code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): def count_of_possible_combinations(lowercase_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): def count_of_possible_combinations_with_dp_array( lowercase_ : int , lowercase_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowercase = sum( count_of_possible_combinations_with_dp_array(target - item , lowercase_ ) for item in array ) lowercase = answer return answer lowercase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): lowercase = [0] * (target + 1) lowercase = 1 for i in range(1 , target + 1 ): for j in range(lowercase_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Tuple = 3 lowercase_ : Any = 5 lowercase_ : Dict = [1, 2, 5] print(combination_sum_iv(n, array, target))
653
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : list ): def merge(lowercase_ : list , lowercase_ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase_ ) <= 1: return collection lowercase = len(lowercase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
653
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __UpperCamelCase (_UpperCAmelCase ): def _a ( self ) -> int: '''simple docstring''' lowercase = SMALL_MODEL_IDENTIFIER lowercase = """pt""" lowercase = """tf""" def _a ( self , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = """mock_framework""" # Framework provided - return whatever the user provides lowercase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) lowercase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) lowercase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) lowercase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) lowercase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): lowercase = FeaturesManager.determine_framework(_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = MagicMock(return_value=_lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _lowerCAmelCase ): lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase = MagicMock(return_value=_lowerCAmelCase ) with patch("""transformers.onnx.features.is_torch_available""" , _lowerCAmelCase ): lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch lowercase = MagicMock(return_value=_lowerCAmelCase ) lowercase = MagicMock(return_value=_lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , _lowerCAmelCase ): lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error lowercase = MagicMock(return_value=_lowerCAmelCase ) lowercase = MagicMock(return_value=_lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): lowercase = FeaturesManager.determine_framework(self.test_model )
653
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
1
'''simple docstring''' import math def SCREAMING_SNAKE_CASE ( lowercase_ : int ): assert isinstance(lowercase_ , lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowercase = range(3 , int(math.sqrt(lowercase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[str]=1 , **lowercase_ : List[str] ): lowercase = factor * value lowercase = value while not is_prime(lowercase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowercase_ ) return value
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase (_UpperCAmelCase ): __A = ['''vqvae'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , mel=_lowerCAmelCase , vqvae=_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , _lowerCAmelCase ) else 1000 @torch.no_grad() def __call__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCAmelCase ) lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_lowerCAmelCase , device=self.device , ) lowercase = noise lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self.mel.audio_slice_to_image(_lowerCAmelCase ) lowercase = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) lowercase = (input_image / 255) * 2 - 1 lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase = self.vqvae.encode(torch.unsqueeze(_lowerCAmelCase , 0 ) ).latent_dist.sample( generator=_lowerCAmelCase )[0] lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , self.scheduler.timesteps[start_step - 1] ) lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase = int(mask_start_secs * pixels_per_second ) lowercase = int(mask_end_secs * pixels_per_second ) lowercase = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _lowerCAmelCase ): lowercase = self.unet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["""sample"""] else: lowercase = self.unet(_lowerCAmelCase , _lowerCAmelCase )["""sample"""] if isinstance(self.scheduler , _lowerCAmelCase ): lowercase = self.scheduler.step( model_output=_lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , )["""prev_sample"""] else: lowercase = self.scheduler.step( model_output=_lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , generator=_lowerCAmelCase , )["""prev_sample"""] if mask is not None: if mask_start > 0: lowercase = mask[:, step, :, :mask_start] if mask_end > 0: lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase = 1 / self.vqvae.config.scaling_factor * images lowercase = self.vqvae.decode(_lowerCAmelCase )["""sample"""] lowercase = (images / 2 + 0.5).clamp(0 , 1 ) lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowercase = (images * 255).round().astype("""uint8""" ) lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCAmelCase , mode="""RGB""" ).convert("""L""" ) for _ in images) ) lowercase = [self.mel.image_to_audio(_lowerCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_lowerCAmelCase ) ) @torch.no_grad() def _a ( self , _lowerCAmelCase , _lowerCAmelCase = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , _lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase ) lowercase = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) lowercase = (sample / 255) * 2 - 1 lowercase = torch.Tensor(_lowerCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase = self.scheduler.alphas_cumprod[t] lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase = 1 - alpha_prod_t lowercase = self.unet(_lowerCAmelCase , _lowerCAmelCase )["""sample"""] lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> torch.Tensor: '''simple docstring''' lowercase = acos(torch.dot(torch.flatten(_lowerCAmelCase ) , torch.flatten(_lowerCAmelCase ) ) / torch.norm(_lowerCAmelCase ) / torch.norm(_lowerCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCAmelCase ) + sin(alpha * theta ) * xa / sin(_lowerCAmelCase )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase_ : Optional[int] = random.Random() def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int=1.0 , lowercase_ : List[Any]=None , lowercase_ : Optional[Any]=None ): if rng is None: lowercase = global_rng lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=400 , _lowerCAmelCase=2000 , _lowerCAmelCase=1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1_6000 , _lowerCAmelCase=True , _lowerCAmelCase=80 , _lowerCAmelCase=16 , _lowerCAmelCase=64 , _lowerCAmelCase="hann_window" , _lowerCAmelCase=80 , _lowerCAmelCase=7600 , _lowerCAmelCase=1E-10 , _lowerCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = min_seq_length lowercase = max_seq_length lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase = feature_size lowercase = padding_value lowercase = sampling_rate lowercase = do_normalize lowercase = num_mel_bins lowercase = hop_length lowercase = win_length lowercase = win_function lowercase = fmin lowercase = fmax lowercase = mel_floor lowercase = return_attention_mask def _a ( self ) -> List[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _a ( self , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' def _flatten(_lowerCAmelCase ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: lowercase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def _a ( self , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Any: '''simple docstring''' if equal_length: lowercase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = SpeechTaFeatureExtractor def _a ( self ) -> Tuple: '''simple docstring''' lowercase = SpeechTaFeatureExtractionTester(self ) def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowercase = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values lowercase = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched lowercase = feat_extract(_lowerCAmelCase , return_tensors="""np""" ).input_values lowercase = feat_extract(_lowerCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase = ["""longest""", """max_length""", """do_not_pad"""] lowercase = [None, 1600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): lowercase = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors="""np""" ) lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase = range(800 , 1400 , 200 ) lowercase = [floats_list((1, x) )[0] for x in lengths] lowercase = ["""longest""", """max_length""", """do_not_pad"""] lowercase = [None, 1600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): lowercase = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase = np.random.rand(100 ).astype(np.floataa ) lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size lowercase = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values lowercase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_values lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase = np.asarray(_lowerCAmelCase ) lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_values lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.feat_extract_tester.prepare_inputs_for_target() lowercase = self.feature_extraction_class(**self.feat_extract_dict ) lowercase = feat_extract.model_input_names[0] lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _a ( self ) -> Any: '''simple docstring''' lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) lowercase = self.feature_extraction_class(**self.feat_extract_dict ) lowercase = feat_extract.model_input_names[0] lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _a ( self ) -> str: '''simple docstring''' lowercase = self.feature_extraction_class(**self.feat_extract_dict ) lowercase = self.feat_extract_tester.prepare_inputs_for_target() lowercase = feat_extract.model_input_names[0] lowercase = BatchFeature({input_name: speech_inputs} ) lowercase = feat_extract.num_mel_bins # hack! lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.feat_extract_dict lowercase = True lowercase = self.feature_extraction_class(**_lowerCAmelCase ) lowercase = self.feat_extract_tester.prepare_inputs_for_target() lowercase = [len(_lowerCAmelCase ) for x in speech_inputs] lowercase = feat_extract.model_input_names[0] lowercase = BatchFeature({input_name: speech_inputs} ) lowercase = feat_extract.num_mel_bins # hack! lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.feat_extract_dict lowercase = True lowercase = self.feature_extraction_class(**_lowerCAmelCase ) lowercase = self.feat_extract_tester.prepare_inputs_for_target() lowercase = [len(_lowerCAmelCase ) for x in speech_inputs] lowercase = feat_extract.model_input_names[0] lowercase = BatchFeature({input_name: speech_inputs} ) lowercase = min(_lowerCAmelCase ) lowercase = feat_extract.num_mel_bins # hack! lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' from datasets import load_dataset lowercase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowercase = ds.sort("""id""" ).select(range(_lowerCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _a ( self ) -> Dict: '''simple docstring''' lowercase = torch.tensor( [2.38_04E-03, 2.07_52E-03, 1.98_36E-03, 2.10_57E-03, 1.61_74E-03, 3.05_18E-04, 9.15_53E-05, 3.35_69E-04, 9.76_56E-04, 1.83_11E-03, 2.01_42E-03, 2.10_57E-03, 1.73_95E-03, 4.57_76E-04, -3.96_73E-04, 4.57_76E-04, 1.00_71E-03, 9.15_53E-05, 4.88_28E-04, 1.15_97E-03, 7.32_42E-04, 9.46_04E-04, 1.80_05E-03, 1.83_11E-03, 8.85_01E-04, 4.27_25E-04, 4.88_28E-04, 7.32_42E-04, 1.09_86E-03, 2.10_57E-03] ) # fmt: on lowercase = self._load_datasamples(1 ) lowercase = SpeechTaFeatureExtractor() lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on lowercase = self._load_datasamples(1 ) lowercase = SpeechTaFeatureExtractor() lowercase = feature_extractor(audio_target=_lowerCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
653
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Dict = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class __UpperCamelCase (_UpperCAmelCase ): __A = '''marian''' __A = ['''past_key_values'''] __A = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCAmelCase=5_8101 , _lowerCAmelCase=None , _lowerCAmelCase=1024 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=1024 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=5_8100 , _lowerCAmelCase=False , _lowerCAmelCase=5_8100 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = decoder_vocab_size or vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True lowercase = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class __UpperCamelCase (_UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase = {0: """batch"""} lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase = {0: """batch""", 1: """decoder_sequence"""} lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase , lowercase = self.num_layers for i in range(_lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} else: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = super().outputs else: lowercase = super(_lowerCAmelCase , self ).outputs if self.use_past: lowercase , lowercase = self.num_layers for i in range(_lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs lowercase = seq_length if not self.use_past else 1 lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape lowercase = common_inputs["""decoder_input_ids"""].shape[1] lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = decoder_seq_length + 3 lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase = self.num_layers lowercase = min(_lowerCAmelCase , _lowerCAmelCase ) lowercase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers lowercase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. lowercase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase = seqlen + 2 lowercase , lowercase = self.num_layers lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = common_inputs["""attention_mask"""].dtype lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) lowercase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) lowercase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: lowercase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: lowercase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @property def _a ( self ) -> float: '''simple docstring''' return 1E-4
653
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
1
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
'''simple docstring''' import socket def SCREAMING_SNAKE_CASE ( ): lowercase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase = socket.gethostname() lowercase = 1_2312 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase = sock.recv(1024 ) if not data: break out_file.write(lowercase_ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
1
