code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowercase_ : Tuple = '''bart''' lowercase_ : List[Any] = True @st.cache(allow_output_mutation=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: lowercase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowercase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowercase = qar_model.eval() else: lowercase , lowercase = (None, None) if MODEL_TYPE == "bart": lowercase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowercase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowercase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowercase = sas_model.eval() else: lowercase , lowercase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: lowercase = faiss.StandardGpuResources() lowercase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowercase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) lowercase = faiss.IndexFlatIP(128 ) lowercase = faiss.index_cpu_to_gpu(lowerCAmelCase__ , 1 , lowerCAmelCase__ ) wikiaab_gpu_index_flat.add(lowerCAmelCase__ ) # TODO fix for larger GPU else: lowercase , lowercase = (None, None) lowercase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE ( ): lowercase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowercase = elia["""train_eli5"""] lowercase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) lowercase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowerCAmelCase__ ) return (elia_train, eli5_train_q_index) lowercase_ : str = load_indexes() lowercase_ : List[Any] = load_models() lowercase_ : List[Any] = load_train_data() def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[Any]=10 ): lowercase = embed_questions_for_retrieval([question] , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = eli5_train_q_index.search(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = [elia_train[int(lowerCAmelCase__ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : Union[str, Any]="wiki40b" , lowercase_ : str="dense" , lowercase_ : List[str]=10 ): if source == "none": lowercase , lowercase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowercase , lowercase = query_qa_dense_index( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: lowercase , lowercase = query_es_index( lowerCAmelCase__ , lowerCAmelCase__ , index_name="""english_wiki40b_snippets_100w""" , n_results=lowerCAmelCase__ , ) lowercase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowercase = """question: {} context: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase_ : None), } ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any=64 , lowercase_ : int=256 , lowercase_ : Optional[Any]=False , lowercase_ : str=2 , lowercase_ : List[str]=0.95 , lowercase_ : Dict=0.8 ): with torch.no_grad(): lowercase = qa_sas_generate( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , num_answers=1 , num_beams=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ , do_sample=lowerCAmelCase__ , temp=lowerCAmelCase__ , top_p=lowerCAmelCase__ , top_k=lowerCAmelCase__ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar lowercase_ : Union[str, Any] = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' lowercase_ : Tuple = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowercase_ : str = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) lowercase_ : Dict = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] lowercase_ : Optional[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: lowercase_ : List[str] = st.sidebar.selectbox( '''''', action_list, index=3, ) lowercase_ : List[Any] = action_list.index(action_st) lowercase_ : List[str] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) lowercase_ : Union[str, Any] = show_type == '''Show full text of passages''' else: lowercase_ : Optional[int] = 3 lowercase_ : Tuple = True lowercase_ : Dict = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: lowercase_ : Optional[int] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) lowercase_ : int = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) lowercase_ : Dict = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: lowercase_ : List[str] = '''wiki40b''' lowercase_ : int = '''dense''' lowercase_ : str = '''beam''' lowercase_ : List[Any] = 2 lowercase_ : Union[str, Any] = 64 lowercase_ : List[str] = 256 lowercase_ : Optional[int] = None lowercase_ : Tuple = None lowercase_ : str = st.sidebar.checkbox('''Generation options''') if generate_options: lowercase_ : Dict = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) lowercase_ : Optional[Any] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) lowercase_ : Optional[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowercase_ : Any = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowercase_ : int = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowercase_ : Optional[int] = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowercase_ : Optional[int] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowercase_ : Any = None # start main text lowercase_ : Dict = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] lowercase_ : str = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowercase_ : Optional[Any] = st.text_input('''Enter your question here:''', '''''') else: lowercase_ : Dict = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": lowercase_ : List[Any] = make_support(question, source=wiki_source, method='''dense''', n_results=10) lowercase_ : List[str] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) lowercase_ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowercase_ : Union[str, Any] = support_list[:10] lowercase_ : str = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: lowercase_ : int = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowercase_ : Dict = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): lowercase_ : Tuple = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) lowercase_ : Optional[int] = res[1].strip() if sec_titles == "": lowercase_ : str = '''[{}]({})'''.format(res[0], wiki_url) else: lowercase_ : Dict = sec_titles.split(''' & ''') lowercase_ : int = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: lowercase_ : Tuple = find_nearest_training(question) lowercase_ : Optional[Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) lowercase_ : List[str] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) lowercase_ : Optional[Any] = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): @register_to_config def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , ) -> Dict: '''simple docstring''' super().__init__() lowercase = nn.Embedding(a_ , a_ ) lowercase = nn.Embedding(a_ , a_ ) lowercase = False lowercase = nn.Dropout(p=a_ ) lowercase = TaConfig( vocab_size=a_ , d_model=a_ , num_heads=a_ , d_kv=a_ , d_ff=a_ , dropout_rate=a_ , feed_forward_proj=a_ , is_decoder=a_ , is_encoder_decoder=a_ , ) lowercase = nn.ModuleList() for lyr_num in range(a_ ): lowercase = TaBlock(a_ ) self.encoders.append(a_ ) lowercase = TaLayerNorm(a_ ) lowercase = nn.Dropout(p=a_ ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.token_embedder(a_ ) lowercase = encoder_input_tokens.shape[1] lowercase = torch.arange(a_ , device=encoder_input_tokens.device ) x += self.position_encoding(a_ ) lowercase = self.dropout_pre(a_ ) # inverted the attention mask lowercase = encoder_input_tokens.size() lowercase = self.get_extended_attention_mask(a_ , a_ ) for lyr in self.encoders: lowercase = lyr(a_ , a_ )[0] lowercase = self.layer_norm(a_ ) return self.dropout_post(a_ ), encoder_inputs_mask
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = create_tensor(_snake_case ) lowercase = gather(_snake_case ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): lowercase = [state.process_index] lowercase = gather_object(_snake_case ) assert len(_snake_case ) == state.num_processes, F"""{gathered_obj}, {len(_snake_case )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = create_tensor(_snake_case ) lowercase = broadcast(_snake_case ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): if state.is_main_process: lowercase = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowercase = torch.arange(state.num_processes ).to(state.device ) lowercase = pad_across_processes(_snake_case ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): if state.num_processes != 2: return lowercase = create_tensor(_snake_case ) lowercase = reduce(_snake_case , """sum""" ) lowercase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_snake_case , _snake_case ), F"""{reduced_tensor} != {truth_tensor}""" def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): if state.num_processes != 2: return lowercase = create_tensor(_snake_case ) lowercase = reduce(_snake_case , """mean""" ) lowercase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_snake_case , _snake_case ), F"""{reduced_tensor} != {truth_tensor}""" def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): main() def SCREAMING_SNAKE_CASE ( ): lowercase = PartialState() state.print(F"""State: {state}""" ) state.print("""testing gather""" ) test_gather(_snake_case ) state.print("""testing gather_object""" ) test_gather_object(_snake_case ) state.print("""testing broadcast""" ) test_broadcast(_snake_case ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(_snake_case ) state.print("""testing reduce_sum""" ) test_reduce_sum(_snake_case ) state.print("""testing reduce_mean""" ) test_reduce_mean(_snake_case ) if __name__ == "__main__": main()
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Dict ): # Construct model if gpta_config_file == "": lowercase = GPTaConfig() else: lowercase = GPTaConfig.from_json_file(_A ) lowercase = GPTaModel(_A ) # Load weights from numpy load_tf_weights_in_gpta(_A , _A , _A ) # Save pytorch-model lowercase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _A ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) lowercase_ : int = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase , ) -> List[Any]: '''simple docstring''' lowercase = parent lowercase = 13 lowercase = 7 lowercase = 30 lowercase = self.seq_length + self.mem_len lowercase = 15 lowercase = True lowercase = True lowercase = 99 lowercase = [10, 50, 80] lowercase = 32 lowercase = 32 lowercase = 4 lowercase = 8 lowercase = 128 lowercase = 2 lowercase = 2 lowercase = None lowercase = 1 lowercase = 0 lowercase = 3 lowercase = self.vocab_size - 1 lowercase = 0.01 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _a ( self ) -> Tuple: '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = TFTransfoXLModel(UpperCamelCase__ ) lowercase , lowercase = model(UpperCamelCase__ ).to_tuple() lowercase = {"""input_ids""": input_ids_a, """mems""": mems_a} lowercase , lowercase = model(UpperCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = TFTransfoXLLMHeadModel(UpperCamelCase__ ) lowercase , lowercase = model(UpperCamelCase__ ).to_tuple() lowercase = {"""input_ids""": input_ids_a, """labels""": lm_labels} lowercase , lowercase = model(UpperCamelCase__ ).to_tuple() lowercase , lowercase = model([input_ids_a, mems_a] ).to_tuple() lowercase = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} lowercase , lowercase = model(UpperCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = TFTransfoXLForSequenceClassification(UpperCamelCase__ ) lowercase = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase)) = config_and_inputs lowercase = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __UpperCamelCase (_A , _A , unittest.TestCase ): __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _a ( self ) -> Any: '''simple docstring''' lowercase = TFTransfoXLModelTester(self ) lowercase = ConfigTester(self , config_class=UpperCamelCase__ , d_embed=37 ) def _a ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> Tuple: '''simple docstring''' self.model_tester.set_seed() lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCamelCase__ ) def _a ( self ) -> Optional[int]: '''simple docstring''' self.model_tester.set_seed() lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCamelCase__ ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCamelCase__ ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase = model.get_output_embeddings() assert isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) lowercase = model.get_bias() assert name is None else: lowercase = model.get_output_embeddings() assert x is None lowercase = model.get_bias() assert name is None def _a ( self ) -> Optional[Any]: '''simple docstring''' pass @slow def _a ( self ) -> int: '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFTransfoXLModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def _a ( self ) -> Tuple: '''simple docstring''' pass @require_tf class __UpperCamelCase (unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off lowercase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase = model.generate(UpperCamelCase__ , max_length=200 , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ )
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowercase_ : str = '''sshleifer/bart-tiny-random''' lowercase_ : List[str] = '''patrickvonplaten/t5-tiny-random''' @require_torch class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> int: '''simple docstring''' return AutoConfig.from_pretrained(_A ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=_A ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=_A ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _a ( self ) -> Any: '''simple docstring''' with self.assertRaises(_A ): create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=_A , d=_A )
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' import copy import re class __UpperCamelCase : __A = '''hp''' __A = {} __A = None @classmethod def _a ( cls , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = prefix lowercase = defaults cls.build_naming_info() @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: '''simple docstring''' if len(lowerCamelCase_ ) == 0: return "" lowercase = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCamelCase_ ) + 1 ): lowercase = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowercase = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_lowerCAmelCase ): lowercase = """""" while integer != 0: lowercase = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s lowercase = 0 while True: lowercase = word + """#""" + int_to_alphabetic(lowerCamelCase_ ) if sword in info["reverse_short_word"]: continue else: lowercase = sword break lowercase = short_word lowercase = word return short_word @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = param_name.split("""_""" ) lowercase = [TrialShortNamer.shortname_for_word(lowerCamelCase_ , lowerCamelCase_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowercase = ["""""", """_"""] for separator in separators: lowercase = separator.join(lowerCamelCase_ ) if shortname not in info["reverse_short_param"]: lowercase = shortname lowercase = param_name return shortname return param_name @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = TrialShortNamer.shortname_for_key(lowerCamelCase_ , lowerCamelCase_ ) lowercase = short_name lowercase = param_name @classmethod def _a ( cls ) -> Tuple: '''simple docstring''' if cls.NAMING_INFO is not None: return lowercase = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } lowercase = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCamelCase_ , lowerCamelCase_ ) lowercase = info @classmethod def _a ( cls , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None lowercase = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowercase = cls.NAMING_INFO["""short_param"""][k] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase = 1 if v else 0 lowercase = """""" if isinstance(lowerCamelCase_ , (int, float) ) else """-""" lowercase = F"""{key}{sep}{v}""" name.append(lowerCamelCase_ ) return "_".join(lowerCamelCase_ ) @classmethod def _a ( cls , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowercase = [] else: lowercase = repr.split("""_""" ) lowercase = {} for value in values: if "-" in value: lowercase = value.split("""-""" ) else: lowercase = re.sub("""[0-9.]""" , """""" , lowerCamelCase_ ) lowercase = float(re.sub("""[^0-9.]""" , """""" , lowerCamelCase_ ) ) lowercase = cls.NAMING_INFO["""reverse_short_param"""][p_k] lowercase = p_v for k in cls.DEFAULTS: if k not in parameters: lowercase = cls.DEFAULTS[k] return parameters
