ , stride=lowerCamelCase_ , padding=lowerCamelCase_ , groups=lowerCamelCase_ , bias=lowerCamelCase_ , padding_mode='zeros' , ) if use_normalization: _snake_case : List[Any] = nn.BatchNormad( num_features=lowerCamelCase_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCamelCase_ , track_running_stats=lowerCamelCase_ , ) else: _snake_case : Any = None if use_activation: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCamelCase_ ): _snake_case : List[str] = ACTaFN[config.hidden_act] else: _snake_case : int = config.hidden_act else: _snake_case : Optional[Any] = None def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _snake_case : Dict = apply_tf_padding(lowerCamelCase_ , self.convolution ) _snake_case : List[str] = self.convolution(lowerCamelCase_ ) if self.normalization is not None: _snake_case : Optional[int] = self.normalization(lowerCamelCase_ ) if self.activation is not None: _snake_case : List[str] = self.activation(lowerCamelCase_ ) return features class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : str = MobileNetVaConfig _UpperCamelCase : Union[str, Any] = load_tf_weights_in_mobilenet_va _UpperCamelCase : int = "mobilenet_v1" _UpperCamelCase : str = "pixel_values" _UpperCamelCase : Optional[Any] = False def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(lowerCamelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCamelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase_ : Optional[Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : MobileNetVaConfig , lowerCamelCase_ : bool = True ): '''simple docstring''' super().__init__(lowerCamelCase_ ) _snake_case : int = config _snake_case : Union[str, Any] = 32 _snake_case : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) _snake_case : List[str] = MobileNetVaConvLayer( lowerCamelCase_ , in_channels=config.num_channels , out_channels=lowerCamelCase_ , kernel_size=3 , stride=2 , ) _snake_case : Any = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _snake_case : Tuple = nn.ModuleList() for i in range(13 ): _snake_case : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 _snake_case : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=3 , stride=strides[i] , groups=lowerCamelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=1 , ) ) _snake_case : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __UpperCAmelCase ( self : str , lowerCamelCase_ : Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , ): '''simple docstring''' _snake_case : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _snake_case : Optional[int] = self.conv_stem(lowerCamelCase_ ) _snake_case : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _snake_case : Optional[int] = layer_module(lowerCamelCase_ ) if output_hidden_states: _snake_case : Dict = all_hidden_states + (hidden_states,) _snake_case : List[Any] = hidden_states if self.pooler is not None: _snake_case : Union[str, Any] = torch.flatten(self.pooler(lowerCamelCase_ ) , start_dim=1 ) else: _snake_case : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=lowerCamelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : MobileNetVaConfig ): '''simple docstring''' super().__init__(lowerCamelCase_ ) _snake_case : int = config.num_labels _snake_case : Any = MobileNetVaModel(lowerCamelCase_ ) _snake_case : Any = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _snake_case : Union[str, Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCamelCase_ ) _snake_case : Tuple = nn.Linear(lowerCamelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , ): '''simple docstring''' _snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : int = self.mobilenet_va(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : List[Any] = outputs.pooler_output if return_dict else outputs[1] _snake_case : Union[str, Any] = self.classifier(self.dropout(lowerCamelCase_ ) ) _snake_case : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : Optional[int] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : List[Any] = 'single_label_classification' else: _snake_case : Tuple = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case : Any = MSELoss() if self.num_labels == 1: _snake_case : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case : int = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case : Optional[Any] = CrossEntropyLoss() _snake_case : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case : Union[str, Any] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: _snake_case : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states , )
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
import math import random def A__( __lowerCAmelCase , __lowerCAmelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase_ : Union[str, Any] = 0.02 def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(__lowerCAmelCase ): # Forward propagation _snake_case : Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _snake_case : Dict = (expected / 1_00) - layer_a # Error delta _snake_case : Any = layer_1_error * sigmoid_function(__lowerCAmelCase , __lowerCAmelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Tuple = int(input('''Expected value: ''')) lowercase_ : List[str] = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : Tuple = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "git_vision_model" def __init__( self : Optional[int] , lowerCamelCase_ : List[str]=7_68 , lowerCamelCase_ : str=30_72 , lowerCamelCase_ : Dict=12 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : Optional[Any]=2_24 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : str="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : Optional[Any]=0.0 , lowerCamelCase_ : Tuple=0.02 , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : List[Any] = hidden_size _snake_case : int = intermediate_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Union[str, Any] = num_channels _snake_case : str = patch_size _snake_case : Optional[int] = image_size _snake_case : List[Any] = initializer_range _snake_case : Tuple = attention_dropout _snake_case : str = layer_norm_eps _snake_case : int = hidden_act @classmethod def __UpperCAmelCase ( cls : Optional[int] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) _snake_case : List[Any] = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": _snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[str] = "git" def __init__( self : Dict , lowerCamelCase_ : Dict=None , lowerCamelCase_ : str=3_05_22 , lowerCamelCase_ : str=7_68 , lowerCamelCase_ : Dict=6 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : int=10_24 , lowerCamelCase_ : str=0.02 , lowerCamelCase_ : Tuple=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Dict="absolute" , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : str=1_01 , lowerCamelCase_ : List[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: _snake_case : Dict = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) _snake_case : Optional[Any] = GitVisionConfig(**lowerCamelCase_ ) _snake_case : Tuple = vocab_size _snake_case : int = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Any = hidden_act _snake_case : Tuple = intermediate_size _snake_case : str = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[str] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : List[Any] = position_embedding_type _snake_case : Any = use_cache _snake_case : List[Any] = tie_word_embeddings _snake_case : str = num_image_with_embedding _snake_case : Optional[int] = bos_token_id _snake_case : List[Any] = eos_token_id def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Optional[int] = self.__class__.model_type return output
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
def A__( __lowerCAmelCase ): _snake_case : list[list[float]] = [] for data in source_data: for i, el in enumerate(__lowerCAmelCase ): if len(__lowerCAmelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCAmelCase ) ) return data_lists def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : list[list[float]] = [] for dlist, weight in zip(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = min(__lowerCAmelCase ) _snake_case : Optional[Any] = max(__lowerCAmelCase ) _snake_case : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _snake_case : int = F'''Invalid weight of {weight:f} provided''' raise ValueError(__lowerCAmelCase ) score_lists.append(__lowerCAmelCase ) return score_lists def A__( __lowerCAmelCase ): _snake_case : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCAmelCase ): _snake_case : Union[str, Any] = final_scores[j] + ele return final_scores def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = get_data(__lowerCAmelCase ) _snake_case : Dict = calculate_each_score(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[Any] = generate_final_scores(__lowerCAmelCase ) # append scores to source data for i, ele in enumerate(__lowerCAmelCase ): source_data[i].append(__lowerCAmelCase ) return source_data
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCamelCase_ : Optional[int] = object() # For specifying empty leaf dict `{}` UpperCamelCase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' import qiskit def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _snake_case : List[str] = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _snake_case : Tuple = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ : List[Any] = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ): '''simple docstring''' pass def A__( __lowerCAmelCase ): _snake_case : int = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A__( __lowerCAmelCase ): _snake_case : Tuple = np.array(__lowerCAmelCase ) _snake_case : str = npimg.shape return {"hash": hashimage(__lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Optional[int] = MaskGenerationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' pass @slow @require_torch def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _snake_case : Optional[Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_56 ) # Shortening by hashing _snake_case : int = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = 'facebook/sam-vit-huge' _snake_case : int = pipeline('mask-generation' , model=lowerCamelCase_ ) _snake_case : Tuple = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing _snake_case : str = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, ] , )
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowercase_ : Union[str, Any] = random.Random() def A__( __lowerCAmelCase , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=None ): if rng is None: _snake_case : str = global_rng _snake_case : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any=7 , lowerCamelCase_ : List[Any]=4_00 , lowerCamelCase_ : List[str]=20_00 , lowerCamelCase_ : Union[str, Any]=10 , lowerCamelCase_ : Dict=1_60 , lowerCamelCase_ : int=8 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : List[str]=40_00 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Any=True , ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Optional[Any] = batch_size _snake_case : int = min_seq_length _snake_case : Tuple = max_seq_length _snake_case : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case : List[str] = padding_value _snake_case : Optional[Any] = sampling_rate _snake_case : Optional[int] = return_attention_mask _snake_case : Optional[int] = do_normalize _snake_case : List[Any] = feature_size _snake_case : int = chunk_length _snake_case : Union[str, Any] = hop_length def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : str=False ): '''simple docstring''' def _flatten(lowerCamelCase_ : Dict ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: _snake_case : str = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : Optional[Any] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = WhisperFeatureExtractor if is_speech_available() else None def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = WhisperFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Any = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) _snake_case : Tuple = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[Any] = feat_extract_first.to_dict() _snake_case : List[Any] = feat_extract_second.to_dict() _snake_case : List[Any] = feat_extract_first.mel_filters _snake_case : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Any = os.path.join(lowerCamelCase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCamelCase_ ) _snake_case : List[str] = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) _snake_case : str = feat_extract_first.to_dict() _snake_case : Union[str, Any] = feat_extract_second.to_dict() _snake_case : str = feat_extract_first.mel_filters _snake_case : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : List[str] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case : Dict = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size _snake_case : Dict = feature_extractor(lowerCamelCase_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _snake_case : Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _snake_case : str = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test batched _snake_case : Any = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _snake_case : List[Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _snake_case : Optional[int] = np.asarray(lowerCamelCase_ ) _snake_case : Union[str, Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _snake_case : str = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) # Test truncation required _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] _snake_case : str = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] _snake_case : int = [x[: feature_extractor.n_samples] for x in speech_inputs] _snake_case : Dict = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs_truncated] _snake_case : str = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _snake_case : Optional[Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' import torch _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Any = np.random.rand(1_00 , 32 ).astype(np.floataa ) _snake_case : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case : Optional[Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _snake_case : Dict = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Dict = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _snake_case : Any = ds.sort('id' ).select(range(lowerCamelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _snake_case : str = self._load_datasamples(1 ) _snake_case : Any = WhisperFeatureExtractor() _snake_case : int = feature_extractor(lowerCamelCase_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase_ , atol=1e-4 ) ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Any = self._load_datasamples(1 )[0] _snake_case : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _snake_case : Dict = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase_ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ ) - 1 ) < 1e-3 ) )
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : torch.FloatTensor class lowercase ( a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : int , lowerCamelCase_ : int = 32 , lowerCamelCase_ : int = 64 , lowerCamelCase_ : int = 20 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : str=77 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : str = "silu" , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[str] = "linear" , lowerCamelCase_ : Optional[str] = "prd" , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : Dict = num_attention_heads _snake_case : Optional[Any] = attention_head_dim _snake_case : Tuple = num_attention_heads * attention_head_dim _snake_case : Any = additional_embeddings _snake_case : Union[str, Any] = time_embed_dim or inner_dim _snake_case : Any = embedding_proj_dim or embedding_dim _snake_case : int = clip_embed_dim or embedding_dim _snake_case : Tuple = Timesteps(lowerCamelCase_ , lowerCamelCase_ , 0 ) _snake_case : int = TimestepEmbedding(lowerCamelCase_ , lowerCamelCase_ , out_dim=lowerCamelCase_ , act_fn=lowerCamelCase_ ) _snake_case : Any = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(lowerCamelCase_ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _snake_case : Any = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) if encoder_hid_proj_type is None: _snake_case : List[Any] = None elif encoder_hid_proj_type == "linear": _snake_case : str = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _snake_case : List[Any] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase_ ) ) if added_emb_type == "prd": _snake_case : Any = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase_ ) ) elif added_emb_type is None: _snake_case : Optional[Any] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _snake_case : Any = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dropout=lowerCamelCase_ , activation_fn='gelu' , attention_bias=lowerCamelCase_ , ) for d in range(lowerCamelCase_ ) ] ) if norm_in_type == "layer": _snake_case : Any = nn.LayerNorm(lowerCamelCase_ ) elif norm_in_type is None: _snake_case : List[str] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) _snake_case : Optional[int] = nn.LayerNorm(lowerCamelCase_ ) _snake_case : int = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Dict = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase_ , persistent=lowerCamelCase_ ) _snake_case : Union[str, Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) _snake_case : Tuple = nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Any = {} def fn_recursive_add_processors(lowerCamelCase_ : str , lowerCamelCase_ : torch.nn.Module , lowerCamelCase_ : Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase_ , 'set_processor' ): _snake_case : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCamelCase_ , lowerCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return processors def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Dict = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCamelCase_ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCamelCase_ : str , lowerCamelCase_ : torch.nn.Module , lowerCamelCase_ : List[Any] ): if hasattr(lowerCamelCase_ , 'set_processor' ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): module.set_processor(lowerCamelCase_ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCamelCase_ , lowerCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[torch.Tensor, float, int] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[torch.BoolTensor] = None , lowerCamelCase_ : bool = True , ): '''simple docstring''' _snake_case : Any = hidden_states.shape[0] _snake_case : Tuple = timestep if not torch.is_tensor(lowerCamelCase_ ): _snake_case : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: _snake_case : List[Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : List[str] = timesteps * torch.ones(lowerCamelCase_ , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Any = self.time_proj(lowerCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : List[str] = timesteps_projected.to(dtype=self.dtype ) _snake_case : int = self.time_embedding(lowerCamelCase_ ) if self.embedding_proj_norm is not None: _snake_case : Dict = self.embedding_proj_norm(lowerCamelCase_ ) _snake_case : str = self.embedding_proj(lowerCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : int = self.encoder_hidden_states_proj(lowerCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : List[str] = self.proj_in(lowerCamelCase_ ) _snake_case : Union[str, Any] = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : Optional[int] = hidden_states[:, None, :] _snake_case : Tuple = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase_ , -1 , -1 ) additional_embeds.append(lowerCamelCase_ ) _snake_case : str = torch.cat( lowerCamelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Dict = F.pad( lowerCamelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Union[str, Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : List[str] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : str = F.pad(lowerCamelCase_ , (0, self.additional_embeddings) , value=0.0 ) _snake_case : List[str] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : Dict = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Optional[Any] = self.norm_in(lowerCamelCase_ ) for block in self.transformer_blocks: _snake_case : int = block(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) _snake_case : Dict = self.norm_out(lowerCamelCase_ ) if self.prd_embedding is not None: _snake_case : Optional[int] = hidden_states[:, -1] else: _snake_case : str = hidden_states[:, additional_embeddings_len:] _snake_case : List[str] = self.proj_to_clip_embeddings(lowerCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