'''simple docstring''' from __future__ import annotations lowercase_ : Any = 1.6_021e-19 # units = C def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : float , lowercase_ : float , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowercase_ : List[Any] = None lowercase_ : Any = { '''7B''': 1_1008, '''13B''': 1_3824, '''30B''': 1_7920, '''65B''': 2_2016, '''70B''': 2_8672, } lowercase_ : str = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Any=1 , lowercase_ : Optional[int]=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): with open(lowercase_ , """r""" ) as f: return json.load(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : int ): with open(lowercase_ , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str=True ): os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase = os.path.join(lowercase_ , """tmp""" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase = read_json(os.path.join(lowercase_ , """params.json""" ) ) lowercase = NUM_SHARDS[model_size] lowercase = params["""n_layers"""] lowercase = params["""n_heads"""] lowercase = n_heads // num_shards lowercase = params["""dim"""] lowercase = dim // n_heads lowercase = 10_000.0 lowercase = 1.0 / (base ** (torch.arange(0 , lowercase_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowercase = params["""n_kv_heads"""] # for GQA / MQA lowercase = n_heads_per_shard // num_key_value_heads lowercase = dim // num_key_value_heads else: # compatibility with other checkpoints lowercase = n_heads lowercase = n_heads_per_shard lowercase = dim # permute for sliced rotary def permute(lowercase_ : Tuple , lowercase_ : List[Any]=n_heads , lowercase_ : int=dim , lowercase_ : List[str]=dim ): return w.view(lowercase_ , dima // n_heads // 2 , 2 , lowercase_ ).transpose(1 , 2 ).reshape(lowercase_ , lowercase_ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowercase = torch.load(os.path.join(lowercase_ , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded lowercase = [ torch.load(os.path.join(lowercase_ , F"""consolidated.{i:02d}.pth""" ) , map_location="""cpu""" ) for i in range(lowercase_ ) ] lowercase = 0 lowercase = {"""weight_map""": {}} for layer_i in range(lowercase_ ): lowercase = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowercase = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } lowercase = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) ) lowercase = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , ) lowercase = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(lowercase_ )] , dim=1 ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(lowercase_ )] , dim=0 ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(lowercase_ )] , dim=1 ) lowercase = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(lowercase_ )] , dim=0 ) lowercase = inv_freq for k, v in state_dict.items(): lowercase = filename param_count += v.numel() torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) lowercase = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowercase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: lowercase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(lowercase_ )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(lowercase_ )] , dim=0 ), } for k, v in state_dict.items(): lowercase = filename param_count += v.numel() torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) # Write configs lowercase = {"""total_size""": param_count * 2} write_json(lowercase_ , os.path.join(lowercase_ , """pytorch_model.bin.index.json""" ) ) lowercase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 lowercase = params["""multiple_of"""] if """multiple_of""" in params else 256 lowercase = LlamaConfig( hidden_size=lowercase_ , intermediate_size=compute_intermediate_size(lowercase_ , lowercase_ , lowercase_ ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=lowercase_ , ) config.save_pretrained(lowercase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) lowercase = LlamaForCausalLM.from_pretrained(lowercase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowercase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(lowercase_ , safe_serialization=lowercase_ ) shutil.rmtree(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : str ): # Initialize the tokenizer based on the `spm` model lowercase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) lowercase = tokenizer_class(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=lowercase_ , help="""Whether or not to save using `safetensors`.""" ) lowercase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowercase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , lowercase_ ) if __name__ == "__main__": main()
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowercase_ : Optional[int] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowercase_ : int = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowercase_ : Any = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase (datasets.Metric ): def _a ( self ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _a ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> int: '''simple docstring''' lowercase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
653
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) lowercase = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) lowercase = False lowercase = nn.Dropout(p=_lowerCAmelCase ) lowercase = TaConfig( vocab_size=_lowerCAmelCase , d_model=_lowerCAmelCase , num_heads=_lowerCAmelCase , d_kv=_lowerCAmelCase , d_ff=_lowerCAmelCase , dropout_rate=_lowerCAmelCase , feed_forward_proj=_lowerCAmelCase , is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , ) lowercase = nn.ModuleList() for lyr_num in range(_lowerCAmelCase ): lowercase = TaBlock(_lowerCAmelCase ) self.encoders.append(_lowerCAmelCase ) lowercase = TaLayerNorm(_lowerCAmelCase ) lowercase = nn.Dropout(p=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.token_embedder(_lowerCAmelCase ) lowercase = encoder_input_tokens.shape[1] lowercase = torch.arange(_lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowerCAmelCase ) lowercase = self.dropout_pre(_lowerCAmelCase ) # inverted the attention mask lowercase = encoder_input_tokens.size() lowercase = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase ) for lyr in self.encoders: lowercase = lyr(_lowerCAmelCase , _lowerCAmelCase )[0] lowercase = self.layer_norm(_lowerCAmelCase ) return self.dropout_post(_lowerCAmelCase ), encoder_inputs_mask
653
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowercase_ : List[str] = False lowercase_ : Tuple = True lowercase_ : Any = False if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowercase_ : Tuple = parser.parse_args() lowercase_ : Optional[Any] = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } lowercase_ : List[str] = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } lowercase_ : Optional[int] = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: lowercase_ : str = reader.read() lowercase_ : Dict = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): lowercase_ : str = UNetaDModel(**config) else: lowercase_ : List[str] = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel lowercase_ : List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowercase_ : List[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowercase_ : Optional[Any] = config[key] del config[key] lowercase_ : str = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] lowercase_ : List[str] = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: lowercase_ : Optional[Any] = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) lowercase_ : List[Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue lowercase_ : int = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: lowercase_ : Optional[Any] = param_value lowercase_ : List[Any] = True if not has_changed: lowercase_ : List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
653
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Tuple=7 ): lowercase = None if token is not None: lowercase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase = """636036""" lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase = requests.get(lowercase_ , headers=lowercase_ ).json() return result["workflow_runs"] def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = get_daily_ci_runs(lowercase_ ) lowercase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase = workflow_run["""id"""] break return workflow_run_id def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : List[str] ): lowercase = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: lowercase = get_artifacts_links(worflow_run_id=lowercase_ , token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ , artifact_url=lowercase_ , output_dir=lowercase_ , token=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str ): get_last_daily_ci_artifacts(lowercase_ , lowercase_ , lowercase_ ) lowercase = {} for artifact_name in artifact_names: lowercase = os.path.join(lowercase_ , F"""{artifact_name}.zip""" ) if os.path.isfile(lowercase_ ): lowercase = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: lowercase = f.read().decode("""UTF-8""" ) return results
653
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase (_UpperCAmelCase ): __A = (DPMSolverSinglestepScheduler,) __A = (('''num_inference_steps''', 25),) def _a ( self , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**_lowerCAmelCase ) return config def _a ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase , lowercase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self ) -> Dict: '''simple docstring''' pass def _a ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if scheduler is None: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _a ( self ) -> Any: '''simple docstring''' lowercase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase = 50 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _a ( self ) -> Tuple: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self ) -> str: '''simple docstring''' lowercase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowercase = self.full_loop(scheduler=_lowerCAmelCase ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 lowercase = DEISMultistepScheduler.from_config(scheduler.config ) lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase = self.full_loop(scheduler=_lowerCAmelCase ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _a ( self ) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="""dpmsolver++""" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _a ( self ) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) lowercase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _a ( self ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _a ( self ) -> Dict: '''simple docstring''' self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="""learned_range""" ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.full_loop() lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.full_loop(prediction_type="""v_prediction""" ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=_lowerCAmelCase ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: lowercase = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = 1 lowercase = FrozenDict(_lowerCAmelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: lowercase = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = True lowercase = FrozenDict(_lowerCAmelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowerCAmelCase , segmentation_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def _a ( self , _lowerCAmelCase = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self ) -> Optional[Any]: '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 512 , _lowerCAmelCase = 512 , _lowerCAmelCase = 50 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) lowercase = self.segmentation_model(**_lowerCAmelCase ) lowercase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase = self.numpy_to_pil(_lowerCAmelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , height=_lowerCAmelCase , width=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , negative_prompt=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , latents=_lowerCAmelCase , output_type=_lowerCAmelCase , return_dict=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=_lowerCAmelCase , )
653
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowercase_ : Optional[Any] = trt.Logger(trt.Logger.WARNING) lowercase_ : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowercase_ : Union[str, Any] = logging.getLogger(__name__) lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowercase_ : str = parser.parse_args() if args.tokenizer_name: lowercase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowercase_ : int = args.per_device_eval_batch_size lowercase_ : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowercase_ : Optional[Any] = True lowercase_ : List[str] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowercase_ : Tuple = '''temp_engine/bert-fp16.engine''' if args.inta: lowercase_ : str = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowercase_ : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowercase_ : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] lowercase_ : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowercase_ : Any = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowercase_ : str = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowercase_ : List[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : str , lowercase_ : Any ): lowercase = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase_ ) # start time lowercase = time.time() # Run inference context.execute_async( bindings=[int(lowercase_ ) for d_inp in d_inputs] + [int(lowercase_ ), int(lowercase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase = time.time() lowercase = end_time - start_time lowercase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowercase_ : List[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ : Tuple = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowercase_ : Optional[int] = raw_datasets['''validation'''].column_names lowercase_ : Tuple = '''question''' if '''question''' in column_names else column_names[0] lowercase_ : int = '''context''' if '''context''' in column_names else column_names[1] lowercase_ : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowercase_ : Union[str, Any] = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase_ : str = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowercase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase_ , stride=args.doc_stride , return_overflowing_tokens=lowercase_ , return_offsets_mapping=lowercase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase = tokenized_examples.sequence_ids(lowercase_ ) lowercase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowercase_ : List[Any] = raw_datasets['''validation'''] # Validation Feature Creation lowercase_ : Tuple = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowercase_ : List[str] = default_data_collator lowercase_ : Any = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowercase_ : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. lowercase = postprocess_qa_predictions( examples=lowercase_ , features=lowercase_ , predictions=lowercase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase_ , label_ids=lowercase_ ) lowercase_ : str = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): return trt.volume(engine.get_binding_shape(lowercase_ ) ) * engine.get_binding_dtype(lowercase_ ).itemsize # Allocate device memory for inputs and outputs. lowercase_ : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowercase_ : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowercase_ : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowercase_ : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) lowercase_ : List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowercase_ : List[Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowercase_ : List[Any] = 0.0 lowercase_ : List[str] = 0 lowercase_ : Optional[Any] = timeit.default_timer() lowercase_ : int = None for step, batch in enumerate(eval_dataloader): lowercase_ , lowercase_ : Tuple = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowercase_ , lowercase_ : Union[str, Any] = outputs lowercase_ : Dict = torch.tensor(start_logits) lowercase_ : str = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowercase_ : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowercase_ : Optional[int] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowercase_ : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowercase_ : Any = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowercase_ : Dict = nested_truncate(all_preds, len(eval_dataset)) lowercase_ : List[str] = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) lowercase_ : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) lowercase_ : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
653
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase (_UpperCAmelCase ): __A = (UniPCMultistepScheduler,) __A = (('''num_inference_steps''', 25),) def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**_lowerCAmelCase ) return config def _a ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase , lowercase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> str: '''simple docstring''' lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' if scheduler is None: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _a ( self ) -> Dict: '''simple docstring''' lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(_lowerCAmelCase , """set_timesteps""" ): lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase = dummy_past_residuals[: scheduler.config.solver_order] lowercase = scheduler.timesteps[5] lowercase = scheduler.timesteps[6] lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowercase = self.full_loop(scheduler=_lowerCAmelCase ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase = DEISMultistepScheduler.from_config(scheduler.config ) lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase = self.full_loop(scheduler=_lowerCAmelCase ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def _a ( self ) -> Optional[int]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _a ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , ) lowercase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _a ( self ) -> List[str]: '''simple docstring''' self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _a ( self ) -> str: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.full_loop() lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def _a ( self ) -> int: '''simple docstring''' lowercase = self.full_loop(prediction_type="""v_prediction""" ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def _a ( self , **_lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