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int ): return str(A__ ) == str(A__ )[::-1] def SCREAMING_SNAKE_CASE ( lowercase_ : int ): return int(A__ ) + int(str(A__ )[::-1] ) def SCREAMING_SNAKE_CASE ( lowercase_ : int = 1_0000 ): lowercase = [] for num in range(1 , A__ ): lowercase = 0 lowercase = num while iterations < 50: lowercase = sum_reverse(A__ ) iterations += 1 if is_palindrome(A__ ): break else: lychrel_nums.append(A__ ) return len(A__ ) if __name__ == "__main__": print(f'''{solution() = }''')
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase (_UpperCamelCase ): __A = (CMStochasticIterativeScheduler,) __A = 10 def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**_lowerCAmelCase ) return config def _a ( self ) -> Dict: '''simple docstring''' lowercase = 10 lowercase = self.get_scheduler_config() lowercase = self.scheduler_classes[0](**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) lowercase = scheduler.timesteps[0] lowercase = scheduler.timesteps[1] lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ) -> Any: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 1 scheduler.set_timesteps(_lowerCAmelCase ) lowercase = scheduler.timesteps lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_lowerCAmelCase ): # 1. scale model input lowercase = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict noise residual lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 3. predict previous sample x_t-1 lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = [106, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) lowercase = scheduler.timesteps lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict noise residual lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 3. predict previous sample x_t-1 lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def _a ( self ) -> int: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = [39, 30, 12, 15, 0] with self.assertRaises(_lowerCAmelCase , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = [39, 30, 12, 1, 0] lowercase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' from __future__ import annotations lowercase_ : str = [True] * 100_0001 lowercase_ : int = 2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): lowercase_ : int = False i += 1 def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): return seive[n] def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): return any(digit in """02468""" for digit in str(a__ ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict = 100_0000 ): lowercase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(a__ ) and not contains_an_even_digit(a__ ): lowercase = str(a__ ) lowercase = [int(str_num[j:] + str_num[:j] ) for j in range(len(a__ ) )] if all(is_prime(a__ ) for i in list_nums ): result.append(a__ ) return result def SCREAMING_SNAKE_CASE ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowercase = 0 lowercase = str(lowercase_ ) while len(lowercase_ ) != 1: lowercase = [int(lowercase_ ) for i in num_string] lowercase = 1 for i in range(0 , len(lowercase_ ) ): total *= numbers[i] lowercase = str(lowercase_ ) steps += 1 return steps def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowercase = 0 lowercase = str(lowercase_ ) while len(lowercase_ ) != 1: lowercase = [int(lowercase_ ) for i in num_string] lowercase = 0 for i in range(0 , len(lowercase_ ) ): total += numbers[i] lowercase = str(lowercase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Tuple ): return int((input_a, input_a).count(0 ) == 0 ) def SCREAMING_SNAKE_CASE ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : list , lowercase_ : int , lowercase_ : int = 0 , lowercase_ : int = 0 ): lowercase = right or len(__a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__a , __a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Union[str, Any] ): lowercase = 0 if start < end: lowercase = randint(lowercase_ , lowercase_ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase = _in_place_partition(lowercase_ , lowercase_ , lowercase_ ) count += _in_place_quick_sort(lowercase_ , lowercase_ , p - 1 ) count += _in_place_quick_sort(lowercase_ , p + 1 , lowercase_ ) return count def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : List[str] ): lowercase = 0 lowercase = randint(lowercase_ , lowercase_ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase = start - 1 for index in range(lowercase_ , lowercase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase = new_pivot_index + 1 lowercase = a[new_pivot_index] lowercase = a[index] lowercase = temp lowercase = a[new_pivot_index + 1] lowercase = a[end] lowercase = temp return new_pivot_index + 1, count lowercase_ : Tuple = TemporaryFile() lowercase_ : Tuple = 100 # 1000 elements are to be sorted lowercase_ : int = 0, 1 # mean and standard deviation lowercase_ : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array lowercase_ : Any = np.load(outfile) lowercase_ : Optional[int] = len(M) - 1 lowercase_ : Dict = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int ): return str(lowercase_ ) == str(lowercase_ )[::-1] def SCREAMING_SNAKE_CASE ( lowercase_ : int ): return int(lowercase_ ) + int(str(lowercase_ )[::-1] ) def SCREAMING_SNAKE_CASE ( lowercase_ : int = 1_0000 ): lowercase = [] for num in range(1 , lowercase_ ): lowercase = 0 lowercase = num while iterations < 50: lowercase = sum_reverse(lowercase_ ) iterations += 1 if is_palindrome(lowercase_ ): break else: lychrel_nums.append(lowercase_ ) return len(lowercase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowercase_ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase = model_type_to_module_name(_lowerCAmelCase ) lowercase = importlib.import_module(F""".