import string def A__( __lowerCAmelCase ): for key in range(len(string.ascii_uppercase ) ): _snake_case : List[Any] = '' for symbol in message: if symbol in string.ascii_uppercase: _snake_case : Optional[int] = string.ascii_uppercase.find(__lowerCAmelCase ) _snake_case : Tuple = num - key if num < 0: _snake_case : List[Any] = num + len(string.ascii_uppercase ) _snake_case : str = translated + string.ascii_uppercase[num] else: _snake_case : Union[str, Any] = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def A__( ): _snake_case : Union[str, Any] = input('Encrypted message: ' ) _snake_case : Optional[int] = message.upper() decrypt(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase_ : str = logging.get_logger(__name__) lowercase_ : List[Any] = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "van" def __init__( self : Any , lowerCamelCase_ : str=2_24 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Any=[7, 3, 3, 3] , lowerCamelCase_ : Tuple=[4, 2, 2, 2] , lowerCamelCase_ : Any=[64, 1_28, 3_20, 5_12] , lowerCamelCase_ : Optional[Any]=[3, 3, 12, 3] , lowerCamelCase_ : Optional[int]=[8, 8, 4, 4] , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : str=1e-6 , lowerCamelCase_ : Tuple=1e-2 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=0.0 , **lowerCamelCase_ : Tuple , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : List[str] = image_size _snake_case : List[Any] = num_channels _snake_case : int = patch_sizes _snake_case : List[str] = strides _snake_case : Tuple = hidden_sizes _snake_case : Optional[int] = depths _snake_case : str = mlp_ratios _snake_case : Tuple = hidden_act _snake_case : int = initializer_range _snake_case : Optional[int] = layer_norm_eps _snake_case : Any = layer_scale_init_value _snake_case : List[Any] = drop_path_rate _snake_case : Optional[Any] = dropout_rate
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case : Tuple = (low + high) // 2 _snake_case : Tuple = max_subarray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case : Union[str, Any] = max_subarray(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) _snake_case : List[Any] = max_cross_sum(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = float('-inf' ), -1 _snake_case : Optional[Any] = float('-inf' ), -1 _snake_case : int | float = 0 for i in range(__lowerCAmelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case : Any = summ _snake_case : List[str] = i _snake_case : Tuple = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case : List[str] = summ _snake_case : int = i return max_left, max_right, (left_sum + right_sum) def A__( __lowerCAmelCase ): _snake_case : Tuple = [randint(1 , __lowerCAmelCase ) for _ in range(__lowerCAmelCase )] _snake_case : str = time.time() max_subarray(__lowerCAmelCase , 0 , input_size - 1 ) _snake_case : Union[str, Any] = time.time() return end - start def A__( ): _snake_case : Dict = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] _snake_case : Tuple = [time_max_subarray(__lowerCAmelCase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__lowerCAmelCase , __lowerCAmelCase ): print(__lowerCAmelCase , '\t\t' , __lowerCAmelCase ) plt.plot(__lowerCAmelCase , __lowerCAmelCase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase_ : str = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def A__( __lowerCAmelCase ): _snake_case : Union[str, Any] = test_results.split(' ' ) _snake_case : List[Any] = 0 _snake_case : str = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _snake_case : str = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(__lowerCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__( __lowerCAmelCase ): _snake_case : Optional[int] = {} _snake_case : Optional[int] = None _snake_case : Dict = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , __lowerCAmelCase ): _snake_case : List[Any] = True _snake_case : List[Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): _snake_case : Any = line _snake_case : Tuple = False return failures class lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : int = title _snake_case : Dict = doc_test_results['time_spent'].split(',' )[0] _snake_case : Optional[int] = doc_test_results['success'] _snake_case : str = doc_test_results['failures'] _snake_case : Any = self.n_success + self.n_failures # Failures and success of the modeling tests _snake_case : List[str] = doc_test_results @property def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Tuple = [self._time_spent] _snake_case : int = 0 for time in time_spent: _snake_case : Optional[int] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCamelCase_ ) == 1: _snake_case : Any = [0, 0, time_parts[0]] _snake_case : Any = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds _snake_case : Union[str, Any] = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'''{int(lowerCamelCase_ )}h{int(lowerCamelCase_ )}m{int(lowerCamelCase_ )}s''' @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = 40 _snake_case : Any = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowerCamelCase_ , lowerCamelCase_ )} _snake_case : Tuple = '' for category, failures in category_failures.items(): if len(lowerCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCamelCase_ ) @staticmethod def __UpperCAmelCase ( ): '''simple docstring''' _snake_case : Dict = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowerCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowerCamelCase_ , ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) _snake_case : Union[str, Any] = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' _snake_case : List[str] = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowerCamelCase_ , ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : str = '' for key, value in failures.items(): _snake_case : List[Any] = value[:2_00] + ' [Truncated]' if len(lowerCamelCase_ ) > 2_50 else value failures_text += f'''*{key}*\n_{value}_\n\n''' _snake_case : Any = job_name _snake_case : Optional[int] = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: _snake_case : Union[str, Any] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) _snake_case : Any = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) _snake_case : str = sorted(self.doc_test_results.items() , key=lambda lowerCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): _snake_case : Optional[int] = f'''*Num failures* :{len(job_result['failed'] )} \n''' _snake_case : List[Any] = job_result['failures'] _snake_case : Optional[Any] = self.get_reply_blocks(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , text=lowerCamelCase_ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'''Results for {job}''' , blocks=lowerCamelCase_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def A__( ): _snake_case : Dict = os.environ['GITHUB_RUN_ID'] _snake_case : str = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _snake_case : Any = requests.get(__lowerCAmelCase ).json() _snake_case : Optional[int] = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) _snake_case : Any = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__lowerCAmelCase ): _snake_case : Union[str, Any] = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , __lowerCAmelCase ) return {} def A__( __lowerCAmelCase ): _snake_case : str = {} if os.path.exists(__lowerCAmelCase ): _snake_case : Any = os.listdir(__lowerCAmelCase ) for file in files: try: with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , encoding='utf-8' ) as f: _snake_case : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(__lowerCAmelCase , __lowerCAmelCase )}.''' ) from e return _artifact def A__( ): class lowercase : """simple docstring""" def __init__( self : str , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : str = name _snake_case : int = [] def __str__( self : Any ): '''simple docstring''' return self.name def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str ): '''simple docstring''' self.paths.append({'name': self.name, 'path': path} ) _snake_case : Dict[str, Artifact] = {} _snake_case : Dict = filter(os.path.isdir , os.listdir() ) for directory in directories: _snake_case : int = directory if artifact_name not in _available_artifacts: _snake_case : Optional[Any] = Artifact(__lowerCAmelCase ) _available_artifacts[artifact_name].add_path(__lowerCAmelCase ) return _available_artifacts if __name__ == "__main__": lowercase_ : Optional[int] = get_job_links() lowercase_ : int = retrieve_available_artifacts() lowercase_ : List[str] = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase_ : List[str] = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job lowercase_ : Dict = github_actions_job_links.get('''run_doctests''') lowercase_ : Dict = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] lowercase_ : List[Any] = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: lowercase_ : Dict = handle_test_results(artifact['''stats''']) lowercase_ : str = failed lowercase_ : Dict = success lowercase_ : Optional[Any] = time_spent[1:-1] + ''', ''' lowercase_ : int = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): lowercase_ : Dict = line.replace('''FAILED ''', '''''') lowercase_ : Tuple = line.split()[0].replace('''\n''', '''''') if "::" in line: lowercase_ : Dict = line.split('''::''') else: lowercase_ : int = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase_ : Optional[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase_ : int = all_failures[test] if test in all_failures else '''N/A''' lowercase_ : Tuple = failure break lowercase_ : int = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def __UpperCAmelCase ( *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Dict ): '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) _snake_case : Optional[int] = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Union[str, Any] = vqa_pipeline(lowerCamelCase_ , top_k=1 ) self.assertEqual( lowerCamelCase_ , [ [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}], [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}], ] , ) @require_torch def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) _snake_case : List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' _snake_case : Any = 'How many cats are there?' _snake_case : Any = vqa_pipeline(image=lowerCamelCase_ , question='How many cats are there?' , top_k=2 ) self.assertEqual( lowerCamelCase_ , [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}] ) _snake_case : Tuple = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( lowerCamelCase_ , [{'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}, {'score': ANY(lowerCamelCase_ ), 'answer': ANY(lowerCamelCase_ )}] ) @slow @require_torch def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) _snake_case : Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' _snake_case : int = 'How many cats are there?' _snake_case : List[str] = vqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) _snake_case : Union[str, Any] = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) _snake_case : Any = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=13 , lowerCamelCase_ : int=30 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Optional[Any]=37 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[str]=10 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : str=2 , ): '''simple docstring''' _snake_case : str = parent _snake_case : List[Any] = batch_size _snake_case : Dict = image_size _snake_case : Any = patch_size _snake_case : Any = num_channels _snake_case : str = is_training _snake_case : Any = use_labels _snake_case : Union[str, Any] = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Any = intermediate_size _snake_case : str = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Union[str, Any] = type_sequence_label_size _snake_case : List[Any] = initializer_range _snake_case : Optional[int] = scope _snake_case : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _snake_case : Tuple = (image_size // patch_size) ** 2 _snake_case : Optional[int] = num_patches + 2 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : Dict = TFDeiTModel(config=lowerCamelCase_ ) _snake_case : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Tuple = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) _snake_case : Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _snake_case : Dict = 1 _snake_case : List[Any] = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) _snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = self.type_sequence_label_size _snake_case : Dict = TFDeiTForImageClassification(lowerCamelCase_ ) _snake_case : Tuple = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Optional[int] = 1 _snake_case : List[Any] = TFDeiTForImageClassification(lowerCamelCase_ ) _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : List[str] = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : str = self.prepare_config_and_inputs() _snake_case : Union[str, Any] = config_and_inputs _snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _UpperCamelCase : int = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Any = TFDeiTModelTester(self ) _snake_case : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' pass def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Dense ) ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(lowerCamelCase_ ) _snake_case : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : str = [*signature.parameters.keys()] _snake_case : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=False ): '''simple docstring''' _snake_case : Union[str, Any] = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__( ): _snake_case : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) _snake_case : Any = self.default_image_processor _snake_case : List[Any] = prepare_img() _snake_case : Dict = image_processor(images=lowerCamelCase_ , return_tensors='tf' ) # forward pass _snake_case : Any = model(**lowerCamelCase_ ) # verify the logits _snake_case : Tuple = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _snake_case : Optional[int] = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) (_snake_case ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = len(__lowerCAmelCase ) _snake_case : Union[str, Any] = len(__lowerCAmelCase ) _snake_case : Optional[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _snake_case : Optional[int] = True for i in range(__lowerCAmelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _snake_case : List[str] = True if a[i].islower(): _snake_case : Optional[int] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowercase_ : Union[str, Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowercase_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase_ : Any = dict(zip(vocab, range(len(vocab)))) lowercase_ : List[str] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Tuple = Path(tmpdirname) lowercase_ : List[Any] = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowercase_ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowercase_ : List[Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowercase_ : List[str] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowercase_ : Tuple = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowercase_ : List[str] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test lowercase_ : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowercase_ : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase_ : Tuple = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase ): if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) _snake_case : Optional[int] = str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def A__( __lowerCAmelCase , __lowerCAmelCase ): if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) _snake_case : Dict = str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" _snake_case : str = binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def A__( __lowerCAmelCase , __lowerCAmelCase ): if number >= 0: # Get binary representation of positive number _snake_case : int = '0' + str(bin(__lowerCAmelCase ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number _snake_case : str = len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number _snake_case : Optional[Any] = bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] _snake_case : int = ( '1' + '0' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
import argparse import os import re import packaging.version lowercase_ : Optional[int] = '''examples/''' lowercase_ : List[Any] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowercase_ : int = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } lowercase_ : int = '''README.md''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case : Optional[int] = f.read() _snake_case : Dict = REPLACE_PATTERNS[pattern] _snake_case : Tuple = replace.replace('VERSION' , __lowerCAmelCase ) _snake_case : str = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern='examples' ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__( ): _snake_case : List[Any] = '🤗 Transformers currently provides the following architectures' _snake_case : List[Any] = '1. Want to contribute a new model?' with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case : str = f.readlines() # Find the start of the list. _snake_case : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _snake_case : Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _snake_case : Tuple = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCAmelCase ) def A__( ): with open(REPLACE_FILES['init'] , 'r' ) as f: _snake_case : Optional[int] = f.read() _snake_case : Tuple = REPLACE_PATTERNS['init'][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__( __lowerCAmelCase=False ): _snake_case : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _snake_case : int = default_version.base_version elif patch: _snake_case : Optional[Any] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _snake_case : Any = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _snake_case : List[Any] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: _snake_case : Tuple = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) def A__( ): _snake_case : Tuple = get_version() _snake_case : List[Any] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _snake_case : List[Any] = current_version.base_version # Check with the user we got that right. _snake_case : Union[str, Any] = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: _snake_case : Dict = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowercase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Tuple = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = "conditional_detr" _UpperCamelCase : List[str] = ["past_key_values"] _UpperCamelCase : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[str]=3_00 , lowerCamelCase_ : int=6 , lowerCamelCase_ : Optional[Any]=20_48 , lowerCamelCase_ : Any=8 , lowerCamelCase_ : Tuple=6 , lowerCamelCase_ : List[str]=20_48 , lowerCamelCase_ : Dict=8 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Optional[int]="relu" , lowerCamelCase_ : Dict=2_56 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : List[Any]=0.02 , lowerCamelCase_ : Union[str, Any]=1.0 , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : str="sine" , lowerCamelCase_ : Dict="resnet50" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : Tuple=5 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : str=1 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Optional[Any]=5 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : str=0.25 , **lowerCamelCase_ : Dict , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _snake_case : str = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = backbone_config.get('model_type' ) _snake_case : str = CONFIG_MAPPING[backbone_model_type] _snake_case : str = config_class.from_dict(lowerCamelCase_ ) _snake_case : int = use_timm_backbone _snake_case : Optional[int] = backbone_config _snake_case : Tuple = num_channels _snake_case : List[str] = num_queries _snake_case : List[str] = d_model _snake_case : Dict = encoder_ffn_dim _snake_case : Union[str, Any] = encoder_layers _snake_case : Union[str, Any] = encoder_attention_heads _snake_case : Dict = decoder_ffn_dim _snake_case : Any = decoder_layers _snake_case : List[str] = decoder_attention_heads _snake_case : Any = dropout _snake_case : str = attention_dropout _snake_case : List[Any] = activation_dropout _snake_case : List[str] = activation_function _snake_case : Any = init_std _snake_case : int = init_xavier_std _snake_case : str = encoder_layerdrop _snake_case : Tuple = decoder_layerdrop _snake_case : Optional[Any] = encoder_layers _snake_case : Optional[Any] = auxiliary_loss _snake_case : Any = position_embedding_type _snake_case : Optional[Any] = backbone _snake_case : List[Any] = use_pretrained_backbone _snake_case : List[str] = dilation # Hungarian matcher _snake_case : List[Any] = class_cost _snake_case : int = bbox_cost _snake_case : Optional[int] = giou_cost # Loss coefficients _snake_case : Any = mask_loss_coefficient _snake_case : str = dice_loss_coefficient _snake_case : Dict = cls_loss_coefficient _snake_case : str = bbox_loss_coefficient _snake_case : Any = giou_loss_coefficient _snake_case : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.d_model def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _snake_case : Optional[int] = self.backbone_config.to_dict() _snake_case : Union[str, Any] = self.__class__.model_type return output class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[int] = version.parse("1.11" ) @property def __UpperCAmelCase ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return 12