653
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = RobertaTokenizer __A = RobertaTokenizerFast __A = True __A = {'''cls_token''': '''<s>'''} def _a ( self ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def _a ( self , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = """lower newer""" lowercase = """lower newer""" return input_text, output_text def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase = """lower newer""" lowercase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase = tokenizer.tokenize(_lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_lowerCAmelCase ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_lowerCAmelCase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.tokenizer_class.from_pretrained("""roberta-base""" ) lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.encode( """sequence builders""" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) lowercase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_tokenizer() lowercase = """Encode this sequence.""" lowercase = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) # Testing spaces after special tokens lowercase = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase )} ) # mask token has a left space lowercase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) lowercase = """Encode <mask> sequence""" lowercase = """Encode <mask>sequence""" lowercase = tokenizer.encode(_lowerCAmelCase ) lowercase = encoded.index(_lowerCAmelCase ) lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = tokenizer.encode(_lowerCAmelCase ) lowercase = encoded.index(_lowerCAmelCase ) lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) lowercase = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) lowercase = """A, <mask> AllenNLP sentence.""" lowercase = tokenizer_r.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) lowercase = tokenizer_p.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _a ( self ) -> int: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _lowerCAmelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _lowerCAmelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] , _lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowercase = F"""{text_of_1_token} {text_of_1_token}""" lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) lowercase = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase ) lowercase = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , )
653
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : list[str] ): lowercase = """""" for word_or_phrase in separated: if not isinstance(lowercase_ , lowercase_ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(lowercase_ ) if __name__ == "__main__": from doctest import testmod testmod()
653
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
1
'''simple docstring''' from collections.abc import Callable def SCREAMING_SNAKE_CASE ( lowercase_ : Callable[[float], float] , lowercase_ : float , lowercase_ : float ): lowercase = a lowercase = b if function(lowercase_ ) == 0: # one of the a or b is a root for the function return a elif function(lowercase_ ) == 0: return b elif ( function(lowercase_ ) * function(lowercase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: lowercase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase_ ) == 0: return mid elif function(lowercase_ ) * function(lowercase_ ) < 0: lowercase = mid else: lowercase = mid lowercase = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE ( lowercase_ : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
653
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = int(lowercase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase_ ) lowercase , lowercase = divmod(lowercase_ , 2 ) return binary_recursive(lowercase_ ) + str(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = str(lowercase_ ).strip() if not number: raise ValueError("""No input value was provided""" ) lowercase = """-""" if number.startswith("""-""" ) else """""" lowercase = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F"""{negative}0b{binary_recursive(int(lowercase_ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
653
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): __A = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __A = Features({'''image''': Image()} ) __A = Features({'''labels''': ClassLabel} ) __A = "image" __A = "labels" def _a ( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _lowerCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) lowercase = copy.deepcopy(self ) lowercase = self.label_schema.copy() lowercase = features[self.label_column] lowercase = label_schema return task_template @property def _a ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
653
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase (_UpperCAmelCase ): __A = ['''image_processor''', '''tokenizer'''] __A = '''BlipImageProcessor''' __A = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowercase = self.tokenizer lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values lowercase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: lowercase = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def _a ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
653
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( ): lowercase = 10 lowercase = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) lowercase = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowercase_ ) ), } , features=lowercase_ , ) return dataset @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : List[str] ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowercase_ ) return filename # FILE_CONTENT + files lowercase_ : Dict = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt""" lowercase = FILE_CONTENT with open(lowercase_ , """w""" ) as f: f.write(lowercase_ ) return filename @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): import bza lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" lowercase = bytes(lowercase_ , """utf-8""" ) with bza.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): import gzip lowercase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) lowercase = bytes(lowercase_ , """utf-8""" ) with gzip.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" lowercase = bytes(lowercase_ , """utf-8""" ) with lza.frame.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int ): if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowercase_ , """w""" ) as archive: archive.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[Any] ): import tarfile lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowercase_ , """w""" ) as f: f.add(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): import lzma lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" lowercase = bytes(lowercase_ , """utf-8""" ) with lzma.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Dict ): import zipfile lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" lowercase = bytes(lowercase_ , """utf-8""" ) with zstd.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = tmp_path_factory.mktemp("""data""" ) / """file.xml""" lowercase = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowercase_ , """w""" ) as f: f.write(lowercase_ ) return filename lowercase_ : Dict = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] lowercase_ : str = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] lowercase_ : List[Any] = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } lowercase_ : Dict = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] lowercase_ : int = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): lowercase = datasets.Dataset.from_dict(lowercase_ ) lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Any ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowercase_ ) ) as con: lowercase = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowercase_ , """w""" , newline="""""" ) as f: lowercase = csv.DictWriter(lowercase_ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowercase_ , """w""" , newline="""""" ) as f: lowercase = csv.DictWriter(lowercase_ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Optional[Any] ): import bza lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowercase_ , """rb""" ) as f: lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase_ , """wb""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Dict ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowercase_ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Tuple ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase_ ) ) ) f.write(lowercase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) lowercase = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowercase_ , """wb""" ) as f: lowercase = pq.ParquetWriter(lowercase_ , schema=lowercase_ ) lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase_ ) )] for k in DATA[0]} , schema=lowercase_ ) writer.write_table(lowercase_ ) writer.close() return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowercase = {"""data""": DATA} with open(lowercase_ , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowercase = {"""data""": DATA_DICT_OF_LISTS} with open(lowercase_ , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowercase_ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowercase_ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowercase_ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowercase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowercase_ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : Any ): import gzip lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowercase_ , """rb""" ) as orig_file: with gzip.open(lowercase_ , """wb""" ) as zipped_file: zipped_file.writelines(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] ): import gzip lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowercase_ , """rb""" ) as orig_file: with gzip.open(lowercase_ , """wb""" ) as zipped_file: zipped_file.writelines(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : int ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Any , lowercase_ : str , lowercase_ : str ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.join("""nested""" , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase_ ) ) ) f.write(lowercase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowercase_ , """w""" ) as f: f.add(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.add(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowercase_ , """w""" ) as f: f.add(lowercase_ , arcname=os.path.join("""nested""" , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = ["""0""", """1""", """2""", """3"""] lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowercase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = ["""0""", """1""", """2""", """3"""] lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowercase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): lowercase = ["""0""", """1""", """2""", """3"""] lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowercase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[int] ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase_ ) ) ) f.write(lowercase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Any ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowercase_ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase_ ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[str] ): lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowercase_ , """w""" ) as f: f.write(lowercase_ , arcname=os.path.basename(lowercase_ ) ) f.write(lowercase_ , arcname=os.path.basename(lowercase_ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): lowercase = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ : Optional[int] = 16 lowercase_ : Tuple = 32 def SCREAMING_SNAKE_CASE ( lowercase_ : Accelerator , lowercase_ : int = 16 ): lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_ : int ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ : Any = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Dict ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": lowercase = 2 # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase = batch_size // MAX_GPU_BATCH_SIZE lowercase = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) lowercase , lowercase = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**lowercase_ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowercase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowercase_ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase = parser.parse_args() lowercase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase_ : List[str] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : str ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = _TestCommandArgs(dataset=lowercase_ , all_configs=lowercase_ , save_infos=lowercase_ ) lowercase = TestCommand(*lowercase_ ) test_command.run() lowercase = os.path.join(lowercase_ , """README.md""" ) assert os.path.exists(lowercase_ ) lowercase = DatasetInfosDict.from_directory(lowercase_ ) lowercase = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 235_1563, """num_examples""": 1_0000, }, { """name""": """validation""", """num_bytes""": 23_8418, """num_examples""": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase , lowercase = getattr(dataset_infos["""default"""] , lowercase_ ), getattr(expected_dataset_infos["""default"""] , lowercase_ ) if key == "num_bytes": assert is_apercent_close(lowercase_ , lowercase_ ) elif key == "splits": assert list(lowercase_ ) == list(lowercase_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
653
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> str: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_token_type_ids lowercase = use_input_mask lowercase = use_labels lowercase = use_mc_token_ids lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = self.vocab_size - 1 def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None if self.use_mc_token_ids: lowercase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() lowercase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self ) -> Any: '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = CTRLModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = CTRLLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = CTRLForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __A = (CTRLLMHeadModel,) if is_torch_available() else () __A = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) __A = True __A = False __A = False def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _a ( self ) -> List[str]: '''simple docstring''' lowercase = CTRLModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def _a ( self ) -> Tuple: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> str: '''simple docstring''' pass @slow def _a ( self ) -> int: '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = CTRLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _a ( self ) -> List[str]: '''simple docstring''' pass @require_torch class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _a ( self ) -> Dict: '''simple docstring''' lowercase = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(_lowerCAmelCase ) lowercase = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=_lowerCAmelCase ) # Legal the president is lowercase = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
653