{module_name}""" , """transformers.models""" ) try: return getattr(_lowerCAmelCase , _lowerCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowerCAmelCase , """__name__""" , _lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase = importlib.import_module("""transformers""" ) if hasattr(_lowerCAmelCase , _lowerCAmelCase ): return getattr(_lowerCAmelCase , _lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : List[Any] = None , lowercase_ : Optional[Any] = False , lowercase_ : int = False , lowercase_ : Union[str, Any] = None , lowercase_ : List[str] = None , lowercase_ : Dict = None , lowercase_ : Tuple = False , **lowercase_ : Dict , ): lowercase = get_file_from_repo( _lowerCAmelCase , _lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , resume_download=_lowerCAmelCase , proxies=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , local_files_only=_lowerCAmelCase , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(_lowerCAmelCase , encoding="""utf-8""" ) as reader: return json.load(_lowerCAmelCase ) class __UpperCamelCase : def __init__( self ) -> Optional[Any]: '''simple docstring''' raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_lowerCamelCase ) def _a ( cls , _lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = kwargs.pop("""config""" , _lowerCamelCase ) lowercase = kwargs.pop("""trust_remote_code""" , _lowerCamelCase ) lowercase = True lowercase , lowercase = FeatureExtractionMixin.get_feature_extractor_dict(_lowerCamelCase , **_lowerCamelCase ) lowercase = config_dict.get("""feature_extractor_type""" , _lowerCamelCase ) lowercase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): lowercase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # It could be in `config.feature_extractor_type`` lowercase = getattr(_lowerCamelCase , """feature_extractor_type""" , _lowerCamelCase ) if hasattr(_lowerCamelCase , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: lowercase = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: lowercase = feature_extractor_class_from_name(_lowerCamelCase ) lowercase = feature_extractor_auto_map is not None lowercase = feature_extractor_class is not None or type(_lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING lowercase = resolve_trust_remote_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if has_remote_code and trust_remote_code: lowercase = get_class_from_dynamic_module( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) lowercase = kwargs.pop("""code_revision""" , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING: lowercase = FEATURE_EXTRACTOR_MAPPING[type(_lowerCamelCase )] return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(_lowerCamelCase , _lowerCamelCase )
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
import heapq import sys import numpy as np lowercase_ : int = tuple[int, int] class __UpperCamelCase : def __init__( self ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = set() def _a ( self ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__lowerCamelCase ) else: # update # print("update", item) lowercase = [] (lowercase) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (lowercase) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if item in self.set: self.set.remove(__lowerCamelCase ) lowercase = [] (lowercase) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (lowercase) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self ) -> List[Any]: '''simple docstring''' return self.elements[0][1] def _a ( self ) -> Any: '''simple docstring''' (lowercase) = heapq.heappop(self.elements ) self.set.remove(__lowerCamelCase ) return (priority, item) def SCREAMING_SNAKE_CASE ( lowercase_ : TPos , lowercase_ : TPos ): lowercase = np.array(lowerCamelCase_ ) lowercase = np.array(lowerCamelCase_ ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE ( lowercase_ : TPos , lowercase_ : TPos ): return consistent_heuristic(lowerCamelCase_ , lowerCamelCase_ ) // t def SCREAMING_SNAKE_CASE ( lowercase_ : TPos , lowercase_ : TPos ): return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE ( lowercase_ : TPos , lowercase_ : int , lowercase_ : TPos , lowercase_ : dict[TPos, float] ): lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase_ , lowerCamelCase_ ) return ans def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ): lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): lowercase = '''*''' for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if (j, (n - 1) - i) in blocks: lowercase = '''#''' lowercase = '''-''' lowercase = back_pointer[goal] while x != start: (lowercase) = x # print(x) lowercase = '''-''' lowercase = back_pointer[x] lowercase = '''-''' for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) lowercase = back_pointer[goal] while x != start: print(lowerCamelCase_ , end=""" """ ) lowercase = back_pointer[x] print(lowerCamelCase_ ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , ): for itera in range(lowerCamelCase_ ): open_list[itera].remove_element(lowerCamelCase_ ) # print("s", s) # print("j", j) (lowercase) = s lowercase = (x - 1, y) lowercase = (x + 1, y) lowercase = (x, y + 1) lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase_ ) lowercase = -1 lowercase = float("""inf""" ) if valid(lowerCamelCase_ ) and g_function[neighbours] > g_function[s] + 1: lowercase = g_function[s] + 1 lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase_ , key(lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase_ ): if key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) <= Wa * key( lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ ): open_list[j].put( lowerCamelCase_ , key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE ( ): lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowercase_ : Dict = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowercase_ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowercase_ : Optional[int] = make_common_ground() lowercase_ : Optional[int] = blocks_blk # hyper parameters lowercase_ : List[Any] = 1 lowercase_ : str = 1 lowercase_ : Tuple = 20 lowercase_ : int = 3 # one consistent and two other inconsistent # start and end destination lowercase_ : Optional[int] = (0, 0) lowercase_ : Optional[int] = (n - 1, n - 1) lowercase_ : Union[str, Any] = 1 def SCREAMING_SNAKE_CASE ( lowercase_ : TPos , lowercase_ : TPos , lowercase_ : int ): lowercase = {start: 0, goal: float("""inf""" )} lowercase = {start: -1, goal: -1} lowercase = [] lowercase = set() for i in range(lowerCamelCase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase_ , key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ) lowercase = [] lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: lowercase = open_list[i].top_show() visited.add(lowerCamelCase_ ) expand_state( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) close_list_inad.append(lowerCamelCase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: lowercase = open_list[0].top_show() visited.add(lowerCamelCase_ ) expand_state( lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) close_list_anchor.append(lowerCamelCase_ ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase_ ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
702
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : List[Any] ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase__ , 2 ) + pow(UpperCamelCase__ , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) else: return a * actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Dict ): if b < 0: return 1 / actual_power(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return actual_power(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(power(-2, -3))
704
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = {} lowercase = tokenizer(example["""content"""] , truncation=lowercase_ )["""input_ids"""] lowercase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowercase_ : str = HfArgumentParser(PretokenizationArguments) lowercase_ : int = parser.parse_args() if args.num_workers is None: lowercase_ : Union[str, Any] = multiprocessing.cpu_count() lowercase_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase_ : str = time.time() lowercase_ : int = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowercase_ : Union[str, Any] = time.time() lowercase_ : int = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowercase_ : Any = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase (__lowercase ): def _a ( self ) -> List[str]: lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """num_heads""" ) ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=64 , _lowerCAmelCase=3 , _lowerCAmelCase=[16, 48, 96] , _lowerCAmelCase=[1, 3, 6] , _lowerCAmelCase=[1, 2, 10] , _lowerCAmelCase=[7, 3, 3] , _lowerCAmelCase=[4, 2, 2] , _lowerCAmelCase=[2, 1, 1] , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=[False, False, True] , _lowerCAmelCase=[0.0, 0.0, 0.0] , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=2 , ) -> Optional[Any]: lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_sizes lowercase = patch_stride lowercase = patch_padding lowercase = is_training lowercase = use_labels lowercase = num_labels lowercase = num_channels lowercase = embed_dim lowercase = num_heads lowercase = stride_kv lowercase = depth lowercase = cls_token lowercase = attention_drop_rate lowercase = initializer_range lowercase = layer_norm_eps def _a ( self ) -> int: lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> Dict: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: lowercase = CvtModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) lowercase = (self.image_size, self.image_size) lowercase = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: lowercase = self.num_labels lowercase = CvtForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> int: lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (__lowercase , __lowercase , unittest.TestCase ): __A = (CvtModel, CvtForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: lowercase = CvtModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> Tuple: return @unittest.skip(reason="""Cvt does not output attentions""" ) def _a ( self ) -> Optional[Any]: pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def _a ( self ) -> Dict: pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def _a ( self ) -> int: pass def _a ( self ) -> Union[str, Any]: lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = len(self.model_tester.depth ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: pass @slow def _a ( self ) -> Optional[Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = CvtModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self ) -> int: lowercase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase_ : Any = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict=None ): lowercase = XLNetConfig.from_json_file(_SCREAMING_SNAKE_CASE ) lowercase = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase = finetuning_task lowercase = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase = XLNetForSequenceClassification(_SCREAMING_SNAKE_CASE ) elif "squad" in finetuning_task: lowercase = finetuning_task lowercase = XLNetForQuestionAnswering(_SCREAMING_SNAKE_CASE ) else: lowercase = XLNetLMHeadModel(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model lowercase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F"""Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F"""Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}""" ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowercase_ : List[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' class __UpperCamelCase : def __init__( self ) -> Dict: '''simple docstring''' lowercase = """""" lowercase = """""" lowercase = [] def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase = self.