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ : str = False @skip_mps class lowercase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = StableDiffusionAttendAndExcitePipeline _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) _UpperCamelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __UpperCAmelCase ( cls : Dict ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : int ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) _snake_case : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) _snake_case : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _snake_case : Optional[int] = CLIPTextModel(lowerCamelCase_ ) _snake_case : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : str = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : List[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : Any = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = self.get_dummy_inputs(lowerCamelCase_ ) _snake_case : Tuple = pipe(**lowerCamelCase_ ).images _snake_case : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) _snake_case : Optional[int] = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) _snake_case : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ , 1e-3 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class lowercase ( unittest.TestCase ): """simple docstring""" @classmethod def __UpperCAmelCase ( cls : Optional[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Dict = torch.manual_seed(51 ) _snake_case : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case : Union[str, Any] = 'a painting of an elephant with glasses' _snake_case : Union[str, Any] = [5, 7] _snake_case : int = pipe( prompt=lowerCamelCase_ , token_indices=lowerCamelCase_ , guidance_scale=7.5 , generator=lowerCamelCase_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] _snake_case : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
def A__( __lowerCAmelCase ): _snake_case : List[Any] = [0] * len(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): # use last results for better performance - dynamic programming _snake_case : Tuple = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[str] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Union[str, Any] = j return prefix_result def A__( __lowerCAmelCase ): return max(prefix_function(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def A__( __lowerCAmelCase=None ): _snake_case : Union[str, Any] = argparse.ArgumentParser(add_help=__lowerCAmelCase , allow_abbrev=__lowerCAmelCase ) # The main config parser _snake_case : Optional[int] = config_command_parser(__lowerCAmelCase ) # The subparser to add commands to _snake_case : Dict = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(__lowerCAmelCase , parents=[parent_parser] ) update_command_parser(__lowerCAmelCase , parents=[parent_parser] ) return config_parser def A__( ): _snake_case : Optional[Any] = get_config_parser() _snake_case : List[str] = config_parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(__lowerCAmelCase ) if __name__ == "__main__": main()
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[Any] = ["image_processor", "tokenizer"] _UpperCamelCase : List[str] = "Pix2StructImageProcessor" _UpperCamelCase : int = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Tuple = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : Union[str, Any] , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[int] = 20_48 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Dict , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _snake_case : str = self.tokenizer _snake_case : Dict = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _snake_case : Optional[int] = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , **lowerCamelCase_ ) else: # add pixel_values and bbox _snake_case : List[Any] = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , header_text=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and not self.image_processor.is_vqa: _snake_case : Dict = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) if "attention_mask" in text_encoding: _snake_case : Tuple = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _snake_case : Tuple = text_encoding.pop('input_ids' ) else: _snake_case : Any = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def __UpperCAmelCase ( self : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_ , 'depth_multiplier' ) ) class lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : Optional[Any]=0.25 , lowerCamelCase_ : str=8 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : int=10_24 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : str="relu6" , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Union[str, Any]=0.02 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Dict=10 , lowerCamelCase_ : str=None , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : int = batch_size _snake_case : Optional[Any] = num_channels _snake_case : Optional[Any] = image_size _snake_case : Optional[Any] = depth_multiplier _snake_case : Tuple = min_depth _snake_case : Any = tf_padding _snake_case : Optional[Any] = int(last_hidden_size * depth_multiplier ) _snake_case : Any = output_stride _snake_case : str = hidden_act _snake_case : Dict = classifier_dropout_prob _snake_case : Union[str, Any] = use_labels _snake_case : Dict = is_training _snake_case : str = num_labels _snake_case : Union[str, Any] = initializer_range _snake_case : Optional[int] = scope def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[Any] = None _snake_case : Dict = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _snake_case : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : str ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = MobileNetVaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.num_labels _snake_case : Tuple = MobileNetVaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Tuple = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() _snake_case : Dict = config_and_inputs _snake_case : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _UpperCamelCase : str = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Tuple = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = MobileNetVaModelTester(self ) _snake_case : str = MobileNetVaConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' pass def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = model_class(lowerCamelCase_ ) _snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Any = [*signature.parameters.keys()] _snake_case : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): _snake_case : Dict = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): _snake_case : List[str] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _snake_case : str = outputs.hidden_states _snake_case : Tuple = 26 self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[str] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Dict = MobileNetVaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__( ): _snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : int = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(lowerCamelCase_ ) _snake_case : List[str] = self.default_image_processor _snake_case : Optional[int] = prepare_img() _snake_case : Optional[Any] = image_processor(images=lowerCamelCase_ , return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**lowerCamelCase_ ) # verify the logits _snake_case : Any = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _snake_case : List[str] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Tuple = DDIMPipeline _UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : List[str] = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _snake_case : List[Any] = DDIMScheduler() _snake_case : Union[str, Any] = {'unet': unet, 'scheduler': scheduler} return components def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str]=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : str = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : int = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Dict = self.get_dummy_inputs(lowerCamelCase_ ) _snake_case : Optional[Any] = pipe(**lowerCamelCase_ ).images _snake_case : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _snake_case : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _snake_case : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ , 1e-3 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : str ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = 'google/ddpm-cifar10-32' _snake_case : Any = UNetaDModel.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = DDIMScheduler() _snake_case : List[str] = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddim.to(lowerCamelCase_ ) ddim.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : List[Any] = ddim(generator=lowerCamelCase_ , eta=0.0 , output_type='numpy' ).images _snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case : Union[str, Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = 'google/ddpm-ema-bedroom-256' _snake_case : Union[str, Any] = UNetaDModel.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = DDIMScheduler.from_pretrained(lowerCamelCase_ ) _snake_case : str = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddpm.to(lowerCamelCase_ ) ddpm.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : Optional[Any] = ddpm(generator=lowerCamelCase_ , output_type='numpy' ).images _snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _snake_case : Dict = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : str = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "t5" _UpperCamelCase : Optional[int] = ["past_key_values"] _UpperCamelCase : List[str] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[Any] , lowerCamelCase_ : Dict=3_21_28 , lowerCamelCase_ : Dict=5_12 , lowerCamelCase_ : Optional[int]=64 , lowerCamelCase_ : Union[str, Any]=20_48 , lowerCamelCase_ : Optional[Any]=6 , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=8 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Any=1_28 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Dict=1e-6 , lowerCamelCase_ : Any=1.0 , lowerCamelCase_ : Dict="relu" , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=0 , lowerCamelCase_ : Dict=1 , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' _snake_case : str = vocab_size _snake_case : Tuple = d_model _snake_case : Union[str, Any] = d_kv _snake_case : Any = d_ff _snake_case : Dict = num_layers _snake_case : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _snake_case : Any = num_heads _snake_case : Tuple = relative_attention_num_buckets _snake_case : Union[str, Any] = relative_attention_max_distance _snake_case : List[str] = dropout_rate _snake_case : List[Any] = layer_norm_epsilon _snake_case : Dict = initializer_factor _snake_case : Any = feed_forward_proj _snake_case : Dict = use_cache _snake_case : Any = self.feed_forward_proj.split('-' ) _snake_case : Dict = act_info[-1] _snake_case : Dict = act_info[0] == 'gated' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _snake_case : Union[str, Any] = 'gelu_new' super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _snake_case : Union[str, Any] = 'past_encoder_sequence + sequence' _snake_case : Any = {0: 'batch'} _snake_case : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _snake_case : int = {0: 'batch', 1: 'decoder_sequence'} _snake_case : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='inputs' ) return common_inputs @property def __UpperCAmelCase ( self : str ): '''simple docstring''' return 13
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
import os from datetime import datetime as dt from github import Github lowercase_ : Optional[int] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def A__( ): _snake_case : str = Github(os.environ['GITHUB_TOKEN'] ) _snake_case : Any = g.get_repo('huggingface/diffusers' ) _snake_case : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _snake_case : Optional[int] = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) _snake_case : Tuple = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
class lowercase : # Public class to implement a graph """simple docstring""" def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[bool]] ): '''simple docstring''' _snake_case : List[str] = row _snake_case : Tuple = col _snake_case : List[Any] = graph def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[bool]] ): '''simple docstring''' _snake_case : int = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _snake_case : Union[str, Any] = [-1, 0, 1, -1, 1, -1, 0, 1] _snake_case : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): # And finally, count all islands. '''simple docstring''' _snake_case : List[Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] _snake_case : List[str] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) count += 1 return count
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=7 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : List[str]=18 , lowerCamelCase_ : str=30 , lowerCamelCase_ : Optional[Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=True , lowerCamelCase_ : int=None , lowerCamelCase_ : int=True , lowerCamelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[Any]=False , ): '''simple docstring''' _snake_case : str = size if size is not None else {'height': 20, 'width': 20} _snake_case : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} _snake_case : List[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : List[Any] = num_channels _snake_case : Optional[int] = image_size _snake_case : Any = min_resolution _snake_case : str = max_resolution _snake_case : int = do_resize _snake_case : Tuple = size _snake_case : Union[str, Any] = do_center_crop _snake_case : int = crop_size _snake_case : Optional[int] = do_normalize _snake_case : Tuple = image_mean _snake_case : Any = image_std _snake_case : Union[str, Any] = do_reduce_labels def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A__( ): _snake_case : Union[str, Any] = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _snake_case : Tuple = Image.open(dataset[0]['file'] ) _snake_case : Union[str, Any] = Image.open(dataset[1]['file'] ) return image, map def A__( ): _snake_case : Tuple = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _snake_case : Union[str, Any] = Image.open(ds[0]['file'] ) _snake_case : Dict = Image.open(ds[1]['file'] ) _snake_case : Optional[Any] = Image.open(ds[2]['file'] ) _snake_case : Union[str, Any] = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : str = BeitImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : int = BeitImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_std' ) ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) _snake_case : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : List[Any] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input _snake_case : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : Optional[int] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input _snake_case : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : List[str] = image_processing(lowerCamelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) _snake_case : Optional[int] = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _snake_case : str = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test batched _snake_case : Optional[int] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test not batched input (PIL images) _snake_case : Any = prepare_semantic_single_inputs() _snake_case : Optional[int] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test batched input (PIL images) _snake_case : Optional[int] = prepare_semantic_batch_inputs() _snake_case : Any = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _snake_case : str = prepare_semantic_single_inputs() _snake_case : List[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_50 ) _snake_case : int = True _snake_case : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 )
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def A__( __lowerCAmelCase = 2_00_00_00 ): _snake_case : list[int] = [0] _snake_case : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _snake_case : int = 0 # the area corresponding to the grid that gives the product closest to target _snake_case : int = 0 # an estimate of b, using the quadratic formula _snake_case : float # the largest integer less than b_estimate _snake_case : int # the largest integer less than b_estimate _snake_case : int # the triangle number corresponding to b_floor _snake_case : int # the triangle number corresponding to b_ceil _snake_case : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _snake_case : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _snake_case : List[str] = floor(__lowerCAmelCase ) _snake_case : Tuple = ceil(__lowerCAmelCase ) _snake_case : List[Any] = triangle_numbers[b_floor] _snake_case : List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _snake_case : Any = triangle_b_first_guess * triangle_a _snake_case : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _snake_case : List[str] = triangle_b_second_guess * triangle_a _snake_case : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = (UnCLIPScheduler,) def __UpperCAmelCase ( self : Optional[int] , **lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[str] = { 'num_train_timesteps': 10_00, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : int ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase_ , prev_timestep=lowerCamelCase_ ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config(variance_type='fixed_small_log' ) _snake_case : str = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1e-5 def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(variance_type='learned_range' ) _snake_case : Dict = scheduler_class(**lowerCamelCase_ ) _snake_case : List[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCamelCase_ ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=lowerCamelCase_ ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=lowerCamelCase_ ) - -0.001_0011 < 1e-5 def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : Tuple = scheduler.timesteps _snake_case : Dict = self.dummy_model() _snake_case : Any = self.dummy_sample_deter _snake_case : List[str] = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual _snake_case : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 _snake_case : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample _snake_case : Union[str, Any] = pred_prev_sample _snake_case : str = torch.sum(torch.abs(lowerCamelCase_ ) ) _snake_case : Dict = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.scheduler_classes[0] _snake_case : Optional[int] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(25 ) _snake_case : Union[str, Any] = scheduler.timesteps _snake_case : Tuple = self.dummy_model() _snake_case : str = self.dummy_sample_deter _snake_case : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual _snake_case : Any = model(lowerCamelCase_ , lowerCamelCase_ ) if i + 1 == timesteps.shape[0]: _snake_case : List[Any] = None else: _snake_case : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _snake_case : Any = scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , prev_timestep=lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample _snake_case : Optional[int] = pred_prev_sample _snake_case : Tuple = torch.sum(torch.abs(lowerCamelCase_ ) ) _snake_case : Dict = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' pass def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase_ : str = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A__( __lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): _snake_case : str = [image] _snake_case : Dict = [trans(img.convert('RGB' ) ) for img in image] _snake_case : Optional[Any] = torch.stack(__lowerCAmelCase ) return image class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _snake_case : List[str] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Optional[int] = min(int(num_inference_steps * strength ) , lowerCamelCase_ ) _snake_case : List[Any] = max(num_inference_steps - init_timestep , 0 ) _snake_case : Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : int=None ): '''simple docstring''' if not isinstance(lowerCamelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase_ )}''' ) _snake_case : Optional[int] = image.to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _snake_case : Union[str, Any] = init_latents.shape _snake_case : List[Any] = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) # get latents print('add noise to latents at timestep' , lowerCamelCase_ ) _snake_case : Optional[Any] = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = init_latents return latents @torch.no_grad() def __call__( self : str , lowerCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCamelCase_ : float = 0.8 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , ): '''simple docstring''' self.check_inputs(lowerCamelCase_ ) # 2. Preprocess image _snake_case : Any = preprocess(lowerCamelCase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCamelCase_ , device=self.device ) _snake_case : Optional[int] = self.get_timesteps(lowerCamelCase_ , lowerCamelCase_ , self.device ) _snake_case : Optional[int] = timesteps[:1].repeat(lowerCamelCase_ ) # 4. Prepare latent variables _snake_case : str = self.prepare_latents(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.unet.dtype , self.device , lowerCamelCase_ ) _snake_case : Any = latents # 5. Denoising loop for t in self.progress_bar(lowerCamelCase_ ): # 1. predict noise model_output _snake_case : Any = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case : str = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , eta=lowerCamelCase_ , use_clipped_model_output=lowerCamelCase_ , generator=lowerCamelCase_ , ).prev_sample _snake_case : int = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case : str = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCamelCase_ )