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=False , ) -> Optional[Any]: '''simple docstring''' lowercase = size if size is not None else {"""height""": 20, """width""": 20} lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_reduce_labels def _a ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE ( ): lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase = Image.open(dataset[0]["""file"""] ) lowercase = Image.open(dataset[1]["""file"""] ) return image, map def SCREAMING_SNAKE_CASE ( ): lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase = Image.open(ds[0]["""file"""] ) lowercase = Image.open(ds[1]["""file"""] ) lowercase = Image.open(ds[2]["""file"""] ) lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = BeitImageProcessor if is_vision_available() else None def _a ( self ) -> int: '''simple docstring''' lowercase = BeitImageProcessingTester(self ) @property def _a ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) lowercase = [] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) lowercase , lowercase = prepare_semantic_batch_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) lowercase = True lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Dict="shi-labs/oneformer_demo" ): with open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) as f: lowercase = json.load(lowercase_ ) lowercase = {} lowercase = [] lowercase = [] for key, info in class_info.items(): lowercase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(lowercase_ ) ) lowercase = thing_ids lowercase = class_names return metadata class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=10 , _lowerCAmelCase=False , _lowerCAmelCase=255 , _lowerCAmelCase="shi-labs/oneformer_demo" , _lowerCAmelCase="ade20k_panoptic.json" , _lowerCAmelCase=10 , ) -> str: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = {"""shortest_edge""": 32, """longest_edge""": 1333} if size is None else size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = class_info_file lowercase = prepare_metadata(_lowerCAmelCase , _lowerCAmelCase ) lowercase = num_text lowercase = repo_path # for the post_process_functions lowercase = 2 lowercase = 10 lowercase = 10 lowercase = 3 lowercase = 4 lowercase = num_labels lowercase = do_reduce_labels lowercase = ignore_index def _a ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _a ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: '''simple docstring''' if not batched: lowercase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): lowercase , lowercase = image.size else: lowercase , lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size["""shortest_edge"""] * h / w ) lowercase = self.size["""shortest_edge"""] elif w > h: lowercase = self.size["""shortest_edge"""] lowercase = int(self.size["""shortest_edge"""] * w / h ) else: lowercase = self.size["""shortest_edge"""] lowercase = self.size["""shortest_edge"""] else: lowercase = [] for image in image_inputs: lowercase , lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] lowercase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width def _a ( self ) -> List[str]: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __A = image_processing_class def _a ( self ) -> str: '''simple docstring''' lowercase = OneFormerImageProcessorTester(self ) @property def _a ( self ) -> Tuple: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """ignore_index""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """class_info_file""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """num_text""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """repo_path""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """metadata""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_reduce_labels""" ) ) def _a ( self ) -> str: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) lowercase = image_processor( _lowerCAmelCase , ["""semantic"""] * len(_lowerCAmelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) lowercase = image_processor( _lowerCAmelCase , ["""semantic"""] * len(_lowerCAmelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) lowercase = image_processor( _lowerCAmelCase , ["""semantic"""] * len(_lowerCAmelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase="np" ) -> int: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowercase = self.image_processing_tester.num_labels lowercase = None lowercase = None lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowerCAmelCase ) if with_segmentation_maps: lowercase = num_labels if is_instance_map: lowercase = list(range(_lowerCAmelCase ) ) * 2 lowercase = dict(enumerate(_lowerCAmelCase ) ) lowercase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowercase = [Image.fromarray(_lowerCAmelCase ) for annotation in annotations] lowercase = image_processor( _lowerCAmelCase , ["""semantic"""] * len(_lowerCAmelCase ) , _lowerCAmelCase , return_tensors="""pt""" , instance_id_to_semantic_id=_lowerCAmelCase , pad_and_return_pixel_mask=_lowerCAmelCase , ) return inputs def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' def common(_lowerCAmelCase=False , _lowerCAmelCase=None ): lowercase = self.comm_get_image_processor_inputs( with_segmentation_maps=_lowerCAmelCase , is_instance_map=_lowerCAmelCase , segmentation_type=_lowerCAmelCase ) lowercase = inputs["""mask_labels"""] lowercase = inputs["""class_labels"""] lowercase = inputs["""pixel_values"""] lowercase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_lowerCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_lowerCAmelCase ) common(is_instance_map=_lowerCAmelCase , segmentation_type="""pil""" ) common(is_instance_map=_lowerCAmelCase , segmentation_type="""pil""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = np.zeros((20, 50) ) lowercase = 1 lowercase = 1 lowercase = 1 lowercase = binary_mask_to_rle(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = fature_extractor.post_process_semantic_segmentation(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowercase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowercase = fature_extractor.post_process_semantic_segmentation(_lowerCAmelCase , target_sizes=_lowerCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = image_processor.post_process_instance_segmentation(_lowerCAmelCase , threshold=0 ) self.assertTrue(len(_lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , _lowerCAmelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = image_processor.post_process_panoptic_segmentation(_lowerCAmelCase , threshold=0 ) self.assertTrue(len(_lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , _lowerCAmelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int = 10 , lowercase_ : int = 1000 , lowercase_ : bool = True ): assert ( isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): return int((number_a + number_a) / 2 ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : int ): assert ( isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(lowercase_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) lowercase = lower lowercase = higher lowercase = [] while True: lowercase = get_avg(lowercase_ , lowercase_ ) last_numbers.append(lowercase_ ) if answer(lowercase_ ) == "low": lowercase = number elif answer(lowercase_ ) == "high": lowercase = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def SCREAMING_SNAKE_CASE ( ): lowercase = int(input("""Enter lower value : """ ).strip() ) lowercase = int(input("""Enter high value : """ ).strip() ) lowercase = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": main()
653
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } lowercase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } lowercase = tempfile.mkdtemp() lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub lowercase = """hf-internal-testing/ngram-beam-search-decoder""" def _a ( self , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = floats_list((3, 1000) ) lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = """This is a test string""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self , _lowerCAmelCase=(2, 10, 16) , _lowerCAmelCase=77 ) -> List[Any]: '''simple docstring''' np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowercase = processor.decode(_lowerCAmelCase ) lowercase = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowercase = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: lowercase = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: lowercase = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) lowercase , lowercase , lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 15 lowercase = -20.0 lowercase = -4.0 lowercase = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] lowercase = [d[0][2] for d in decoded_decoder_out] lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 2.0 lowercase = 5.0 lowercase = -20.0 lowercase = True lowercase = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = floats_list((3, 1000) ) lowercase = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) lowercase = self._get_dummy_logits() lowercase = processor_wavaveca.batch_decode(_lowerCAmelCase ) lowercase = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = [d[key] for d in offsets] return retrieved_list def _a ( self ) -> str: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits()[0] lowercase = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits() lowercase = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _a ( self ) -> Optional[int]: '''simple docstring''' import torch lowercase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) lowercase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6000 ) ) lowercase = iter(_lowerCAmelCase ) lowercase = next(_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) lowercase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowercase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): lowercase = model(_lowerCAmelCase ).logits.cpu().numpy() lowercase = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowercase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] lowercase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off lowercase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowercase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __UpperCamelCase (datasets.BeamBasedBuilder ): def _a ( self ) -> Dict: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_lowerCAmelCase , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCAmelCase ) class __UpperCamelCase (datasets.BeamBasedBuilder ): def _a ( self ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_lowerCAmelCase , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ): return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def SCREAMING_SNAKE_CASE ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class __UpperCamelCase (_UpperCAmelCase ): @require_beam def _a ( self ) -> Tuple: '''simple docstring''' lowercase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = DummyBeamDataset(cache_dir=_lowerCAmelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowercase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCAmelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a ( self ) -> Dict: '''simple docstring''' import apache_beam as beam lowercase = beam.io.parquetio.WriteToParquet lowercase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = DummyBeamDataset(cache_dir=_lowerCAmelCase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: lowercase = partial(_lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _lowerCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _lowerCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowercase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_lowerCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = DummyBeamDataset(cache_dir=_lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _a ( self ) -> Tuple: '''simple docstring''' lowercase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = NestedBeamDataset(cache_dir=_lowerCAmelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCAmelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) lowercase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCAmelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCAmelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCAmelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
653
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): return number | (1 << position) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): return number & ~(1 << position) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): return number ^ (1 << position) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : List[str] = {'''vocab_file''': '''spiece.model'''} lowercase_ : Tuple = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowercase_ : Optional[int] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowercase_ : Any = 0 lowercase_ : Tuple = 1 lowercase_ : str = 2 lowercase_ : int = 3 lowercase_ : List[str] = 4 class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = '''left''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = 3 lowercase = do_lower_case lowercase = remove_space lowercase = keep_accents lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if self.remove_space: lowercase = """ """.join(inputs.strip().split() ) else: lowercase = inputs lowercase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowercase = unicodedata.normalize("""NFKD""" , _lowerCAmelCase ) lowercase = """""".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: lowercase = outputs.lower() return outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = self.preprocess_text(_lowerCAmelCase ) lowercase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) lowercase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase = cur_pieces[1:] else: lowercase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _a ( self , _lowerCAmelCase ) -> Dict: '''simple docstring''' return self.sp_model.PieceToId(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def _a ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ) -> str: '''simple docstring''' lowercase = kwargs.pop("""use_source_tokenizer""" , _lowerCAmelCase ) lowercase = self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase = [] lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) lowercase = [] sub_texts.append(_lowerCAmelCase ) else: current_sub_text.append(_lowerCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase = """""".join(_lowerCAmelCase ) lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase = self.clean_up_tokenization(_lowerCAmelCase ) return clean_text else: return text def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( lowercase_ : str ): for param in module.parameters(): lowercase = False def SCREAMING_SNAKE_CASE ( ): lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = plt.imshow(lowercase_ ) fig.axes.get_xaxis().set_visible(lowercase_ ) fig.axes.get_yaxis().set_visible(lowercase_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): lowercase = datetime.now() lowercase = current_time.strftime("""%H:%M:%S""" ) return timestamp
653
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowercase_ : Dict = parser.parse_args() lowercase_ : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' from __future__ import annotations lowercase_ : List[str] = '''Muhammad Umer Farooq''' lowercase_ : List[str] = '''MIT''' lowercase_ : str = '''1.0.0''' lowercase_ : Dict = '''Muhammad Umer Farooq''' lowercase_ : Optional[Any] = '''[email protected]''' lowercase_ : Any = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase ) -> None: '''simple docstring''' super().__init__() lowercase = [] lowercase = domain def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowercase = parse.urljoin(self.domain , _lowerCAmelCase ) self.urls.append(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return ".".join(get_sub_domain_name(lowercase_ ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return parse.urlparse(lowercase_ ).netloc def SCREAMING_SNAKE_CASE ( lowercase_ : str = "https://github.com" ): lowercase = get_domain_name(lowercase_ ) # Initialize the parser lowercase = Parser(lowercase_ ) try: # Open URL lowercase = requests.get(lowercase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowercase = requests.get(lowercase_ ) # Get the valid email. lowercase = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase_ ) if __name__ == "__main__": lowercase_ : int = emails_from_url('''https://github.com''') print(f'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
653