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = tempfile.mkdtemp() # fmt: off _snake_case : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : str = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _snake_case : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case : Optional[Any] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) _snake_case : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _snake_case : str = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **lowerCamelCase_ : int ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , **lowerCamelCase_ : Tuple ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case : int = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizer() _snake_case : Dict = self.get_rust_tokenizer() _snake_case : List[Any] = self.get_image_processor() _snake_case : Dict = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) _snake_case : Tuple = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case : Tuple = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case : Any = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) _snake_case : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.get_image_processor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : int = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : Tuple = image_processor(lowerCamelCase_ , return_tensors='np' ) _snake_case : List[str] = processor(images=lowerCamelCase_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : str = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Optional[Any] = 'lower newer' _snake_case : List[str] = processor(text=lowerCamelCase_ ) _snake_case : str = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Any = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = 'lower newer' _snake_case : Optional[Any] = self.prepare_image_inputs() _snake_case : Dict = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : int = self.get_tokenizer() _snake_case : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Optional[Any] = processor.batch_decode(lowerCamelCase_ ) _snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = self.get_image_processor() _snake_case : List[str] = self.get_tokenizer() _snake_case : Dict = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _snake_case : List[Any] = 'lower newer' _snake_case : Optional[int] = self.prepare_image_inputs() _snake_case : List[str] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
from __future__ import annotations import bisect def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): if hi < 0: _snake_case : int = len(__lowerCAmelCase ) while lo < hi: _snake_case : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _snake_case : Optional[Any] = mid + 1 else: _snake_case : List[str] = mid return lo def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): if hi < 0: _snake_case : Dict = len(__lowerCAmelCase ) while lo < hi: _snake_case : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _snake_case : List[Any] = mid + 1 else: _snake_case : List[str] = mid return lo def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): sorted_collection.insert(bisect_left(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = -1 ): sorted_collection.insert(bisect_right(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = 0 _snake_case : Optional[Any] = len(__lowerCAmelCase ) - 1 while left <= right: _snake_case : int = left + (right - left) // 2 _snake_case : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _snake_case : List[str] = midpoint - 1 else: _snake_case : Optional[int] = midpoint + 1 return None def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = bisect.bisect_left(__lowerCAmelCase , __lowerCAmelCase ) if index != len(__lowerCAmelCase ) and sorted_collection[index] == item: return index return None def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if right < left: return None _snake_case : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , midpoint + 1 , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : List[str] = input('''Enter numbers separated by comma:\n''').strip() lowercase_ : Any = sorted(int(item) for item in user_input.split(''',''')) lowercase_ : Tuple = int(input('''Enter a single number to be found in the list:\n''')) lowercase_ : Optional[int] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import math def A__( __lowerCAmelCase = 1_00 ): _snake_case : str = sum(i * i for i in range(1 , n + 1 ) ) _snake_case : Optional[Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import math import unittest def A__( __lowerCAmelCase ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCAmelCase ( self : int ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Union[str, Any] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowercase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowercase_ : Tuple = get_logger(__name__) lowercase_ : Union[str, Any] = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class lowercase : """simple docstring""" @add_start_docstrings(lowerCamelCase_ ) def __call__( self : Any , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : """simple docstring""" @add_start_docstrings(lowerCamelCase_ ) def __call__( self : Dict , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( a_ ): """simple docstring""" @add_start_docstrings(lowerCamelCase_ ) def __call__( self : Tuple , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): '''simple docstring''' for processor in self: _snake_case : List[Any] = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) _snake_case : Dict = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) else: _snake_case : List[Any] = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : float ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) _snake_case : Tuple = temperature def __call__( self : Union[str, Any] , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : int = scores / self.temperature return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : float , lowerCamelCase_ : float = -float('Inf' ) , lowerCamelCase_ : int = 1 ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) _snake_case : str = top_p _snake_case : List[Any] = filter_value _snake_case : Optional[int] = min_tokens_to_keep def __call__( self : Dict , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Dict = lax.top_k(lowerCamelCase_ , scores.shape[-1] ) _snake_case : List[Any] = jnp.full_like(lowerCamelCase_ , self.filter_value ) _snake_case : str = jax.nn.softmax(lowerCamelCase_ , axis=-1 ).cumsum(axis=-1 ) _snake_case : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _snake_case : Optional[int] = jnp.roll(lowerCamelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep _snake_case : int = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) _snake_case : Optional[int] = jnp.where(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = jax.lax.sort_key_val(lowerCamelCase_ , lowerCamelCase_ )[-1] return next_scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : float = -float('Inf' ) , lowerCamelCase_ : int = 1 ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) _snake_case : List[Any] = max(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = filter_value def __call__( self : str , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : str = scores.shape _snake_case : Any = jnp.full(batch_size * vocab_size , self.filter_value ) _snake_case : Dict = min(self.top_k , scores.shape[-1] ) # Safety check _snake_case : Optional[Any] = lax.top_k(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _snake_case : List[str] = topk_scores.flatten() _snake_case : Any = topk_indices.flatten() + shift _snake_case : Tuple = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) _snake_case : List[Any] = next_scores_flat.reshape(lowerCamelCase_ , lowerCamelCase_ ) return next_scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = bos_token_id def __call__( self : str , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = jnp.full(scores.shape , -float('inf' ) ) _snake_case : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) _snake_case : Any = jnp.where(lowerCamelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[int] = max_length _snake_case : Union[str, Any] = eos_token_id def __call__( self : Union[str, Any] , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Any = jnp.full(scores.shape , -float('inf' ) ) _snake_case : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _snake_case : str = jnp.where(lowerCamelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) _snake_case : str = min_length _snake_case : Optional[Any] = eos_token_id def __call__( self : Union[str, Any] , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _snake_case : Dict = jnp.where(lowerCamelCase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = list(lowerCamelCase_ ) _snake_case : int = begin_index def __call__( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Any = 1 - jnp.bool_(cur_len - self.begin_index ) _snake_case : Union[str, Any] = jnp.where(lowerCamelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , lowerCamelCase_ ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : list ): '''simple docstring''' _snake_case : Optional[Any] = list(lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[int] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _snake_case : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _snake_case : Any = force_token_array.at[index].set(lowerCamelCase_ ) _snake_case : Union[str, Any] = jnp.intaa(lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : int ): '''simple docstring''' def _force_token(lowerCamelCase_ : Any ): _snake_case : int = scores.shape[0] _snake_case : List[str] = self.force_token_array[generation_idx] _snake_case : List[Any] = jnp.ones_like(lowerCamelCase_ , dtype=scores.dtype ) * -float('inf' ) _snake_case : int = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _snake_case : List[Any] = lax.dynamic_update_slice(lowerCamelCase_ , lowerCamelCase_ , (0, current_token) ) return new_scores _snake_case : Optional[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase_ ) , lambda: scores , ) , ) return scores class lowercase ( a_ ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Dict = generate_config.eos_token_id _snake_case : Any = generate_config.no_timestamps_token_id _snake_case : Optional[Any] = generate_config.no_timestamps_token_id + 1 _snake_case : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ , 'max_initial_timestamp_index' ): _snake_case : str = generate_config.max_initial_timestamp_index else: _snake_case : Union[str, Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: _snake_case : List[Any] = model_config.vocab_size def __call__( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): _snake_case : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase_ , ) _snake_case : Any = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase_ , lowerCamelCase_ , ) return jnp.where( lowerCamelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , lowerCamelCase_ , ) _snake_case : Optional[Any] = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = jnp.where(cur_len == self.begin_index , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase_ , ) _snake_case : Any = self.timestamp_begin + self.max_initial_timestamp_index _snake_case : str = jnp.where( lowerCamelCase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , lowerCamelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp _snake_case : List[Any] = jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] ): _snake_case : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _snake_case : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , lowerCamelCase_ , ) _snake_case : Optional[int] = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) return scores
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : Optional[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase : """simple docstring""" def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): '''simple docstring''' return None class lowercase : """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int ): '''simple docstring''' return None class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , 'tf' , 12 , **lowerCamelCase_ ) @require_torch @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , 'pt' , 12 , **lowerCamelCase_ ) @require_torch @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' from transformers import BertModel _snake_case : int = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() _snake_case : List[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _snake_case : Union[str, Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_ , 'pt' , 12 , lowerCamelCase_ ) @require_tf @slow def __UpperCAmelCase ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case : Union[str, Any] = self._test_export(lowerCamelCase_ , 'tf' , 12 , **lowerCamelCase_ ) _snake_case : List[str] = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case : Any = self._test_export(lowerCamelCase_ , 'pt' , 12 , **lowerCamelCase_ ) _snake_case : int = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _snake_case : Union[str, Any] = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def __UpperCAmelCase ( self : Dict ): '''simple docstring''' from transformers import BertModel _snake_case : Dict = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case : Tuple = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , 'pt' ) @require_tf @require_tokenizers @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' from transformers import TFBertModel _snake_case : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case : Optional[Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , 'tf' ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : str = FeatureExtractionPipeline(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _snake_case : Tuple = infer_shapes(lowerCamelCase_ , lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] _snake_case : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _snake_case : int = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ) , set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _snake_case : int = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : str = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[Any] = WavaVecaPhonemeCTCTokenizer _UpperCamelCase : Optional[Any] = False def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) _snake_case : Union[str, Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _snake_case : Any = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Union[str, Any]=20 , lowerCamelCase_ : Tuple=5 ): '''simple docstring''' _snake_case : Union[str, Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_ )) for i in range(len(lowerCamelCase_ ) )] _snake_case : Union[str, Any] = list(filter(lambda lowerCamelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCamelCase_ ) , lowerCamelCase_ ) ) if max_length is not None and len(lowerCamelCase_ ) > max_length: _snake_case : Optional[Any] = toks[:max_length] if min_length is not None and len(lowerCamelCase_ ) < min_length and len(lowerCamelCase_ ) > 0: while len(lowerCamelCase_ ) < min_length: _snake_case : Tuple = toks + toks # toks_str = [t[1] for t in toks] _snake_case : Any = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) if " " not in output_txt and len(lowerCamelCase_ ) > 1: _snake_case : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_ ) ) if with_prefix_space: _snake_case : Union[str, Any] = ' ' + output_txt _snake_case : Any = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] , **lowerCamelCase_ : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) _snake_case : Optional[int] = tokenizer('m xxx ɪ' , do_phonemize=lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) _snake_case : Any = tokenizer('m aaa ɪ ccc' , do_phonemize=lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa _snake_case : List[str] = tokenizer('maɪ c' , do_phonemize=lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , [3, 2_00] ) # mai should be <unk> (=3) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Optional[Any] = 'Hello how are you' _snake_case : int = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(lowerCamelCase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Tuple = 'Hello how are you' _snake_case : List[Any] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowerCamelCase_ ).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_ ).input_ids ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Union[str, Any] = 'Hello how are you' _snake_case : List[str] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) _snake_case : int = tokenizer.decode(tokenizer(lowerCamelCase_ ).input_ids ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _snake_case : int = tokenizer.decode(sample_ids[0] ) _snake_case : Dict = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch_tokens[0] ) self.assertEqual(lowerCamelCase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Any = 'Hello how are you' _snake_case : int = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(lowerCamelCase_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Optional[Any] = 'Hello how are you' _snake_case : str = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowerCamelCase_ ).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_ ).input_ids ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _snake_case : Tuple = tokenizer.decode(sample_ids[0] ) _snake_case : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch_tokens[0] ) self.assertEqual(lowerCamelCase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter _snake_case : Optional[int] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCamelCase_ ) _snake_case : str = tokenizer.batch_decode(lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , batch_tokens[0] ) self.assertEqual(lowerCamelCase_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Union[str, Any] = 'Hello how are you' _snake_case : List[Any] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) _snake_case : str = tokenizer.decode(tokenizer(lowerCamelCase_ ).input_ids , filter_word_delimiter_token=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) _snake_case : Any = 'Hello how are you' _snake_case : Optional[int] = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='en-us' ) _snake_case : Optional[int] = tokenizer.decode(tokenizer(lowerCamelCase_ ).input_ids , filter_word_delimiter_token=lowerCamelCase_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=lowerCamelCase_ ) _snake_case : Optional[int] = 'Hello how are you' _snake_case : Optional[Any] = tokenizer(lowerCamelCase_ , phonemizer_lang='en-us' ).input_ids _snake_case : Any = tokenizer(lowerCamelCase_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = tokenizer.decode(lowerCamelCase_ ) _snake_case : Union[str, Any] = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(lowerCamelCase_ , 'ɛ l o h aʊ a ʁ j u' ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) _snake_case : Tuple = 'Hello how Are you' _snake_case : Any = 'hello how are you' _snake_case : Dict = tokenizer(lowerCamelCase_ ).input_ids _snake_case : Optional[Any] = tokenizer(lowerCamelCase_ ).input_ids self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off _snake_case : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on _snake_case : Union[str, Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : str = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _snake_case : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _snake_case : Any = tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(lowerCamelCase_ : Any , lowerCamelCase_ : Any ): self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCamelCase_ ) ) # transform list to ModelOutput _snake_case : Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(lowerCamelCase_ : Dict , lowerCamelCase_ : int ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): [recursive_check(lowerCamelCase_ , lowerCamelCase_ ) for la, la in zip(lowerCamelCase_ , lowerCamelCase_ )] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off _snake_case : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _snake_case : Tuple = tokenizer.batch_decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ ) _snake_case : Union[str, Any] = [tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ ) for ids in sample_ids] check_list_tuples_equal(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def __UpperCAmelCase ( self : int ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case : int = tokenizer.vocab_size _snake_case : Union[str, Any] = len(lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : Optional[int] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _snake_case : List[str] = tokenizer.add_tokens(lowerCamelCase_ ) _snake_case : Any = tokenizer.vocab_size _snake_case : Dict = len(lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , 0 ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , all_size + len(lowerCamelCase_ ) ) _snake_case : List[str] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowerCamelCase_ ) self.assertGreaterEqual(len(lowerCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _snake_case : List[str] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _snake_case : int = tokenizer.add_special_tokens(lowerCamelCase_ ) _snake_case : List[str] = tokenizer.vocab_size _snake_case : str = len(lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , 0 ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , all_size_a + len(lowerCamelCase_ ) ) _snake_case : Dict = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowerCamelCase_ ) self.assertGreaterEqual(len(lowerCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def __UpperCAmelCase ( self : int ): '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case : int = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] _snake_case : Union[str, Any] = tokenizer.convert_tokens_to_string(lowerCamelCase_ ) self.assertIsInstance(output['text'] , lowerCamelCase_ )
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowercase_ : Optional[int] = None lowercase_ : Tuple = logging.get_logger(__name__) lowercase_ : Optional[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : Dict = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } lowercase_ : int = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } lowercase_ : Dict = '''▁''' class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = AlbertTokenizer def __init__( self : Any , lowerCamelCase_ : str=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=False , lowerCamelCase_ : str="[CLS]" , lowerCamelCase_ : Optional[int]="[SEP]" , lowerCamelCase_ : Dict="<unk>" , lowerCamelCase_ : Union[str, Any]="[SEP]" , lowerCamelCase_ : Dict="<pad>" , lowerCamelCase_ : Optional[Any]="[CLS]" , lowerCamelCase_ : int="[MASK]" , **lowerCamelCase_ : int , ): '''simple docstring''' _snake_case : List[Any] = ( AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token ) super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) _snake_case : List[str] = do_lower_case _snake_case : Union[str, Any] = remove_space _snake_case : List[Any] = keep_accents _snake_case : Dict = vocab_file _snake_case : Dict = False if not self.vocab_file else True def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Dict = [self.sep_token_id] _snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Tuple = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = KandinskyVaaControlnetPipeline _UpperCamelCase : List[Any] = ["image_embeds", "negative_image_embeds", "hint"] _UpperCamelCase : int = ["image_embeds", "negative_image_embeds", "hint"] _UpperCamelCase : int = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Any = False @property def __UpperCAmelCase ( self : Any ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return 1_00 @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case : str = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def __UpperCAmelCase ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Any = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = self.dummy_unet _snake_case : int = self.dummy_movq _snake_case : Any = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCamelCase_ , ) _snake_case : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=0 ): '''simple docstring''' _snake_case : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create hint _snake_case : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): _snake_case : int = torch.manual_seed(lowerCamelCase_ ) else: _snake_case : int = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _snake_case : str = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = 'cpu' _snake_case : Optional[int] = self.get_dummy_components() _snake_case : Union[str, Any] = self.pipeline_class(**lowerCamelCase_ ) _snake_case : Optional[Any] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) _snake_case : List[Any] = output.images _snake_case : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] _snake_case : Optional[Any] = image[0, -3:, -3:, -1] _snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Tuple = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _snake_case : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _snake_case : List[Any] = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 _snake_case : Optional[int] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _snake_case : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) _snake_case : str = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _snake_case : Any = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A robot, 4k photo' _snake_case : Optional[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) _snake_case : List[str] = pipe_prior( lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _snake_case : Optional[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) _snake_case : Optional[Any] = pipeline( image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , hint=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=1_00 , output_type='np' , ) _snake_case : List[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "perceiver" def __init__( self : Union[str, Any] , lowerCamelCase_ : List[Any]=2_56 , lowerCamelCase_ : Optional[int]=12_80 , lowerCamelCase_ : int=7_68 , lowerCamelCase_ : str=1 , lowerCamelCase_ : List[Any]=26 , lowerCamelCase_ : Optional[int]=8 , lowerCamelCase_ : Tuple=8 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : str="kv" , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=2_62 , lowerCamelCase_ : Any=20_48 , lowerCamelCase_ : str=56 , lowerCamelCase_ : Any=[3_68, 4_96] , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : str=19_20 , lowerCamelCase_ : Dict=16 , lowerCamelCase_ : Tuple=[1, 16, 2_24, 2_24] , **lowerCamelCase_ : Any , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Tuple = num_latents _snake_case : Tuple = d_latents _snake_case : int = d_model _snake_case : Tuple = num_blocks _snake_case : List[str] = num_self_attends_per_block _snake_case : List[Any] = num_self_attention_heads _snake_case : str = num_cross_attention_heads _snake_case : Any = qk_channels _snake_case : Dict = v_channels _snake_case : List[Any] = cross_attention_shape_for_attention _snake_case : List[Any] = self_attention_widening_factor _snake_case : Union[str, Any] = cross_attention_widening_factor _snake_case : Union[str, Any] = hidden_act _snake_case : str = attention_probs_dropout_prob _snake_case : Dict = initializer_range _snake_case : Optional[int] = layer_norm_eps _snake_case : str = use_query_residual # masked language modeling attributes _snake_case : Union[str, Any] = vocab_size _snake_case : int = max_position_embeddings # image classification attributes _snake_case : Optional[Any] = image_size # flow attributes _snake_case : Any = train_size # multimodal autoencoding attributes _snake_case : Optional[int] = num_frames _snake_case : Union[str, Any] = audio_samples_per_frame _snake_case : List[Any] = samples_per_patch _snake_case : Optional[Any] = output_shape class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return 1e-4 def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : int = 40 , ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : str = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : List[Any] = preprocessor.num_special_tokens_to_add(lowerCamelCase_ ) _snake_case : Union[str, Any] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence _snake_case : int = [' '.join(['a'] ) * seq_length] * batch_size _snake_case : List[str] = dict(preprocessor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) _snake_case : str = inputs.pop('input_ids' ) return inputs elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : str = compute_effective_axis_dimension(lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) _snake_case : List[str] = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Dict = dict(preprocessor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) _snake_case : int = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
from __future__ import annotations from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" _UpperCamelCase : float _UpperCamelCase : TreeNode | None = None _UpperCamelCase : TreeNode | None = None def A__( __lowerCAmelCase ): # Validation def is_valid_tree(__lowerCAmelCase ) -> bool: if node is None: return True if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__lowerCAmelCase ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __lowerCAmelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __lowerCAmelCase ) ) return is_binary_search_tree_recursive_check(__lowerCAmelCase , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowercase_ : Any = logging.get_logger(__name__) lowercase_ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : str = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } lowercase_ : List[str] = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } lowercase_ : List[str] = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] _UpperCamelCase : Any = DistilBertTokenizer def __init__( self : int , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : str=True , lowerCamelCase_ : Optional[Any]="[UNK]" , lowerCamelCase_ : List[str]="[SEP]" , lowerCamelCase_ : int="[PAD]" , lowerCamelCase_ : Union[str, Any]="[CLS]" , lowerCamelCase_ : Any="[MASK]" , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) _snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars ): _snake_case : Tuple = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) ) _snake_case : Optional[Any] = do_lower_case _snake_case : str = strip_accents _snake_case : List[str] = tokenize_chinese_chars _snake_case : List[Any] = normalizer_class(**lowerCamelCase_ ) _snake_case : List[Any] = do_lower_case def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' _snake_case : Dict = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowercase_ : List[str] = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' _snake_case : List[Any] = self.layer[current_layer](lowerCamelCase_ , lowerCamelCase_ , head_mask[current_layer] ) _snake_case : Union[str, Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : str ): '''simple docstring''' super().__init__(lowerCamelCase_ ) _snake_case : List[str] = BertEncoderWithPabee(lowerCamelCase_ ) self.init_weights() _snake_case : Tuple = 0 _snake_case : List[str] = 0 _snake_case : Dict = 0 _snake_case : Optional[int] = 0 def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = threshold def __UpperCAmelCase ( self : Any , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Dict = patience def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = 0 _snake_case : str = 0 def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Tuple = self.inference_layers_num / self.inference_instances_num _snake_case : str = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCamelCase_ ) @add_start_docstrings_to_model_forward(lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Tuple=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _snake_case : List[str] = input_ids.size() elif inputs_embeds is not None: _snake_case : Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _snake_case : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _snake_case : List[Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ ) if token_type_ids is None: _snake_case : Optional[int] = torch.zeros(lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _snake_case : torch.Tensor = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _snake_case : Tuple = encoder_hidden_states.size() _snake_case : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _snake_case : Dict = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ ) _snake_case : int = self.invert_attention_mask(lowerCamelCase_ ) else: _snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _snake_case : Any = self.get_head_mask(lowerCamelCase_ , self.config.num_hidden_layers ) _snake_case : Dict = self.embeddings( input_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ ) _snake_case : List[Any] = embedding_output if self.training: _snake_case : int = [] for i in range(self.config.num_hidden_layers ): _snake_case : Tuple = self.encoder.adaptive_forward( lowerCamelCase_ , current_layer=lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ ) _snake_case : int = self.pooler(lowerCamelCase_ ) _snake_case : List[str] = output_layers[i](output_dropout(lowerCamelCase_ ) ) res.append(lowerCamelCase_ ) elif self.patience == 0: # Use all layers for inference _snake_case : Union[str, Any] = self.encoder( lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) _snake_case : int = self.pooler(encoder_outputs[0] ) _snake_case : str = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase_ )] else: _snake_case : Dict = 0 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _snake_case : List[str] = self.encoder.adaptive_forward( lowerCamelCase_ , current_layer=lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ ) _snake_case : List[str] = self.pooler(lowerCamelCase_ ) _snake_case : Dict = output_layers[i](lowerCamelCase_ ) if regression: _snake_case : Union[str, Any] = logits.detach() if patient_result is not None: _snake_case : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _snake_case : int = 0 else: _snake_case : Optional[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: _snake_case : Optional[int] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase_ ) ): patient_counter += 1 else: _snake_case : Optional[int] = 0 _snake_case : Dict = logits if patient_counter == self.patience: break _snake_case : Any = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(lowerCamelCase_ ) _snake_case : List[str] = config.num_labels _snake_case : List[Any] = BertModelWithPabee(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(config.hidden_dropout_prob ) _snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[str]=None , ): '''simple docstring''' _snake_case : Tuple = self.bert( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _snake_case : int = (logits[-1],) if labels is not None: _snake_case : Dict = None _snake_case : Optional[Any] = 0 for ix, logits_item in enumerate(lowerCamelCase_ ): if self.num_labels == 1: # We are doing regression _snake_case : int = MSELoss() _snake_case : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _snake_case : str = CrossEntropyLoss() _snake_case : Any = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _snake_case : List[str] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _snake_case : Optional[int] = (total_loss / total_weights,) + outputs return outputs
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase_ : List[str] = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Dict = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from itertools import count def A__( __lowerCAmelCase = 50 ): _snake_case : str = [1] * min_block_length for n in count(__lowerCAmelCase ): fill_count_functions.append(1 ) for block_length in range(__lowerCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F'''{solution() = }''')
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import random def A__( __lowerCAmelCase ): _snake_case : List[str] = num - 1 _snake_case : Optional[int] = 0 while s % 2 == 0: _snake_case : List[str] = s // 2 t += 1 for _ in range(5 ): _snake_case : Dict = random.randrange(2 , num - 1 ) _snake_case : int = pow(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if v != 1: _snake_case : Tuple = 0 while v != (num - 1): if i == t - 1: return False else: _snake_case : List[Any] = i + 1 _snake_case : Union[str, Any] = (v**2) % num return True def A__( __lowerCAmelCase ): if num < 2: return False _snake_case : Tuple = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowerCAmelCase ) def A__( __lowerCAmelCase = 10_24 ): while True: _snake_case : Optional[int] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__lowerCAmelCase ): return num if __name__ == "__main__": lowercase_ : List[str] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Union[str, Any] = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = (DEISMultistepScheduler,) _UpperCamelCase : List[str] = (("num_inference_steps", 25),) def __UpperCAmelCase ( self : Union[str, Any] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Tuple = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int]=0 , **lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : Any = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : int = self.dummy_sample _snake_case : Optional[Any] = 0.1 * sample _snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Optional[Any] = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : List[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : List[Any] = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : int = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[int]=0 , **lowerCamelCase_ : str ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : Any = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : str = self.dummy_sample _snake_case : str = 0.1 * sample _snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Any = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Tuple = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' if scheduler is None: _snake_case : str = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : int = scheduler_class(**lowerCamelCase_ ) _snake_case : str = 10 _snake_case : Tuple = self.dummy_model() _snake_case : int = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Any = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Any = dict(self.forward_default_kwargs ) _snake_case : List[str] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: _snake_case : Optional[int] = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : str = self.dummy_sample _snake_case : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): _snake_case : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : List[str] = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : Dict = scheduler.timesteps[5] _snake_case : Tuple = scheduler.timesteps[6] _snake_case : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config() ) _snake_case : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 _snake_case : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : str = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : Tuple = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='deis' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) _snake_case : List[str] = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self : Any ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = self.full_loop(prediction_type='v_prediction' ) _snake_case : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) _snake_case : List[Any] = 10 _snake_case : Optional[int] = self.dummy_model() _snake_case : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : List[Any] = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
from __future__ import annotations import numpy as np def A__( __lowerCAmelCase ): _snake_case : int = np.shape(__lowerCAmelCase ) if rows != columns: _snake_case : Tuple = ( '\'table\' has to be of square shaped array but got a ' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) _snake_case : Union[str, Any] = np.zeros((rows, columns) ) _snake_case : List[Any] = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): _snake_case : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _snake_case : Union[str, Any] = (table[i][j] - total) / upper[j][j] _snake_case : int = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) _snake_case : List[str] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase_ : str = logging.get_logger(__name__) lowercase_ : Optional[int] = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowercase_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowercase_ : List[Any] = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowercase_ : Any = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowercase_ : Dict = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowercase_ : List[str] = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowercase_ : Tuple = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowercase_ : int = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowercase_ : str = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowercase_ : List[str] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowercase_ : Any = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowercase_ : int = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowercase_ : Dict = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowercase_ : Optional[int] = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowercase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : List[Any] = FLAX_MODEL_MAPPING lowercase_ : Optional[int] = auto_class_update(FlaxAutoModel) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase_ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase_ : str = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : int = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase_ : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : Union[str, Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase_ : Dict = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : Any = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ : Optional[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : int = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase_ : Dict = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : List[str] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowercase ( _BaseAutoModelClass ): """simple docstring""" _UpperCamelCase : Tuple = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase_ : int = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
714