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' from manim import * class __UpperCamelCase (_UpperCAmelCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = Rectangle(height=0.25 , width=0.25 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""CPU""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""GPU""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""Model""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) lowercase = [] lowercase = [] for i, rect in enumerate(_lowerCAmelCase ): lowercase = fill.copy().set_fill(_lowerCAmelCase , opacity=0.8 ) target.move_to(_lowerCAmelCase ) model_arr.append(_lowerCAmelCase ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) lowercase = Text("""Disk""" , font_size=24 ) lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) lowercase = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) lowercase = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ) ) lowercase = Square(0.3 ) input.set_fill(_lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCAmelCase , buff=0.5 ) self.play(Write(_lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(_lowerCAmelCase ) ) self.play(FadeOut(_lowerCAmelCase ) ) lowercase = Arrow(start=_lowerCAmelCase , end=_lowerCAmelCase , color=_lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) lowercase = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(_lowerCAmelCase ) , Circumscribe(model_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowercase = AnimationGroup( FadeOut(_lowerCAmelCase , run_time=0.5 ) , MoveToTarget(_lowerCAmelCase , run_time=0.5 ) , FadeIn(_lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase = a_c lowercase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowerCAmelCase ) , FadeOut(_lowerCAmelCase , run_time=0.5 ) , ) lowercase = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , MoveToTarget(_lowerCAmelCase ) ) self.wait()
653
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase_ : Optional[Any] = False class __UpperCamelCase (unittest.TestCase ): def _a ( self , _lowerCAmelCase=32 ) -> Union[str, Any]: '''simple docstring''' set_seed(0 ) lowercase = UNetaDModel(sample_size=_lowerCAmelCase , in_channels=3 , out_channels=3 ) lowercase = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=_lowerCAmelCase , ) lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=_lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_lowerCAmelCase ) for _ in range(4 )] lowercase = [torch.randn((4, 3, 32, 32) ).to(_lowerCAmelCase ) for _ in range(4 )] lowercase = [torch.randint(0 , 1000 , (4,) ).long().to(_lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase , lowercase = self.get_model_optimizer(resolution=32 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase = model(_lowerCAmelCase , timesteps[i] ).sample lowercase = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase , lowercase = self.get_model_optimizer(resolution=32 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase = model(_lowerCAmelCase , timesteps[i] ).sample lowercase = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) )
653
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Dict: '''simple docstring''' lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowercase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) lowercase = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _a ( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def _a ( self , **_lowerCAmelCase ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def _a ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) lowercase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) lowercase = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(_lowerCAmelCase ) lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
653
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __UpperCamelCase (_UpperCAmelCase ): __A = '''beit''' def __init__( self , _lowerCAmelCase=8192 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=[3, 5, 7, 11] , _lowerCAmelCase=[1, 2, 3, 6] , _lowerCAmelCase=True , _lowerCAmelCase=0.4 , _lowerCAmelCase=256 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=255 , **_lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = use_mask_token lowercase = use_absolute_position_embeddings lowercase = use_relative_position_bias lowercase = use_shared_relative_position_bias lowercase = layer_scale_init_value lowercase = drop_path_rate lowercase = use_mean_pooling # decode head attributes (semantic segmentation) lowercase = out_indices lowercase = pool_scales # auxiliary head attributes (semantic segmentation) lowercase = use_auxiliary_head lowercase = auxiliary_loss_weight lowercase = auxiliary_channels lowercase = auxiliary_num_convs lowercase = auxiliary_concat_input lowercase = semantic_loss_ignore_index class __UpperCamelCase (_UpperCAmelCase ): __A = version.parse('''1.11''' ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ) -> float: '''simple docstring''' return 1E-4
653
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> int: '''simple docstring''' lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowercase = BlipProcessor(_lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _a ( self , **_lowerCAmelCase ) -> int: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def _a ( self , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def _a ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> int: '''simple docstring''' lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Tuple: '''simple docstring''' lowercase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) lowercase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(_lowerCAmelCase ) lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
653
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = None __A = None __A = None __A = None class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=512 , _lowerCAmelCase="cls" , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = project_dim lowercase = pooler_fn lowercase = learn_encoder lowercase = use_attention_mask class __UpperCamelCase (_UpperCAmelCase ): __A = [R'''pooler''', R'''logit_scale'''] __A = [R'''position_ids''', R'''predictions.decoder.bias'''] __A = '''roberta''' __A = RobertaSeriesConfig def __init__( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(_lowerCAmelCase ) lowercase = XLMRobertaModel(_lowerCAmelCase ) lowercase = nn.Linear(config.hidden_size , config.project_dim ) lowercase = getattr(_lowerCAmelCase , """has_pre_transformation""" , _lowerCAmelCase ) if self.has_pre_transformation: lowercase = nn.Linear(config.hidden_size , config.project_dim ) lowercase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _a ( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Any: '''simple docstring''' lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.base_model( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_lowerCAmelCase , ) if self.has_pre_transformation: lowercase = outputs["""hidden_states"""][-2] lowercase = self.pre_LN(_lowerCAmelCase ) lowercase = self.transformation_pre(_lowerCAmelCase ) return TransformationModelOutput( projection_state=_lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowercase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
653
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ : Dict = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase = ksize + 1 lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowercase_ ): for x in range(lowercase_ ): # distance from center lowercase = x - ksize // 2 lowercase = y - ksize // 2 # degree to radiant lowercase = theta / 180 * np.pi lowercase = np.cos(_theta ) lowercase = np.sin(_theta ) # get kernel x lowercase = cos_theta * px + sin_theta * py # get kernel y lowercase = -sin_theta * px + cos_theta * py # fill kernel lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase_ : List[Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowercase_ : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase_ : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowercase_ : Dict = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase_ : Tuple = out / out.max() * 255 lowercase_ : Dict = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ): lowercase = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) return image def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): lowercase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : List[Any] , lowercase_ : List[Any] ): lowercase = dct.pop(lowercase_ ) lowercase = val def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : List[str] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowercase = torch.cat((q_bias, torch.zeros_like(lowercase_ , requires_grad=lowercase_ ), v_bias) ) lowercase = qkv_bias def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : str ): lowercase = 364 if """coco""" in model_name else 224 lowercase = BlipaVisionConfig(image_size=lowercase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowercase = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=lowercase_ ).to_dict() elif "opt-6.7b" in model_name: lowercase = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=lowercase_ ).to_dict() elif "t5-xl" in model_name: lowercase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() lowercase = BlipaConfig(vision_config=lowercase_ , text_config=lowercase_ ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : List[str]=False ): lowercase = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) lowercase = tokenizer("""\n""" , add_special_tokens=lowercase_ ).input_ids[0] lowercase , lowercase = get_blipa_config(lowercase_ , eos_token_id=lowercase_ ) lowercase = BlipaForConditionalGeneration(lowercase_ ).eval() lowercase = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } lowercase , lowercase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" lowercase , lowercase , lowercase = load_model_and_preprocess( name=lowercase_ , model_type=lowercase_ , is_eval=lowercase_ , device=lowercase_ ) original_model.eval() print("""Done!""" ) # update state dict keys lowercase = original_model.state_dict() lowercase = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowercase_ ) if key.startswith("""Qformer.bert""" ): lowercase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowercase = key.replace("""self""" , """attention""" ) if "opt_proj" in key: lowercase = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: lowercase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): lowercase = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): lowercase = key.replace("""t5""" , """language""" ) lowercase = val # read in qv biases read_in_q_v_bias(lowercase_ , lowercase_ ) lowercase , lowercase = hf_model.load_state_dict(lowercase_ , strict=lowercase_ ) assert len(lowercase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowercase = load_demo_image() lowercase = vis_processors["""eval"""](lowercase_ ).unsqueeze(0 ).to(lowercase_ ) lowercase = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(lowercase_ ) # create processor lowercase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowercase_ , image_std=lowercase_ ) lowercase = BlipaProcessor(image_processor=lowercase_ , tokenizer=lowercase_ ) lowercase = processor(images=lowercase_ , return_tensors="""pt""" ).pixel_values.to(lowercase_ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase_ , lowercase_ ) original_model.to(lowercase_ ) hf_model.to(lowercase_ ) with torch.no_grad(): if "opt" in model_name: lowercase = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits lowercase = hf_model(lowercase_ , lowercase_ ).logits else: lowercase = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits lowercase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowercase = hf_model(lowercase_ , lowercase_ , labels=lowercase_ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowercase = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=lowercase_ ) assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowercase = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=lowercase_ ) else: # cast to same type lowercase = logits.dtype assert torch.allclose(original_logits.to(lowercase_ ) , lowercase_ , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) lowercase = """""" lowercase = tokenizer(lowercase_ , return_tensors="""pt""" ).input_ids.to(lowercase_ ) lowercase = original_model.generate({"""image""": original_pixel_values} ) lowercase = hf_model.generate( lowercase_ , lowercase_ , do_sample=lowercase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , lowercase_ ) lowercase = input_ids.shape[1] lowercase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase_ ) lowercase = [text.strip() for text in output_text] print("""HF generation:""" , lowercase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase_ ) hf_model.save_pretrained(lowercase_ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() lowercase_ : Tuple = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowercase_ : List[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int ): lowercase = [] create_all_state(1 , lowercase_ , lowercase_ , [] , lowercase_ ) return result def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : list[int] , lowercase_ : list[list[int]] , ): if level == 0: total_list.append(current_list[:] ) return for i in range(lowercase_ , total_number - level + 2 ): current_list.append(lowercase_ ) create_all_state(i + 1 , lowercase_ , level - 1 , lowercase_ , lowercase_ ) current_list.pop() def SCREAMING_SNAKE_CASE ( lowercase_ : list[list[int]] ): for i in total_list: print(*lowercase_ ) if __name__ == "__main__": lowercase_ : Any = 4 lowercase_ : Union[str, Any] = 2 lowercase_ : List[str] = generate_all_combinations(n, k) print_all_state(total_list)
653
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : str = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __UpperCamelCase (_UpperCAmelCase ): __A = '''efficientformer''' def __init__( self , _lowerCAmelCase = [3, 2, 6, 4] , _lowerCAmelCase = [48, 96, 224, 448] , _lowerCAmelCase = [True, True, True, True] , _lowerCAmelCase = 448 , _lowerCAmelCase = 32 , _lowerCAmelCase = 4 , _lowerCAmelCase = 7 , _lowerCAmelCase = 5 , _lowerCAmelCase = 8 , _lowerCAmelCase = 4 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 16 , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 1E-5 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = 224 , _lowerCAmelCase = 1E-05 , **_lowerCAmelCase , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = hidden_sizes lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = initializer_range lowercase = layer_norm_eps lowercase = patch_size lowercase = num_channels lowercase = depths lowercase = mlp_expansion_ratio lowercase = downsamples lowercase = dim lowercase = key_dim lowercase = attention_ratio lowercase = resolution lowercase = pool_size lowercase = downsample_patch_size lowercase = downsample_stride lowercase = downsample_pad lowercase = drop_path_rate lowercase = num_metaad_blocks lowercase = distillation lowercase = use_layer_scale lowercase = layer_scale_init_value lowercase = image_size lowercase = batch_norm_eps
653