import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( __lowerCAmelCase = 1_00_01 ): try: _snake_case : int = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) _snake_case : list[int] = [] _snake_case : List[Any] = 2 while len(__lowerCAmelCase ) < nth: if is_prime(__lowerCAmelCase ): primes.append(__lowerCAmelCase ) num += 1 else: num += 1 return primes[len(__lowerCAmelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowercase_ : Dict = logging.get_logger(__name__) # General docstring lowercase_ : Optional[int] = '''RegNetConfig''' # Base docstring lowercase_ : List[Any] = '''facebook/regnet-y-040''' lowercase_ : int = [1, 1088, 7, 7] # Image classification docstring lowercase_ : Optional[int] = '''facebook/regnet-y-040''' lowercase_ : List[str] = '''tabby, tabby cat''' lowercase_ : int = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : Optional[str] = "relu" , **lowerCamelCase_ : Dict , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _snake_case : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _snake_case : Tuple = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=lowerCamelCase_ , strides=lowerCamelCase_ , padding='VALID' , groups=lowerCamelCase_ , use_bias=lowerCamelCase_ , name='convolution' , ) _snake_case : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) _snake_case : Dict = ACTaFN[activation] if activation is not None else tf.identity def __UpperCAmelCase ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Any = self.convolution(self.padding(lowerCamelCase_ ) ) _snake_case : Optional[int] = self.normalization(lowerCamelCase_ ) _snake_case : Tuple = self.activation(lowerCamelCase_ ) return hidden_state class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : RegNetConfig , **lowerCamelCase_ : List[Any] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : str = config.num_channels _snake_case : Tuple = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : int = shape_list(lowerCamelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _snake_case : int = tf.transpose(lowerCamelCase_ , perm=(0, 2, 3, 1) ) _snake_case : Optional[int] = self.embedder(lowerCamelCase_ ) return hidden_state class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 2 , **lowerCamelCase_ : Dict ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : int = tf.keras.layers.ConvaD( filters=lowerCamelCase_ , kernel_size=1 , strides=lowerCamelCase_ , use_bias=lowerCamelCase_ , name='convolution' ) _snake_case : Tuple = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : bool = False ): '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase_ ) , training=lowerCamelCase_ ) class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , **lowerCamelCase_ : List[Any] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name='pooler' ) _snake_case : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowerCamelCase_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : int = self.pooler(lowerCamelCase_ ) for layer_module in self.attention: _snake_case : Dict = layer_module(lowerCamelCase_ ) _snake_case : Tuple = hidden_state * pooled return hidden_state class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : List[Any] = in_channels != out_channels or stride != 1 _snake_case : Tuple = max(1 , out_channels // config.groups_width ) _snake_case : List[str] = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _snake_case : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name='layer.2' ), ] _snake_case : int = ACTaFN[config.hidden_act] def __UpperCAmelCase ( self : int , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Dict = hidden_state for layer_module in self.layers: _snake_case : Union[str, Any] = layer_module(lowerCamelCase_ ) _snake_case : Optional[Any] = self.shortcut(lowerCamelCase_ ) hidden_state += residual _snake_case : Union[str, Any] = self.activation(lowerCamelCase_ ) return hidden_state class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : List[str] = in_channels != out_channels or stride != 1 _snake_case : Optional[int] = max(1 , out_channels // config.groups_width ) _snake_case : Optional[Any] = ( TFRegNetShortCut(lowerCamelCase_ , stride=lowerCamelCase_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) _snake_case : Union[str, Any] = [ TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ , name='layer.3' ), ] _snake_case : List[Any] = ACTaFN[config.hidden_act] def __UpperCAmelCase ( self : str , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = hidden_state for layer_module in self.layers: _snake_case : str = layer_module(lowerCamelCase_ ) _snake_case : int = self.shortcut(lowerCamelCase_ ) hidden_state += residual _snake_case : Union[str, Any] = self.activation(lowerCamelCase_ ) return hidden_state class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int = 2 , lowerCamelCase_ : int = 2 , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Tuple = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer _snake_case : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , name='layers.0' ), *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' for layer_module in self.layers: _snake_case : str = layer_module(lowerCamelCase_ ) return hidden_state class lowercase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : RegNetConfig , **lowerCamelCase_ : List[Any] ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) _snake_case : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ , name=f'''stages.{i+1}''' ) ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ): '''simple docstring''' _snake_case : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Dict = hidden_states + (hidden_state,) _snake_case : Tuple = stage_module(lowerCamelCase_ ) if output_hidden_states: _snake_case : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) @keras_serializable class lowercase ( tf.keras.layers.Layer ): """simple docstring""" _UpperCamelCase : Union[str, Any] = RegNetConfig def __init__( self : Dict , lowerCamelCase_ : Tuple , **lowerCamelCase_ : str ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : Optional[int] = config _snake_case : Tuple = TFRegNetEmbeddings(lowerCamelCase_ , name='embedder' ) _snake_case : Optional[Any] = TFRegNetEncoder(lowerCamelCase_ , name='encoder' ) _snake_case : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase_ , name='pooler' ) @unpack_inputs def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : List[str] = self.embedder(lowerCamelCase_ , training=lowerCamelCase_ ) _snake_case : Union[str, Any] = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) _snake_case : Optional[int] = encoder_outputs[0] _snake_case : List[Any] = self.pooler(lowerCamelCase_ ) # Change to NCHW output format have uniformity in the modules _snake_case : int = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) _snake_case : Dict = tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _snake_case : str = tuple([tf.transpose(lowerCamelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : str = RegNetConfig _UpperCamelCase : Tuple = "regnet" _UpperCamelCase : List[str] = "pixel_values" @property def __UpperCAmelCase ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowercase_ : int = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ : List[str] = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , a_ , ) class lowercase ( a_ ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : RegNetConfig , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Any = TFRegNetMainLayer(lowerCamelCase_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[int]=False , ): '''simple docstring''' _snake_case : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : List[str] = self.regnet( pixel_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a_ , ) class lowercase ( a_ , a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : RegNetConfig , *lowerCamelCase_ : Dict , **lowerCamelCase_ : int ): '''simple docstring''' super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Any = config.num_labels _snake_case : Optional[int] = TFRegNetMainLayer(lowerCamelCase_ , name='regnet' ) # classification head _snake_case : Any = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : tf.Tensor = None , lowerCamelCase_ : tf.Tensor = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Tuple=False , ): '''simple docstring''' _snake_case : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Optional[Any] = self.regnet( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ , training=lowerCamelCase_ ) _snake_case : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] _snake_case : Tuple = self.classifier[0](lowerCamelCase_ ) _snake_case : Tuple = self.classifier[1](lowerCamelCase_ ) _snake_case : Dict = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase_ , logits=lowerCamelCase_ ) if not return_dict: _snake_case : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
715
import torch from transformers import AutoModel class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase_ : Dict="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(lowerCamelCase_ , self ).__init__() _snake_case : Optional[Any] = AutoModel.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) _snake_case : str = torch.nn.CosineSimilarity(3 , 1e-08 ) _snake_case : str = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self : int , **lowerCamelCase_ : List[str] ): '''simple docstring''' return self.bert(**lowerCamelCase_ ).last_hidden_state def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : int = W_supports['sizes'].tolist() _snake_case : int = W_supports['start_token_id'].item() _snake_case : List[str] = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _snake_case : Optional[int] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.BERT(**lowerCamelCase_ ) _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : List[str] = W_supports['input_ids'] == start_token_id _snake_case : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCamelCase_ ): if i == 0: _snake_case : str = 0 else: _snake_case : Union[str, Any] = support_sizes[i - 1] _snake_case : Tuple = S[s : s + size][start_token_masks[s : s + size]] _snake_case : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _snake_case : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _snake_case : Union[str, Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _snake_case : Optional[Any] = torch.vstack((p_starts, p_start) ) _snake_case : List[str] = torch.vstack((p_ends, p_end) ) else: _snake_case : Union[str, Any] = p_start _snake_case : Any = p_end return p_starts, p_ends
652
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCamelCase_ : List[str] = TypeVar('''T''') class lowercase ( Generic[T] ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : list[T] , lowerCamelCase_ : Callable[[T, T], T] ): '''simple docstring''' _snake_case : Any | T = None _snake_case : int = len(lowerCamelCase_ ) _snake_case : list[T] = [any_type for _ in range(self.N )] + arr _snake_case : int = fnc self.build() def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): _snake_case : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : T ): '''simple docstring''' p += self.N _snake_case : Any = v while p > 1: _snake_case : Union[str, Any] = p // 2 _snake_case : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int ): # noqa: E741 '''simple docstring''' _snake_case : Union[str, Any] = l + self.N, r + self.N _snake_case : T | None = None while l <= r: if l % 2 == 1: _snake_case : int = self.st[l] if res is None else self.fn(lowerCamelCase_ , self.st[l] ) if r % 2 == 0: _snake_case : Any = self.st[r] if res is None else self.fn(lowerCamelCase_ , self.st[r] ) _snake_case : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCamelCase_ : Tuple = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCamelCase_ : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCamelCase_ : Optional[Any] = SegmentTree(test_array, min) UpperCamelCase_ : Dict = SegmentTree(test_array, max) UpperCamelCase_ : Optional[int] = SegmentTree(test_array, lambda a, b: a + b) def A__( ): for i in range(len(__lowerCAmelCase ) ): for j in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): _snake_case : Any = reduce(__lowerCAmelCase , test_array[i : j + 1] ) _snake_case : str = reduce(__lowerCAmelCase , test_array[i : j + 1] ) _snake_case : Optional[Any] = reduce(lambda __lowerCAmelCase , __lowerCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) assert max_range == max_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) assert sum_range == sum_segment_tree.query(__lowerCAmelCase , __lowerCAmelCase ) test_all_segments() for index, value in test_updates.items(): UpperCamelCase_ : Union[str, Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = False _snake_case : Tuple = nn.Dropout(p=lowerCamelCase_ ) _snake_case : Union[str, Any] = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) _snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): _snake_case : Any = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) _snake_case : Tuple = TaLayerNorm(lowerCamelCase_ ) _snake_case : List[str] = nn.Dropout(p=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Any = self.token_embedder(lowerCamelCase_ ) _snake_case : List[Any] = encoder_input_tokens.shape[1] _snake_case : Any = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) _snake_case : Tuple = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask _snake_case : Dict = encoder_input_tokens.size() _snake_case : Optional[int] = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: _snake_case : str = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] _snake_case : Any = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
652
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _snake_case : int = DatasetInfosDict.from_directory(__lowerCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = str(__lowerCAmelCase ) dataset_info.write_to_directory(__lowerCAmelCase ) _snake_case : Union[str, Any] = DatasetInfo.from_directory(__lowerCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowerCAmelCase , 'dataset_info.json' ) ) def A__( ): _snake_case : Optional[int] = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) _snake_case : int = dataset_info._to_yaml_dict() assert sorted(__lowerCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _snake_case : str = yaml.safe_dump(__lowerCAmelCase ) _snake_case : Tuple = yaml.safe_load(__lowerCAmelCase ) assert dataset_info_yaml_dict == reloaded def A__( ): _snake_case : int = DatasetInfo() _snake_case : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = str(__lowerCAmelCase ) dataset_infos_dict.write_to_directory(__lowerCAmelCase ) _snake_case : List[str] = DatasetInfosDict.from_directory(__lowerCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _snake_case : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _snake_case : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowerCAmelCase , 'README.md' ) )
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path _snake_case : Dict = quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' , revision=__lowerCAmelCase )
718
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
0
def A__( __lowerCAmelCase ): if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _snake_case : Any = False if low == high: return swapped _snake_case : Optional[int] = low _snake_case : int = high while left < right: if collection[left] > collection[right]: _snake_case : Dict = ( collection[right], collection[left], ) _snake_case : Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _snake_case : Any = ( collection[right + 1], collection[left], ) _snake_case : Tuple = True _snake_case : Any = low + int((high - low) / 2 ) _snake_case : List[Any] = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _snake_case : List[str] = True while is_not_sorted is True: _snake_case : int = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": lowercase_ : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ : Any = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
719
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : List[str] = "linear" _UpperCamelCase : Optional[int] = "cosine" _UpperCamelCase : Union[str, Any] = "cosine_with_restarts" _UpperCamelCase : Tuple = "polynomial" _UpperCamelCase : Union[str, Any] = "constant" _UpperCamelCase : str = "constant_with_warmup" _UpperCamelCase : Tuple = "piecewise_constant" def A__( __lowerCAmelCase , __lowerCAmelCase = -1 ): return LambdaLR(__lowerCAmelCase , lambda __lowerCAmelCase : 1 , last_epoch=__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = -1 ): def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1.0 , __lowerCAmelCase ) ) return 1.0 return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = -1 ): _snake_case : str = {} _snake_case : Optional[int] = step_rules.split(',' ) for rule_str in rule_list[:-1]: _snake_case : Tuple = rule_str.split(':' ) _snake_case : Union[str, Any] = int(__lowerCAmelCase ) _snake_case : Dict = float(__lowerCAmelCase ) _snake_case : Any = value _snake_case : List[str] = float(rule_list[-1] ) def create_rules_function(__lowerCAmelCase , __lowerCAmelCase ): def rule_func(__lowerCAmelCase ) -> float: _snake_case : Tuple = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _snake_case : Any = create_rules_function(__lowerCAmelCase , __lowerCAmelCase ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=-1 ): def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.5 , __lowerCAmelCase = -1 ): def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) _snake_case : Any = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = -1 ): def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) _snake_case : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1E-7 , __lowerCAmelCase=1.0 , __lowerCAmelCase=-1 ): _snake_case : List[Any] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _snake_case : List[Any] = lr_init - lr_end _snake_case : Dict = num_training_steps - num_warmup_steps _snake_case : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps _snake_case : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = -1 , ): _snake_case : List[str] = SchedulerType(__lowerCAmelCase ) _snake_case : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowerCAmelCase , last_epoch=__lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowerCAmelCase , step_rules=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , num_cycles=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , power=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase )
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if exponent == 1: return base if exponent % 2 == 0: _snake_case : Tuple = _modexpt(__lowerCAmelCase , exponent // 2 , __lowerCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCAmelCase , exponent - 1 , __lowerCAmelCase )) % modulo_value def A__( __lowerCAmelCase = 17_77 , __lowerCAmelCase = 18_55 , __lowerCAmelCase = 8 ): _snake_case : List[str] = base for _ in range(1 , __lowerCAmelCase ): _snake_case : Any = _modexpt(__lowerCAmelCase , __lowerCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
721
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : List[str] = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Union[str, Any] = "xmod" def __init__( self : Tuple , lowerCamelCase_ : Dict=3_05_22 , lowerCamelCase_ : Optional[int]=7_68 , lowerCamelCase_ : Any=12 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Optional[int]=30_72 , lowerCamelCase_ : Dict="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Optional[int]=5_12 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : str=0.02 , lowerCamelCase_ : Optional[Any]=1e-12 , lowerCamelCase_ : str=1 , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Optional[int]="absolute" , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : int=False , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=("en_XX",) , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : int = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : List[str] = intermediate_size _snake_case : List[str] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : int = position_embedding_type _snake_case : Optional[int] = use_cache _snake_case : Any = classifier_dropout _snake_case : int = pre_norm _snake_case : Optional[int] = adapter_reduction_factor _snake_case : Dict = adapter_layer_norm _snake_case : Optional[Any] = adapter_reuse_layer_norm _snake_case : List[str] = ln_before_adapter _snake_case : List[str] = list(lowerCamelCase_ ) _snake_case : Optional[int] = default_language class lowercase ( a_ ): """simple docstring""" @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
700
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : Tuple = logging.getLogger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict=-1 ): '''simple docstring''' _snake_case : str = label_idx def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : Union[str, Any] = mode.value _snake_case : Optional[int] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Dict = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: _snake_case : List[Any] = [] _snake_case : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 _snake_case : Optional[Any] = [] _snake_case : Union[str, Any] = [] else: _snake_case : Tuple = line.split(' ' ) words.append(splits[0] ) if len(lowerCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) return examples def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowerCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _snake_case : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowerCamelCase_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : Optional[int] = f.read().splitlines() if "O" not in labels: _snake_case : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( a_ ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: _snake_case : str = f.read().splitlines() if "O" not in labels: _snake_case : Union[str, Any] = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( a_ ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[Split, str] ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : str = mode.value _snake_case : List[str] = os.path.join(lowerCamelCase_ , f'''{mode}.txt''' ) _snake_case : Tuple = 1 _snake_case : List[str] = [] with open(lowerCamelCase_ , encoding='utf-8' ) as f: for sentence in parse_incr(lowerCamelCase_ ): _snake_case : List[str] = [] _snake_case : str = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCamelCase_ , labels=lowerCamelCase_ ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : TextIO , lowerCamelCase_ : TextIO , lowerCamelCase_ : List ): '''simple docstring''' _snake_case : Dict = 0 for sentence in parse_incr(lowerCamelCase_ ): _snake_case : Optional[int] = preds_list[example_id] _snake_case : List[Any] = '' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCamelCase_ ) example_id += 1 def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' if path: with open(lowerCamelCase_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