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.9 , _lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = patch_size lowercase = tubelet_size lowercase = num_frames lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = mask_ratio lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase = (image_size // patch_size) ** 2 lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase = int(mask_ratio * self.seq_length ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> List[str]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.batch_size , -1 ).bool() lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches lowercase = mask.sum().item() lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = VideoMAEModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: '''simple docstring''' lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.model_tester.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _a ( self ) -> str: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def _a ( self ) -> int: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase = True lowercase = False lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowercase = np.load(lowercase_ ) return list(lowercase_ ) @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask lowercase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) lowercase = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size([1, 1408, 1536] ) lowercase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase = torch.tensor([0.5142] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = torch.tensor(torch.tensor([0.6469] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4 ) )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = """""" try: with open(lowercase_ , """rb""" ) as binary_file: lowercase = binary_file.read() for dat in data: lowercase = F"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = {"""0""": """0""", """1""": """1"""} lowercase , lowercase = """""", """""" lowercase = len(lowercase_ ) for i in range(len(lowercase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase = lexicon[curr_string] result += last_match_id lowercase = last_match_id + """0""" if math.loga(lowercase_ ).is_integer(): lowercase = {} for curr_key in list(lowercase_ ): lowercase = lexicon.pop(lowercase_ ) lowercase = new_lex lowercase = last_match_id + """1""" index += 1 lowercase = """""" return result def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = 8 try: with open(lowercase_ , """wb""" ) as opened_file: lowercase = [ to_write[i : i + byte_length] for i in range(0 , len(lowercase_ ) , lowercase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowercase_ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase = data_bits[counter:] lowercase = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = read_file_binary(lowercase_ ) lowercase = remove_prefix(lowercase_ ) lowercase = decompress_data(lowercase_ ) write_file_binary(lowercase_ , lowercase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) # TODO Update this lowercase_ : str = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __UpperCamelCase (_UpperCAmelCase ): __A = '''esm''' def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1026 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , mask_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = emb_layer_norm_before lowercase = token_dropout lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase = EsmFoldConfig() elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = EsmFoldConfig(**_lowerCAmelCase ) lowercase = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase = get_default_vocab_list() else: lowercase = vocab_list else: lowercase = None lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , _lowerCAmelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = super().to_dict() if isinstance(self.esmfold_config , _lowerCAmelCase ): lowercase = self.esmfold_config.to_dict() return output @dataclass class __UpperCamelCase : __A = None __A = True __A = False __A = False __A = False __A = 0 __A = True __A = False __A = 128 __A = None def _a ( self ) -> int: '''simple docstring''' if self.trunk is None: lowercase = TrunkConfig() elif isinstance(self.trunk , _lowerCAmelCase ): lowercase = TrunkConfig(**self.trunk ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = asdict(self ) lowercase = self.trunk.to_dict() return output @dataclass class __UpperCamelCase : __A = 48 __A = 1024 __A = 128 __A = 32 __A = 32 __A = 32 __A = 0 __A = 0 __A = False __A = 4 __A = 128 __A = None def _a ( self ) -> int: '''simple docstring''' if self.structure_module is None: lowercase = StructureModuleConfig() elif isinstance(self.structure_module , _lowerCAmelCase ): lowercase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowercase = self.sequence_state_dim // self.sequence_head_width lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _a ( self ) -> int: '''simple docstring''' lowercase = asdict(self ) lowercase = self.structure_module.to_dict() return output @dataclass class __UpperCamelCase : __A = 384 __A = 128 __A = 16 __A = 128 __A = 12 __A = 4 __A = 8 __A = 0.1 __A = 8 __A = 1 __A = 2 __A = 7 __A = 10 __A = 1e-8 __A = 1e5 def _a ( self ) -> Optional[int]: '''simple docstring''' return asdict(self ) def SCREAMING_SNAKE_CASE ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
653
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __UpperCamelCase : __A = 42 __A = None __A = None lowercase_ : str = namedtuple('''CoinsDistribResult''', '''moves excess''') def SCREAMING_SNAKE_CASE ( lowercase_ : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(lowercase_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase = get_distrib(node.left ) lowercase , lowercase = get_distrib(node.right ) lowercase = 1 - left_distrib_excess lowercase = 1 - right_distrib_excess lowercase = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ) -> Optional[int]: '''simple docstring''' lowercase = size if size is not None else {"""shortest_edge""": 20} lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_flip_channel_order def _a ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = MobileViTImageProcessor if is_vision_available() else None def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = MobileViTImageProcessingTester(self ) @property def _a ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_flip_channel_order""" ) ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
653
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=True , _lowerCAmelCase=1 / 255 , _lowerCAmelCase=True , ) -> Any: '''simple docstring''' lowercase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_rescale lowercase = rescale_factor lowercase = do_pad def _a ( self ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> int: '''simple docstring''' if not batched: lowercase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): lowercase , lowercase = image.size else: lowercase , lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size["""shortest_edge"""] * h / w ) lowercase = self.size["""shortest_edge"""] elif w > h: lowercase = self.size["""shortest_edge"""] lowercase = int(self.size["""shortest_edge"""] * w / h ) else: lowercase = self.size["""shortest_edge"""] lowercase = self.size["""shortest_edge"""] else: lowercase = [] for image in image_inputs: lowercase , lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] lowercase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = YolosImageProcessor if is_vision_available() else None def _a ( self ) -> Any: '''simple docstring''' lowercase = YolosImageProcessingTester(self ) @property def _a ( self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) def _a ( self ) -> str: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) lowercase = self.image_processing_class(do_resize=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_rescale=_lowerCAmelCase ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase = image_processing_a.pad(_lowerCAmelCase , return_tensors="""pt""" ) lowercase = image_processing_a(_lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def _a ( self ) -> Tuple: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowercase = json.loads(f.read() ) lowercase = {"""image_id""": 3_9769, """annotations""": target} # encode them lowercase = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowercase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area lowercase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCAmelCase ) ) # verify boxes lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCAmelCase ) ) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCAmelCase ) ) # verify class_labels lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCAmelCase ) ) # verify orig_size lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCAmelCase ) ) # verify size lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCAmelCase ) ) @slow def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowercase = json.loads(f.read() ) lowercase = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} lowercase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowercase = YolosImageProcessor(format="""coco_panoptic""" ) lowercase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area lowercase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCAmelCase ) ) # verify boxes lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCAmelCase ) ) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCAmelCase ) ) # verify class_labels lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCAmelCase ) ) # verify masks lowercase = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCAmelCase ) # verify orig_size lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCAmelCase ) ) # verify size lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCAmelCase ) )
653
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = 0 for ch in input_str: lowercase = ord(lowercase_ ) lowercase = pow(2 , lowercase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCamelCase (_UpperCAmelCase ): __A = '''Salesforce/blip-image-captioning-base''' __A = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) __A = '''image_captioner''' __A = AutoModelForVisionaSeq __A = ['''image'''] __A = ['''text'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' return self.pre_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' return self.model.generate(**_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.pre_processor.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )[0].strip()
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowercase_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
653
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = [0] * len(lowercase_ ) for i in range(1 , len(lowercase_ ) ): # use last results for better performance - dynamic programming lowercase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase = j return prefix_result def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return max(prefix_function(lowercase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __UpperCamelCase (_UpperCAmelCase ): __A = '''longformer''' def __init__( self , _lowerCAmelCase = 512 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0522 , _lowerCAmelCase = 768 , _lowerCAmelCase = 12 , _lowerCAmelCase = 12 , _lowerCAmelCase = 3072 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 512 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = attention_window lowercase = sep_token_id lowercase = bos_token_id lowercase = eos_token_id lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = onnx_export class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ) -> Optional[int]: '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase = True @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase = super().outputs if self.task == "default": lowercase = {0: """batch"""} return outputs @property def _a ( self ) -> float: '''simple docstring''' return 1E-4 @property def _a ( self ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowercase = 1 return inputs
653
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): lowercase = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowercase = 1024 lowercase = 4096 lowercase = 24 lowercase = 16 lowercase = [5, 11, 17, 23] lowercase = [256, 512, 1024, 1024] lowercase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowercase = 768 lowercase = [1, 1, 1, 0.5] lowercase = [256, 512, 768, 768] lowercase = 150 lowercase = 16 lowercase = (1, 384, 384) lowercase = False lowercase = """project""" if "ade" in checkpoint_url: lowercase = True lowercase = 768 lowercase = [1, 1, 1, 0.5] lowercase = 150 lowercase = 16 lowercase = """huggingface/label-files""" lowercase = """ade20k-id2label.json""" lowercase = json.load(open(cached_download(hf_hub_url(lowercase_ , lowercase_ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowercase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowercase = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowercase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowercase = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowercase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowercase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowercase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowercase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowercase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowercase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowercase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowercase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowercase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowercase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowercase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowercase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowercase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowercase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowercase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowercase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowercase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowercase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowercase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowercase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowercase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowercase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowercase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowercase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowercase = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowercase = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowercase = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowercase = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowercase = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowercase = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowercase = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowercase = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowercase = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Tuple ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[: config.hidden_size, :] lowercase = in_proj_bias[: config.hidden_size] lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase = in_proj_weight[ -config.hidden_size :, : ] lowercase = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int ): lowercase , lowercase = get_dpt_config(lowercase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowercase_ ) # rename keys for key in state_dict.copy().keys(): lowercase = state_dict.pop(lowercase_ ) lowercase = val # read in qkv matrices read_in_q_k_v(lowercase_ , lowercase_ ) # load HuggingFace model lowercase = DPTForSemanticSegmentation(lowercase_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # Check outputs on an image lowercase = 480 if """ade""" in checkpoint_url else 384 lowercase = DPTImageProcessor(size=lowercase_ ) lowercase = prepare_img() lowercase = image_processor(lowercase_ , return_tensors="""pt""" ) # forward pass lowercase = model(**lowercase_ ).logits if """ade""" in checkpoint_url else model(**lowercase_ ).predicted_depth if show_prediction: lowercase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=lowercase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": lowercase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) lowercase_ : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
653
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase (_UpperCAmelCase ): __A = (UnCLIPScheduler,) def _a ( self , **_lowerCAmelCase ) -> str: '''simple docstring''' lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self ) -> str: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def _a ( self ) -> Any: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.001_0011 < 1E-5 def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = scheduler.timesteps lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) lowercase = scheduler.timesteps lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: lowercase = None else: lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _a ( self ) -> Tuple: '''simple docstring''' pass def _a ( self ) -> Optional[int]: '''simple docstring''' pass
653
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''flax''', '''transformers'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''flax''', '''transformers'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''flax''', '''transformers'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''flax''', '''transformers'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] )
653