652
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase : """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : Dict=7 , lowerCamelCase_ : str=6 , lowerCamelCase_ : Union[str, Any]=17 , lowerCamelCase_ : Union[str, Any]=23 , lowerCamelCase_ : Tuple=11 , lowerCamelCase_ : Optional[Any]=True , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : int = seq_length _snake_case : Dict = act_dim _snake_case : Union[str, Any] = state_dim _snake_case : Optional[int] = hidden_size _snake_case : List[Any] = max_length _snake_case : Union[str, Any] = is_training def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _snake_case : Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _snake_case : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _snake_case : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) _snake_case : List[str] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) _snake_case : int = random_attention_mask((self.batch_size, self.seq_length) ) _snake_case : Union[str, Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , ): '''simple docstring''' _snake_case : str = DecisionTransformerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : str = model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() ( _snake_case ) : Union[str, Any] = config_and_inputs _snake_case : List[Any] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class lowercase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = (DecisionTransformerModel,) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = () _UpperCamelCase : Optional[int] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids _UpperCamelCase : int = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features _UpperCamelCase : Dict = False _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : Tuple = False _UpperCamelCase : str = False _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = False def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = DecisionTransformerModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @slow def __UpperCAmelCase ( self : Any ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Dict = DecisionTransformerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = model_class(lowerCamelCase_ ) _snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[Any] = [*signature.parameters.keys()] _snake_case : Optional[Any] = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(lowerCamelCase_ )] , lowerCamelCase_ ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = 2 # number of steps of autoregressive prediction we will perform _snake_case : str = 10 # defined by the RL environment, may be normalized _snake_case : Optional[Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) _snake_case : int = model.to(lowerCamelCase_ ) _snake_case : Any = model.config torch.manual_seed(0 ) _snake_case : str = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase_ , dtype=torch.floataa ) # env.reset() _snake_case : int = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCamelCase_ ) _snake_case : Optional[int] = torch.tensor(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _snake_case : Union[str, Any] = state _snake_case : int = torch.zeros(1 , 0 , config.act_dim , device=lowerCamelCase_ , dtype=torch.floataa ) _snake_case : int = torch.zeros(1 , 0 , device=lowerCamelCase_ , dtype=torch.floataa ) _snake_case : Optional[int] = torch.tensor(0 , device=lowerCamelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCamelCase_ ): _snake_case : int = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCamelCase_ )] , dim=1 ) _snake_case : Any = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCamelCase_ )] , dim=1 ) _snake_case : int = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _snake_case : Optional[Any] = model( states=lowerCamelCase_ , actions=lowerCamelCase_ , rewards=lowerCamelCase_ , returns_to_go=lowerCamelCase_ , timesteps=lowerCamelCase_ , attention_mask=lowerCamelCase_ , return_dict=lowerCamelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _snake_case : Union[str, Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) _snake_case : Union[str, Any] = action_pred[0, -1] _snake_case : List[Any] = torch.cat([states, state] , dim=1 ) _snake_case : Dict = returns_to_go[0, -1] - reward _snake_case : str = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _snake_case : Union[str, Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCamelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
701
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 1 _snake_case : str = 3 _snake_case : List[str] = (32, 32) _snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def __UpperCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' def extract(*lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): class lowercase : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' _snake_case : List[str] = torch.ones([0] ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Tuple ): '''simple docstring''' self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.dummy_cond_unet _snake_case : str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Union[str, Any] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[str] = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Optional[int] = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.dummy_cond_unet _snake_case : List[str] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : int = self.dummy_vae _snake_case : List[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk _snake_case : Any = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : Union[str, Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : str = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) _snake_case : Optional[Any] = output.images _snake_case : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase_ , )[0] _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None _snake_case : Dict = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _snake_case : Union[str, Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.dummy_cond_unet _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) _snake_case : Any = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 _snake_case : str = unet.half() _snake_case : Union[str, Any] = vae.half() _snake_case : Dict = bert.half() # make sure here that pndm scheduler skips prk _snake_case : List[str] = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) _snake_case : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Tuple = 'A painting of a squirrel eating a burger' _snake_case : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Optional[int] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) _snake_case : List[str] = 40_03_66_03_46 _snake_case : int = 7 # without safety guidance (sld_guidance_scale = 0) _snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Union[str, Any] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : str = output.images _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Optional[int] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _snake_case : Tuple = torch.manual_seed(lowerCamelCase_ ) _snake_case : int = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : Tuple = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ ) _snake_case : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _snake_case : Any = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : Union[str, Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' _snake_case : Optional[Any] = 27_34_97_17_55 _snake_case : Union[str, Any] = 7 _snake_case : Dict = torch.manual_seed(lowerCamelCase_ ) _snake_case : Tuple = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Any = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : str = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) _snake_case : Optional[int] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _snake_case : List[Any] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) _snake_case : Union[str, Any] = 10_44_35_52_34 _snake_case : Dict = 12 _snake_case : Optional[int] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Any = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _snake_case : Optional[int] = output.images _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _snake_case : List[Any] = torch.manual_seed(lowerCamelCase_ ) _snake_case : Optional[int] = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type='np' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _snake_case : str = output.images _snake_case : List[str] = image[0, -3:, -3:, -1] _snake_case : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
652
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
import functools def A__( __lowerCAmelCase , __lowerCAmelCase ): # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__lowerCAmelCase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) _snake_case : Optional[int] = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
652
0
import math def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : int = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowerCAmelCase ) if number < 1: _snake_case : List[str] = F'''Input value of [number={number}] must be > 0''' raise ValueError(__lowerCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: _snake_case : Union[str, Any] = int(math.log(number // 3 , 2 ) ) + 2 _snake_case : List[Any] = [3, 5] _snake_case : Dict = 2 _snake_case : Union[str, Any] = 3 for block in range(1 , __lowerCAmelCase ): for _ in range(__lowerCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase_ : Tuple = 0 try: lowercase_ : Any = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
def A__( __lowerCAmelCase , __lowerCAmelCase ): # Check if the input is valid if not len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _snake_case : Optional[Any] = equationa _snake_case : List[str] = equationa # Calculate the determinants of the matrices _snake_case : Optional[int] = aa * ba - aa * ba _snake_case : Any = ca * ba - ca * ba _snake_case : Dict = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _snake_case : str = determinant_x / determinant _snake_case : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
704
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
652
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A__( __lowerCAmelCase ): if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class lowercase : """simple docstring""" def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): '''simple docstring''' pass def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass def __UpperCAmelCase ( self : Any ): '''simple docstring''' pass def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : int ): '''simple docstring''' _snake_case : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = TFVisionTextDualEncoderModel(lowerCamelCase_ ) _snake_case : Union[str, Any] = model(input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = self.get_vision_text_model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase_ , text_model=lowerCamelCase_ ) _snake_case : Optional[int] = model(input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str=None , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_vision_text_model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = {'vision_model': vision_model, 'text_model': text_model} _snake_case : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase_ ) _snake_case : Dict = model(input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int=None , **lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : int = self.get_vision_text_model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : List[str] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase_ , text_model=lowerCamelCase_ ) _snake_case : Optional[Any] = model(input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) _snake_case : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = model(input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) _snake_case : Optional[int] = after_output[0].numpy() _snake_case : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1e-5 ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int=None , **lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[int] = self.get_vision_text_model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase_ , text_model=lowerCamelCase_ ) _snake_case : int = model( input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , output_attentions=lowerCamelCase_ ) _snake_case : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : str = to_atuple(vision_model.config.image_size ) _snake_case : Optional[int] = to_atuple(vision_model.config.patch_size ) _snake_case : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _snake_case : Optional[int] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : float ): '''simple docstring''' _snake_case : Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase_ , lowerCamelCase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase_ ) @slow def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_pretrained_model_and_inputs() _snake_case : List[Any] = model_a(**lowerCamelCase_ ) _snake_case : Tuple = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase_ ) _snake_case : Any = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[Any] = model_a(**lowerCamelCase_ ) _snake_case : List[Any] = after_outputs[0].numpy() _snake_case : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1e-5 ) @require_tf class lowercase ( a_ , unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) _snake_case : str = 13 _snake_case : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _snake_case : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _snake_case : Any = random_attention_mask([batch_size, 4] ) _snake_case : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : int = TFViTModel(lowerCamelCase_ , name='vision_model' ) _snake_case : Any = TFBertModel(lowerCamelCase_ , name='text_model' ) return vision_model, text_model def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = TFViTModelTester(self ) _snake_case : Union[str, Any] = TFBertModelTester(self ) _snake_case : str = vit_model_tester.prepare_config_and_inputs() _snake_case : Optional[int] = bert_model_tester.prepare_config_and_inputs() _snake_case : Dict = vision_config_and_inputs ( _snake_case ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase ( a_ , unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) _snake_case : Dict = 13 _snake_case : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _snake_case : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _snake_case : Any = random_attention_mask([batch_size, 4] ) _snake_case : Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any=None , **lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : Dict = self.get_vision_text_model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase_ , text_model=lowerCamelCase_ ) _snake_case : str = model( input_ids=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , output_attentions=lowerCamelCase_ ) _snake_case : Any = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _snake_case : int = to_atuple(vision_model.config.image_size ) _snake_case : int = to_atuple(vision_model.config.patch_size ) _snake_case : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case : Tuple = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _snake_case : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Any = TFDeiTModel(lowerCamelCase_ , name='vision_model' ) _snake_case : Optional[Any] = TFRobertaModel(lowerCamelCase_ , name='text_model' ) return vision_model, text_model def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = TFDeiTModelTester(self ) _snake_case : Tuple = TFRobertaModelTester(self ) _snake_case : str = vit_model_tester.prepare_config_and_inputs() _snake_case : Optional[int] = bert_model_tester.prepare_config_and_inputs() _snake_case : Optional[Any] = vision_config_and_inputs ( _snake_case ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase ( a_ , unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) _snake_case : List[str] = 13 _snake_case : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _snake_case : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _snake_case : Tuple = random_attention_mask([batch_size, 4] ) _snake_case : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = TFCLIPVisionModel(lowerCamelCase_ , name='vision_model' ) _snake_case : Optional[int] = TFBertModel(lowerCamelCase_ , name='text_model' ) return vision_model, text_model def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = TFCLIPVisionModelTester(self ) _snake_case : Optional[Any] = TFBertModelTester(self ) _snake_case : Optional[Any] = clip_model_tester.prepare_config_and_inputs() _snake_case : Any = bert_model_tester.prepare_config_and_inputs() _snake_case : Dict = vision_config_and_inputs ( _snake_case ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowerCamelCase_ ) _snake_case : int = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _snake_case : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : str = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='np' ) _snake_case : int = model(**lowerCamelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _snake_case : Optional[int] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCamelCase_ , atol=1e-3 ) )
705
lowercase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
652
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "transfo-xl" _UpperCamelCase : Dict = ["mems"] _UpperCamelCase : Union[str, Any] = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , lowerCamelCase_ : List[str]=26_77_35 , lowerCamelCase_ : List[str]=[2_00_00, 4_00_00, 20_00_00] , lowerCamelCase_ : List[Any]=10_24 , lowerCamelCase_ : Dict=10_24 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : int=64 , lowerCamelCase_ : List[Any]=40_96 , lowerCamelCase_ : str=4 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=18 , lowerCamelCase_ : List[Any]=16_00 , lowerCamelCase_ : Dict=10_00 , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=0 , lowerCamelCase_ : str=-1 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[str]="normal" , lowerCamelCase_ : Union[str, Any]=0.01 , lowerCamelCase_ : Optional[int]=0.01 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-5 , lowerCamelCase_ : int=0 , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' _snake_case : Union[str, Any] = vocab_size _snake_case : Any = [] self.cutoffs.extend(lowerCamelCase_ ) if proj_share_all_but_first: _snake_case : Any = [False] + [True] * len(self.cutoffs ) else: _snake_case : Union[str, Any] = [False] + [False] * len(self.cutoffs ) _snake_case : Any = d_model _snake_case : Tuple = d_embed _snake_case : Any = d_head _snake_case : int = d_inner _snake_case : Optional[Any] = div_val _snake_case : Dict = pre_lnorm _snake_case : Optional[Any] = n_layer _snake_case : Optional[int] = n_head _snake_case : Optional[Any] = mem_len _snake_case : Union[str, Any] = same_length _snake_case : str = attn_type _snake_case : str = clamp_len _snake_case : str = sample_softmax _snake_case : str = adaptive _snake_case : int = dropout _snake_case : Optional[Any] = dropatt _snake_case : str = untie_r _snake_case : Dict = init _snake_case : str = init_range _snake_case : Optional[Any] = proj_init_std _snake_case : Optional[Any] = init_std _snake_case : Any = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __UpperCAmelCase ( self : str , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import math def A__( __lowerCAmelCase ): _snake_case : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__lowerCAmelCase ) def A__( __lowerCAmelCase = 1 / 1_23_45 ): _snake_case : str = 0 _snake_case : Optional[Any] = 0 _snake_case : Any = 3 while True: _snake_case : Any = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__lowerCAmelCase ): _snake_case : Any = int(__lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(__lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : Optional[int] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
import copy import random from transformers import CLIPTokenizer class lowercase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Any ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : List[Any] = {} def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = super().add_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : str , *lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) else: _snake_case : int = [] for i in range(lowerCamelCase_ ): _snake_case : List[Any] = placeholder_token + f'''_{i}''' self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) _snake_case : Optional[Any] = output def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Tuple=1.0 ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Dict = self.token_map[placeholder_token] _snake_case : Tuple = tokens[: 1 + int(len(lowerCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Optional[int] = copy.copy(lowerCamelCase_ ) random.shuffle(lowerCamelCase_ ) _snake_case : Dict = text.replace(lowerCamelCase_ , ' '.join(lowerCamelCase_ ) ) return text def __call__( self : List[Any] , lowerCamelCase_ : Optional[Any] , *lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Union[str, Any]=1.0 , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , *lowerCamelCase_ : Any , lowerCamelCase_ : Dict=False , lowerCamelCase_ : int=1.0 , **lowerCamelCase_ : Any ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , )