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = AltDiffusionPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Dict: '''simple docstring''' if str(_lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(_lowerCAmelCase ) else: lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> str: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _a ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase = RobertaSeriesModelWithTransformation(_lowerCAmelCase ) lowercase = text_encoder lowercase = AltDiffusionPipeline(**_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """A photo of an astronaut""" lowercase = alt_pipe(**_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder lowercase = RobertaSeriesModelWithTransformation(_lowerCAmelCase ) lowercase = text_encoder lowercase = AltDiffusionPipeline(**_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = alt_pipe(**_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.manual_seed(0 ) lowercase = alt_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) lowercase = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.manual_seed(0 ) lowercase = alt_pipe([prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
653
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
1
'''simple docstring''' from collections import namedtuple lowercase_ : List[str] = namedtuple('''from_to''', '''from_ to''') lowercase_ : List[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00454, 264.172), '''cubicyard''': from_to(0.76455, 1.30795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.000236588, 4226.75), } def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : str , lowercase_ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(lowercase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(lowercase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int = 50 ): lowercase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
653
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase_ : Union[str, Any] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' lowercase_ : Any = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' lowercase_ : List[Any] = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase (datasets.Metric ): def _a ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = 0.0 for i, j in zip(_lowerCAmelCase , _lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase , _lowerCAmelCase ) else 0.0 lowercase = n_correct / len(_lowerCAmelCase ) return { "accuracy": accuracy, }
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowercase = """""" while len(lowercase_ ) % 3 != 0: lowercase = """0""" + bin_string lowercase = [ bin_string[index : index + 3] for index in range(len(lowercase_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase = 0 for index, val in enumerate(lowercase_ ): oct_val += int(2 ** (2 - index) * int(lowercase_ ) ) oct_string += str(lowercase_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] ): return len(set(lowercase_ ) ) == len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : Union[int, Iterable[int]] , lowercase_ : bool , lowercase_ : int ): def constraint_to_multiple_of(lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int]=0 , lowercase_ : Union[str, Any]=None ): lowercase = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase = math.floor(val / multiple ) * multiple if x < min_val: lowercase = math.ceil(val / multiple ) * multiple return x lowercase = (output_size, output_size) if isinstance(lowercase_ , lowercase_ ) else output_size lowercase , lowercase = get_image_size(lowercase_ ) lowercase , lowercase = output_size # determine new height and width lowercase = output_height / input_height lowercase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase = scale_width else: # fit height lowercase = scale_height lowercase = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase_ ) lowercase = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase_ ) return (new_height, new_width) class __UpperCamelCase (_UpperCAmelCase ): __A = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = False , _lowerCAmelCase = 1 , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = size if size is not None else {"""height""": 384, """width""": 384} lowercase = get_size_dict(_lowerCAmelCase ) lowercase = do_resize lowercase = size lowercase = keep_aspect_ratio lowercase = ensure_multiple_of lowercase = resample lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = 1 , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase = get_resize_output_image_size( _lowerCAmelCase , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=_lowerCAmelCase , multiple=_lowerCAmelCase , ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(_lowerCAmelCase ) lowercase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: lowercase = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: lowercase = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] lowercase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Union[str, Any]: '''simple docstring''' lowercase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowerCAmelCase ): lowercase = target_sizes.numpy() lowercase = [] for idx in range(len(_lowerCAmelCase ) ): lowercase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowerCAmelCase ) lowercase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCAmelCase ) else: lowercase = logits.argmax(dim=1 ) lowercase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
653
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Optional[Any] = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''nllb-moe''' __A = ['''past_key_values'''] __A = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCAmelCase=12_8112 , _lowerCAmelCase=1024 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=0.05 , _lowerCAmelCase=0.05 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=1024 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="float32" , _lowerCAmelCase=False , _lowerCAmelCase=128 , _lowerCAmelCase=64 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=0.001 , _lowerCAmelCase=0.001 , _lowerCAmelCase="all" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=1.0 , _lowerCAmelCase=0.2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True lowercase = router_z_loss_coef lowercase = router_aux_loss_coef lowercase = decoder_sparse_step lowercase = encoder_sparse_step lowercase = num_experts lowercase = expert_capacity lowercase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) lowercase = router_dtype lowercase = router_ignore_padding_tokens lowercase = batch_prioritized_routing lowercase = second_expert_policy lowercase = normalize_router_prob_before_dropping lowercase = moe_eval_capacity_token_fraction lowercase = moe_token_dropout lowercase = output_router_logits super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
1
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ : Tuple = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase ): __A = '''nat''' __A = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=64 , _lowerCAmelCase=[3, 4, 6, 5] , _lowerCAmelCase=[2, 4, 8, 16] , _lowerCAmelCase=7 , _lowerCAmelCase=3.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = patch_size lowercase = num_channels lowercase = embed_dim lowercase = depths lowercase = len(_lowerCAmelCase ) lowercase = num_heads lowercase = kernel_size lowercase = mlp_ratio lowercase = qkv_bias lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = drop_path_rate lowercase = hidden_act lowercase = layer_norm_eps lowercase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) lowercase = layer_scale_init_value lowercase = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase ) + 1 )] lowercase , lowercase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ : List[str] = 16 lowercase_ : Union[str, Any] = 32 def SCREAMING_SNAKE_CASE ( lowercase_ : Accelerator , lowercase_ : int = 16 ): lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_ : Any ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ : Any = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": lowercase = 2 # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase_ ) def inner_training_loop(lowercase_ : Tuple ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowercase_ ) lowercase , lowercase = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**lowercase_ ) lowercase = outputs.loss accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowercase_ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase = parser.parse_args() lowercase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
653
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
1
'''simple docstring''' from math import factorial class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = real if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = [1] * rank else: lowercase = rank def __repr__( self ) -> str: '''simple docstring''' return ( F"""{self.real}+""" F"""{'+'.join(str(_lowerCAmelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCAmelCase ) def __add__( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return Dual(self.real + other , self.duals ) lowercase = self.duals.copy() lowercase = other.duals.copy() if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): o_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) elif len(_lowerCAmelCase ) < len(_lowerCAmelCase ): s_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) lowercase = [] for i in range(len(_lowerCAmelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCAmelCase ) __A = __add__ def __sub__( self , _lowerCAmelCase ) -> Dict: '''simple docstring''' return self + other * -1 def __mul__( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCAmelCase ) lowercase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCAmelCase ) __A = __mul__ def __truediv__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCAmelCase ) raise ValueError def __floordiv__( self , _lowerCAmelCase ) -> Any: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCAmelCase ) raise ValueError def __pow__( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if n < 0 or isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self lowercase = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] ): if not callable(lowercase_ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(lowercase_ , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(lowercase_ , lowercase_ ): raise ValueError("""differentiate() requires an int as input for order""" ) lowercase = Dual(lowercase_ , 1 ) lowercase = func(lowercase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return y**2 * y**4 print(differentiate(f, 9, 2))
653
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Optional[int] = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Dict = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = os.path.join(args.tf_model_dir , """parameters.json""" ) lowercase = json.loads(open(lowercase_ ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): lowercase = args.output + """.pt""" lowercase = OrderedDict() with tf.device("""/CPU:0""" ): lowercase = tf.train.load_checkpoint(args.tf_model_dir ) lowercase = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase = reader.get_tensor(lowercase_ ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): lowercase = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): lowercase = 8 lowercase = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/moe""" ): lowercase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): lowercase = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/softmlp/kernel""" ): lowercase = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): lowercase = key_name[-9:-7] for i in range(16 ): lowercase = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) lowercase = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/mlp""" ): lowercase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/p1/bias""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/p2/kernel""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/p2/bias""" ): lowercase = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/ln""" ): lowercase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase = """model.blocks.%d.feed_forward.norm.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/g""" ): lowercase = """model.blocks.%d.feed_forward.norm.weight""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/att""" ): lowercase = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): lowercase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase = state[:, 0, :, :] lowercase = state[:, 1, :, :] lowercase = state[:, 2, :, :] lowercase = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player lowercase = torch.tensor(lowercase_ ) lowercase = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player lowercase = torch.tensor(lowercase_ ) lowercase = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/o/kernel""" ): lowercase = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player lowercase = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/an""" ): lowercase = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowercase = """model.blocks.%d.self_attn.norm.bias""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif key_name.endswith("""/g""" ): lowercase = """model.blocks.%d.self_attn.norm.weight""" % player lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): lowercase = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] lowercase = """model.%s.weight""" % nlayer lowercase = vnp.copy() # same in embedded lowercase = torch.tensor(lowercase_ ) if key_name.startswith("""model/wte""" ): lowercase = """lm_head.weight""" lowercase = vnp.copy() # same in embedded lowercase = torch.tensor(lowercase_ ) elif key_name.startswith("""model/wob""" ): lowercase = """final_logits_bias""" lowercase = vnp.copy() # same in embedded lowercase = state.reshape((1, -1) ) lowercase = torch.tensor(lowercase_ ) elif key_name == "model/dense/kernel": lowercase = """model.last_project.weight""" lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase = torch.tensor(lowercase_ ) elif key_name == "model/dense_1/bias": lowercase = """model.last_project.bias""" lowercase = vnp.copy() # same because it is one dimensional lowercase = torch.tensor(lowercase_ ) torch.save(lowercase_ , args.output ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
653
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = [] for line in lines: lowercase = re.sub(R"""#.*""" , """""" , lowercase_ ) # remove comments if line: filtered_lines.append(lowercase_ ) lowercase = """\n""".join(lowercase_ ) # Make a hash from all this code lowercase = full_str.encode("""utf-8""" ) return shaaaa(lowercase_ ).hexdigest() # get importable module names and hash for caching lowercase_ : str = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase_ : List[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase_ : List[str] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name lowercase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
653
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowercase_ : List[str] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase_ : List[str] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE ( lowercase_ : list[list[int]] ): lowercase = [] for i in range(len(lowercase_ ) ): lowercase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowercase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowercase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase_ ) return next_generation def SCREAMING_SNAKE_CASE ( lowercase_ : list[list[int]] , lowercase_ : int ): lowercase = [] for _ in range(lowercase_ ): # Create output image lowercase = Image.new("""RGB""" , (len(cells[0] ), len(lowercase_ )) ) lowercase = img.load() # Save cells to image for x in range(len(lowercase_ ) ): for y in range(len(cells[0] ) ): lowercase = 255 - cells[y][x] * 255 lowercase = (colour, colour, colour) # Save image images.append(lowercase_ ) lowercase = new_generation(lowercase_ ) return images if __name__ == "__main__": lowercase_ : Tuple = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
653
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''torch''', '''torchsde'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
653
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] , lowercase_ : int ): lowercase = [] lowercase = [] lowercase = 0 lowercase = sum(lowercase_ ) create_state_space_tree(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return result def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] , lowercase_ : int , lowercase_ : int , lowercase_ : list[int] , lowercase_ : list[list[int]] , lowercase_ : int , ): if sum(lowercase_ ) > max_sum or (remaining_nums_sum + sum(lowercase_ )) < max_sum: return if sum(lowercase_ ) == max_sum: result.append(lowercase_ ) return for index in range(lowercase_ , len(lowercase_ ) ): create_state_space_tree( lowercase_ , lowercase_ , index + 1 , [*path, nums[index]] , lowercase_ , remaining_nums_sum - nums[index] , ) lowercase_ : Optional[Any] = [3, 34, 4, 12, 5, 2] lowercase_ : Any = 9 lowercase_ : List[str] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