708
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Optional[int] = logging.get_logger(__name__) def A__( __lowerCAmelCase ): print('Loading config file...' ) def flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase="." ): _snake_case : Tuple = [] for k, v in d.items(): _snake_case : str = parent_key + sep + k if parent_key else k if isinstance(__lowerCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase , sep=__lowerCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(__lowerCAmelCase ) _snake_case : Dict = argparse.Namespace() with open(__lowerCAmelCase , 'r' ) as yaml_file: try: _snake_case : Tuple = yaml.load(__lowerCAmelCase , Loader=yaml.FullLoader ) _snake_case : Tuple = flatten_yaml_as_dict(__lowerCAmelCase ) for k, v in flat_cfg.items(): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__lowerCAmelCase , str(__lowerCAmelCase ) ) ) return config def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = MobileViTVaConfig() _snake_case : List[str] = False # dataset if task_name.startswith('imagenet1k_' ): _snake_case : int = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: _snake_case : Optional[int] = 3_84 else: _snake_case : Dict = 2_56 _snake_case : List[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _snake_case : int = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: _snake_case : Optional[int] = 3_84 else: _snake_case : Tuple = 2_56 _snake_case : int = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _snake_case : int = 1_51 _snake_case : int = 5_12 _snake_case : Tuple = 'ade20k-id2label.json' _snake_case : List[str] = True elif task_name.startswith('voc_' ): _snake_case : Union[str, Any] = 21 _snake_case : str = 5_12 _snake_case : int = 'pascal-voc-id2label.json' _snake_case : Union[str, Any] = True # orig_config _snake_case : Tuple = load_orig_config_file(__lowerCAmelCase ) assert getattr(__lowerCAmelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : int = getattr(__lowerCAmelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__lowerCAmelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : str = getattr(__lowerCAmelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Any = getattr(__lowerCAmelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: _snake_case : Optional[int] = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) _snake_case : Dict = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) _snake_case : Optional[int] = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _snake_case : Any = 'huggingface/label-files' _snake_case : Optional[int] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : List[Any] = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = dct.pop(__lowerCAmelCase ) _snake_case : int = val def A__( __lowerCAmelCase , __lowerCAmelCase=False ): if base_model: _snake_case : Optional[int] = '' else: _snake_case : List[Any] = 'mobilevitv2.' _snake_case : List[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[Any] = k[8:] else: _snake_case : Optional[Any] = k if ".block." in k: _snake_case : List[str] = k_new.replace('.block.' , '.' ) if ".conv." in k: _snake_case : Optional[int] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _snake_case : Any = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _snake_case : Dict = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: _snake_case : Any = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _snake_case : List[str] = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _snake_case : Union[str, Any] = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: _snake_case : Union[str, Any] = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: _snake_case : List[Any] = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: _snake_case : Optional[int] = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _snake_case : str = [0, 1] elif i == 4: _snake_case : str = [0, 1, 2, 3] elif i == 5: _snake_case : Tuple = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: _snake_case : Optional[Any] = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: _snake_case : List[Any] = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: _snake_case : Any = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _snake_case : Union[str, Any] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _snake_case : Dict = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _snake_case : List[str] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _snake_case : Dict = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _snake_case : int = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _snake_case : Dict = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _snake_case : str = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _snake_case : Optional[int] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A__( __lowerCAmelCase ): _snake_case : Any = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__lowerCAmelCase ) for k in keys_to_ignore: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( ): _snake_case : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : List[Any] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[str] = get_mobilevitva_config(__lowerCAmelCase , __lowerCAmelCase ) # load original state_dict _snake_case : Optional[int] = torch.load(__lowerCAmelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _snake_case : Union[str, Any] = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ).eval() _snake_case : Tuple = False else: _snake_case : Any = MobileViTVaForImageClassification(__lowerCAmelCase ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Any = checkpoint remove_unused_keys(__lowerCAmelCase ) _snake_case : str = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load modified state_dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case : Tuple = model(**__lowerCAmelCase ) # verify classification model if task_name.startswith('imagenet' ): _snake_case : Union[str, Any] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ : Optional[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def A__( __lowerCAmelCase ): return input_array.reshape((input_array.size, 1) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Tuple = np.nan for i in range(__lowerCAmelCase ): _snake_case : List[Any] = features[:, labels == i] _snake_case : int = data.mean(1 ) # Centralize the data of class i _snake_case : List[Any] = data - column_reshape(__lowerCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__lowerCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case : List[str] = np.dot(__lowerCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = features.mean(1 ) _snake_case : Union[str, Any] = np.nan for i in range(__lowerCAmelCase ): _snake_case : str = features[:, labels == i] _snake_case : int = data.shape[1] _snake_case : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase ) , (column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case : List[Any] = device_data * np.dot( column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase ) , (column_reshape(__lowerCAmelCase ) - column_reshape(__lowerCAmelCase )).T , ) return covariance_sum / features.shape[1] def A__( __lowerCAmelCase , __lowerCAmelCase ): # Check if the features have been loaded if features.any(): _snake_case : Optional[Any] = features.mean(1 ) # Center the dataset _snake_case : int = features - np.reshape(__lowerCAmelCase , (data_mean.size, 1) ) _snake_case : Optional[int] = np.dot(__lowerCAmelCase , centered_data.T ) / features.shape[1] _snake_case : Any = np.linalg.eigh(__lowerCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _snake_case : List[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _snake_case : List[Any] = np.dot(filtered_eigenvectors.T , __lowerCAmelCase ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=__lowerCAmelCase ) logging.error('Dataset empty' ) raise AssertionError def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert classes > dimensions # Check if features have been already loaded if features.any: _snake_case : Optional[int] = eigh( covariance_between_classes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , covariance_within_classes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , ) _snake_case : Optional[int] = eigenvectors[:, ::-1][:, :dimensions] _snake_case : Union[str, Any] = np.linalg.svd(__lowerCAmelCase ) _snake_case : int = svd_matrix[:, 0:dimensions] _snake_case : List[str] = np.dot(filtered_svd_matrix.T , __lowerCAmelCase ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=__lowerCAmelCase ) logging.error('Dataset empty' ) raise AssertionError def A__( ): # Create dummy dataset with 2 classes and 3 features _snake_case : str = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _snake_case : str = np.array([0, 0, 0, 1, 1] ) _snake_case : Union[str, Any] = 2 _snake_case : List[str] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__lowerCAmelCase ) as error_info: _snake_case : Optional[Any] = linear_discriminant_analysis( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if isinstance(__lowerCAmelCase , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def A__( ): _snake_case : str = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _snake_case : List[Any] = 2 _snake_case : Any = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(__lowerCAmelCase ) as error_info: _snake_case : Dict = principal_component_analysis(__lowerCAmelCase , __lowerCAmelCase ) if not np.allclose(__lowerCAmelCase , __lowerCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
710
import itertools import math def A__( __lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__( ): _snake_case : Optional[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def A__( __lowerCAmelCase = 1_00_01 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
652
0
from math import factorial def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _snake_case : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _snake_case : List[Any] = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
711
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case , _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case , _snake_case , _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
652
0
from __future__ import annotations import math import random from typing import Any class lowercase : """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' _snake_case : list[Any] = [] _snake_case : int = 0 _snake_case : int = 0 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return self.head == self.tail def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Any ): '''simple docstring''' self.data.append(lowerCamelCase_ ) _snake_case : Union[str, Any] = self.tail + 1 def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : List[str] = self.data[self.head] _snake_case : Union[str, Any] = self.head + 1 return ret def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' return self.tail - self.head def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : Tuple = data _snake_case : MyNode | None = None _snake_case : MyNode | None = None _snake_case : int = 1 def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.data def __UpperCAmelCase ( self : str ): '''simple docstring''' return self.left def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.right def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.height def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Any ): '''simple docstring''' _snake_case : int = data def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : MyNode | None ): '''simple docstring''' _snake_case : int = node def __UpperCAmelCase ( self : Any , lowerCamelCase_ : MyNode | None ): '''simple docstring''' _snake_case : Dict = node def __UpperCAmelCase ( self : str , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : int = height def A__( __lowerCAmelCase ): if node is None: return 0 return node.get_height() def A__( __lowerCAmelCase , __lowerCAmelCase ): if a > b: return a return b def A__( __lowerCAmelCase ): print('left rotation node:' , node.get_data() ) _snake_case : str = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__lowerCAmelCase ) _snake_case : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCAmelCase ) _snake_case : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCAmelCase ) return ret def A__( __lowerCAmelCase ): print('right rotation node:' , node.get_data() ) _snake_case : str = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__lowerCAmelCase ) _snake_case : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCAmelCase ) _snake_case : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCAmelCase ) return ret def A__( __lowerCAmelCase ): _snake_case : Union[str, Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(__lowerCAmelCase ) ) return right_rotation(__lowerCAmelCase ) def A__( __lowerCAmelCase ): _snake_case : Union[str, Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(__lowerCAmelCase ) ) return left_rotation(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): if node is None: return MyNode(__lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _snake_case : int = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _snake_case : Union[str, Any] = right_rotation(__lowerCAmelCase ) else: _snake_case : str = lr_rotation(__lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , __lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _snake_case : List[str] = node.get_right() assert right_child is not None if data < right_child.get_data(): _snake_case : Any = rl_rotation(__lowerCAmelCase ) else: _snake_case : Any = left_rotation(__lowerCAmelCase ) _snake_case : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCAmelCase ) return node def A__( __lowerCAmelCase ): while True: _snake_case : List[str] = root.get_right() if right_child is None: break _snake_case : Union[str, Any] = right_child return root.get_data() def A__( __lowerCAmelCase ): while True: _snake_case : Union[str, Any] = root.get_left() if left_child is None: break _snake_case : Tuple = left_child return root.get_data() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = root.get_left() _snake_case : Any = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _snake_case : List[Any] = get_left_most(__lowerCAmelCase ) root.set_data(__lowerCAmelCase ) root.set_right(del_node(__lowerCAmelCase , __lowerCAmelCase ) ) elif left_child is not None: _snake_case : List[str] = left_child elif right_child is not None: _snake_case : Optional[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(__lowerCAmelCase , __lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__lowerCAmelCase , __lowerCAmelCase ) ) if get_height(__lowerCAmelCase ) - get_height(__lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _snake_case : List[Any] = left_rotation(__lowerCAmelCase ) else: _snake_case : Optional[Any] = rl_rotation(__lowerCAmelCase ) elif get_height(__lowerCAmelCase ) - get_height(__lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _snake_case : Optional[int] = right_rotation(__lowerCAmelCase ) else: _snake_case : str = lr_rotation(__lowerCAmelCase ) _snake_case : Tuple = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__lowerCAmelCase ) return root class lowercase : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' _snake_case : MyNode | None = None def __UpperCAmelCase ( self : Any ): '''simple docstring''' return get_height(self.root ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Any ): '''simple docstring''' print('insert:' + str(lowerCamelCase_ ) ) _snake_case : Any = insert_node(self.root , lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Any ): '''simple docstring''' print('delete:' + str(lowerCamelCase_ ) ) if self.root is None: print('Tree is empty!' ) return _snake_case : Dict = del_node(self.root , lowerCamelCase_ ) def __str__( self : Dict , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' _snake_case : Tuple = '' _snake_case : str = MyQueue() q.push(self.root ) _snake_case : int = self.get_height() if layer == 0: return output _snake_case : Union[str, Any] = 0 while not q.is_empty(): _snake_case : List[Any] = q.pop() _snake_case : str = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCamelCase_ ) q.push(lowerCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _snake_case : List[str] = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , lowerCamelCase_ ) - 1: _snake_case : List[str] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def A__( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase_ : int = AVLtree() lowercase_ : str = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
712
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase_ : Dict = '''bert-base-cased''' lowercase_ : Any = '''google/pegasus-xsum''' lowercase_ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase_ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase_ : Any = '''patrickvonplaten/t5-tiny-random''' lowercase_ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase_ : Dict = '''sshleifer/tiny-mbart''' lowercase_ : str = '''sshleifer/tiny-marian-en-de''' def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = '\n'.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('w' ).writelines(__lowerCAmelCase ) def A__( __lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.source''' ) , __lowerCAmelCase ) _dump_articles(os.path.join(__lowerCAmelCase , F'''{split}.target''' ) , __lowerCAmelCase ) return tmp_dir class lowercase ( a_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Optional[int] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Any = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Dict = 4 _snake_case : Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _snake_case : Optional[Any] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) _snake_case : List[str] = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _snake_case : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _snake_case : Dict = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) _snake_case : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) _snake_case : Union[str, Any] = 4 _snake_case : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) _snake_case : Dict = DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : int = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _snake_case : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _snake_case : Any = tmp_dir.joinpath('train.source' ).open().readlines() _snake_case : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 1_28 , lowerCamelCase_ ) _snake_case : Tuple = {x.name for x in tmp_dir.iterdir()} _snake_case : Dict = {x.name for x in save_dir.iterdir()} _snake_case : str = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _snake_case : int = self._get_dataset(max_len=64 ) _snake_case : List[str] = 64 _snake_case : str = ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) _snake_case : Optional[Any] = [len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples _snake_case : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : List[Any] = [] _snake_case : List[Any] = [] for batch in data_loader: _snake_case : Any = batch['input_ids'].shape _snake_case : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _snake_case : int = np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f'''too many tokens in {len(lowerCamelCase_ )} batches''' ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : str = self._get_dataset(max_len=5_12 ) _snake_case : Optional[Any] = 2 _snake_case : Dict = ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) _snake_case : int = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) _snake_case : str = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) _snake_case : Tuple = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ : List[str] , lowerCamelCase_ : Any="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Tuple=10_00 , lowerCamelCase_ : Tuple=1_28 ): '''simple docstring''' if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): _snake_case : Dict = 'examples/seq2seq/wmt_en_ro' _snake_case : List[Any] = max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: _snake_case : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' _snake_case : List[Any] = max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _snake_case : str = SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = self._get_dataset() _snake_case : List[str] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) _snake_case : Optional[Any] = set(DistributedSortishSampler(lowerCamelCase_ , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: _snake_case : int = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _snake_case : Optional[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _snake_case : Tuple = SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _snake_case : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Any = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0