653
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int="attention" ): lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any , lowercase_ : Optional[Any]=False ): if split_mlp_wi: lowercase = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowercase = (wi_a, wi_a) else: lowercase = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowercase = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : int ): return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def SCREAMING_SNAKE_CASE ( lowercase_ : dict , *, lowercase_ : int , lowercase_ : bool ): lowercase = traverse_util.flatten_dict(variables["""target"""] ) lowercase = {"""/""".join(lowercase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase_ ) lowercase = collections.OrderedDict() # Shared embeddings. lowercase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """encoder""" , """pre_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowercase_ , lowercase_ , """encoder""" , """attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (MLP). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """encoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowercase_ , lowercase_ , """encoder""" , lowercase_ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T lowercase = old[ """encoder/relpos_bias/rel_embedding""" ].T lowercase = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_self_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowercase_ , lowercase_ , """decoder""" , """self_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (Cross Attention). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowercase_ , lowercase_ , """decoder""" , """encoder_decoder_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 2 (MLP). lowercase = tax_layer_norm_lookup(lowercase_ , lowercase_ , """decoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowercase_ , lowercase_ , """decoder""" , lowercase_ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T lowercase = old["""decoder/decoder_norm/scale"""] lowercase = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase = old["""decoder/logits_dense/kernel"""].T return new def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : bool ): lowercase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowercase = state_dict["""shared.weight"""] return state_dict def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Any ): lowercase = checkpoints.load_tax_checkpoint(lowercase_ ) lowercase = convert_tax_to_pytorch(lowercase_ , num_layers=config.num_layers , is_encoder_only=lowercase_ ) lowercase = make_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ , strict=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : bool = False ): lowercase = TaConfig.from_json_file(lowercase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase = TaEncoderModel(lowercase_ ) else: lowercase = TaForConditionalGeneration(lowercase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase_ ) print("""Done""" ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) lowercase_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
653
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __UpperCamelCase : __A = XGLMConfig __A = {} __A = '''gelu''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Optional[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_labels lowercase = vocab_size lowercase = d_model lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = ffn_dim lowercase = activation_function lowercase = activation_dropout lowercase = attention_dropout lowercase = max_position_embeddings lowercase = initializer_range lowercase = None lowercase = 0 lowercase = 2 lowercase = 1 def _a ( self ) -> Dict: '''simple docstring''' return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = self.get_config() lowercase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _a ( self ) -> Optional[Any]: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_lowerCAmelCase , ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __A = (TFXGLMForCausalLM,) if is_tf_available() else () __A = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) __A = False __A = False __A = False def _a ( self ) -> int: '''simple docstring''' lowercase = TFXGLMModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def _a ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @slow def _a ( self ) -> int: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFXGLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _a ( self ) -> int: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self , _lowerCAmelCase=True ) -> Dict: '''simple docstring''' lowercase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowercase = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowercase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCAmelCase ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowercase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowercase = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowercase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowercase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase , seed=[7, 0] ) lowercase = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowerCAmelCase ) lowercase = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) @slow def _a ( self ) -> int: '''simple docstring''' lowercase = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowercase = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowercase = """left""" # use different length sentences to test batching lowercase = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowercase = tokenizer(_lowerCAmelCase , return_tensors="""tf""" , padding=_lowerCAmelCase ) lowercase = inputs["""input_ids"""] lowercase = model.generate(input_ids=_lowerCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowercase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowercase = model.generate(input_ids=_lowerCAmelCase , max_new_tokens=12 ) lowercase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowercase = model.generate(input_ids=_lowerCAmelCase , max_new_tokens=12 ) lowercase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCAmelCase ) lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCAmelCase ) lowercase = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [non_padded_sentence, padded_sentence] )
653
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase_ : int = None lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : List[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase_ : Dict = { '''camembert-base''': 512, } lowercase_ : Union[str, Any] = '''▁''' class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] __A = CamembertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_lowerCAmelCase , ) -> Any: '''simple docstring''' lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = False if not self.vocab_file else True def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
653
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCAmelCase ) lowercase = self.values[key] def _a ( self ) -> Any: '''simple docstring''' return ( sum(self.charge_factor - len(_lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(_lowerCAmelCase , _lowerCAmelCase )
653
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=sys.maxsize ) -> Dict: '''simple docstring''' lowercase = """bilinear""" lowercase = max_size lowercase = short_edge_length def __call__( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = [] for img in imgs: lowercase , lowercase = img.shape[:2] # later: provide list and randomly choose index for resize lowercase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase = size * 1.0 / min(_lowerCAmelCase , _lowerCAmelCase ) if h < w: lowercase , lowercase = size, scale * w else: lowercase , lowercase = scale * h, size if max(_lowerCAmelCase , _lowerCAmelCase ) > self.max_size: lowercase = self.max_size * 1.0 / max(_lowerCAmelCase , _lowerCAmelCase ) lowercase = newh * scale lowercase = neww * scale lowercase = int(neww + 0.5 ) lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase = Image.fromarray(_lowerCAmelCase ) lowercase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase = np.asarray(_lowerCAmelCase ) else: lowercase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase = nn.functional.interpolate( _lowerCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_lowerCAmelCase ).squeeze(0 ) img_augs.append(_lowerCAmelCase ) return img_augs class __UpperCamelCase : def __init__( self , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase = cfg.INPUT.FORMAT lowercase = cfg.SIZE_DIVISIBILITY lowercase = cfg.PAD_VALUE lowercase = cfg.INPUT.MAX_SIZE_TEST lowercase = cfg.MODEL.DEVICE lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = lambda _lowerCAmelCase : (x - self.pixel_mean) / self.pixel_std def _a ( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = tuple(max(_lowerCAmelCase ) for s in zip(*[img.shape for img in images] ) ) lowercase = [im.shape[-2:] for im in images] lowercase = [ nn.functional.pad( _lowerCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_lowerCAmelCase , _lowerCAmelCase ) ] return torch.stack(_lowerCAmelCase ), torch.tensor(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> Dict: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = [images] if single_image: assert len(_lowerCAmelCase ) == 1 for i in range(len(_lowerCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_lowerCAmelCase , images.pop(_lowerCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _lowerCAmelCase , torch.as_tensor(img_tensorize(images.pop(_lowerCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase = torch.tensor([im.shape[:2] for im in images] ) lowercase = self.aug(_lowerCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase = [self.normalizer(_lowerCAmelCase ) for x in images] # now pad them to do the following operations lowercase , lowercase = self.pad(_lowerCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase = torch.true_divide(_lowerCAmelCase , _lowerCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Dict ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Tuple[int, int] ): assert torch.isfinite(lowercase_ ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowercase_ ) tensor[:, 1].clamp_(min=0 , max=lowercase_ ) tensor[:, 2].clamp_(min=0 , max=lowercase_ ) tensor[:, 3].clamp_(min=0 , max=lowercase_ )
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=2 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=36 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=6 , _lowerCAmelCase=6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1000 , ) -> Dict: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = text_seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def _a ( self ) -> int: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = t lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = LayoutLMvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # text + image lowercase = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase ) lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase = model(pixel_values=_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = self.num_labels lowercase = LayoutLMvaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.num_labels lowercase = LayoutLMvaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = False __A = False __A = False __A = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __A = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return True def _a ( self ) -> int: '''simple docstring''' lowercase = LayoutLMvaModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[Any]: '''simple docstring''' lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class in get_values(_lowerCAmelCase ): lowercase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCAmelCase ): lowercase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in get_values(_lowerCAmelCase ): lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) return inputs_dict def _a ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> str: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LayoutLMvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> int: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None @slow def _a ( self ) -> int: '''simple docstring''' lowercase = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCAmelCase ) lowercase = torch.tensor([[1, 2]] ) lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowercase = model( input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , ) # verify the logits lowercase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase ) lowercase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Dict = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''rwkv''' __A = {'''max_position_embeddings''': '''context_length'''} def __init__( self , _lowerCAmelCase=5_0277 , _lowerCAmelCase=1024 , _lowerCAmelCase=4096 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=6 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase = vocab_size lowercase = context_length lowercase = hidden_size lowercase = num_hidden_layers lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase = layer_norm_epsilon lowercase = rescale_every lowercase = use_cache lowercase = bos_token_id lowercase = eos_token_id super().__init__( tie_word_embeddings=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase = test_metrics @require_cpu def _a ( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ) -> List[str]: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def _a ( self ) -> Union[str, Any]: '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) lowercase = ["""torchrun""", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
'''simple docstring''' from string import ascii_uppercase lowercase_ : List[Any] = {char: i for i, char in enumerate(ascii_uppercase)} lowercase_ : List[Any] = dict(enumerate(ascii_uppercase)) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = len(lowercase_ ) lowercase = 0 while True: if x == i: lowercase = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = """""" lowercase = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = """""" lowercase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def SCREAMING_SNAKE_CASE ( ): lowercase = """THE GERMAN ATTACK""" lowercase = """SECRET""" lowercase = generate_key(lowercase_ , lowercase_ ) lowercase = cipher_text(lowercase_ , lowercase_ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(lowercase_ , lowercase_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
653
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ : Any = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = AlbertTokenizer __A = AlbertTokenizerFast __A = True __A = True __A = True def _a ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = AlbertTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = """this is a test""" lowercase = """this is a test""" return input_text, output_text def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = """<pad>""" lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(_lowerCAmelCase ) , 3_0000 ) def _a ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _a ( self ) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = """I was born in 92000, and this is falsé.""" lowercase = tokenizer.tokenize(_lowerCAmelCase ) lowercase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) lowercase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self.get_rust_tokenizer() lowercase = tokenizer.encode(_lowerCAmelCase ) lowercase = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = AlbertTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [48, 25, 21, 1289] ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowercase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowercase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = AlbertTokenizer(_lowerCAmelCase ) lowercase = tokenizer.encode("""sequence builders""" ) lowercase = tokenizer.encode("""multi-sequence build""" ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase_ : Dict = logging.get_logger(__name__) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
653
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
1