__min_dist_top_down_dp(_lowerCAmelCase , n - 1 ) lowercase = self.__min_dist_top_down_dp(m - 1 , _lowerCAmelCase ) lowercase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase = 1 + min(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self.dp[m][n] def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = worda lowercase = worda lowercase = [[-1 for _ in range(len(_lowerCAmelCase ) )] for _ in range(len(_lowerCAmelCase ) )] return self.__min_dist_top_down_dp(len(_lowerCAmelCase ) - 1 , len(_lowerCAmelCase ) - 1 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = worda lowercase = worda lowercase = len(_lowerCAmelCase ) lowercase = len(_lowerCAmelCase ) lowercase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase = j elif j == 0: # second string is empty lowercase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase = self.dp[i - 1][j - 1] else: lowercase = self.dp[i][j - 1] lowercase = self.dp[i - 1][j] lowercase = self.dp[i - 1][j - 1] lowercase = 1 + min(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self.dp[m][n] if __name__ == "__main__": lowercase_ : Optional[int] = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowercase_ : Tuple = input('''Enter the first string: ''').strip() lowercase_ : Optional[int] = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Optional[Any] ): return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Union[str, Any] ): lowercase = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Dict=7_0000 ): lowercase = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): lowercase = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = sigmoid_function(lowerCAmelCase__ ) lowercase = np.dot(x.T , h - y ) / y.size lowercase = theta - alpha * gradient # updating the weights lowercase = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = sigmoid_function(lowerCAmelCase__ ) lowercase = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase_ : Any = datasets.load_iris() lowercase_ : List[Any] = iris.data[:, :2] lowercase_ : Any = (iris.target != 0) * 1 lowercase_ : int = 0.1 lowercase_ : str = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE ( lowercase_ : int ): return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((lowercase_) , (lowercase_)) : Optional[Any] = (x[:, 0].min(), x[:, 0].max()) ((lowercase_) , (lowercase_)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((lowercase_) , (lowercase_)) : List[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase_ : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] lowercase_ : Optional[Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ : List[Any] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Dict = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowercase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class __UpperCamelCase (lowercase_ ): def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' if tokenize_kwargs is None: lowercase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) lowercase = truncation lowercase = tokenize_kwargs lowercase = {} if return_tensors is not None: lowercase = return_tensors return preprocess_params, {}, postprocess_params def _a ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.framework lowercase = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) return model_inputs def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.model(**UpperCamelCase__ ) return model_outputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> Any: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowercase_ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class __UpperCamelCase (__UpperCAmelCase ): def __init__( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type(lowerCAmelCase_ ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' if "text_queries" in kwargs: lowercase = kwargs.pop("""text_queries""" ) if isinstance(lowerCAmelCase_ , (str, Image.Image) ): lowercase = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase = image lowercase = super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) return results def _a ( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = {} if "threshold" in kwargs: lowercase = kwargs["""threshold"""] if "top_k" in kwargs: lowercase = kwargs["""top_k"""] return {}, {}, postprocess_params def _a ( self , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase = load_image(inputs["""image"""] ) lowercase = inputs["""candidate_labels"""] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowercase = candidate_labels.split(""",""" ) lowercase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowerCAmelCase_ ): lowercase = self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework ) lowercase = self.image_processor(lowerCAmelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(lowerCAmelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _a ( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = model_inputs.pop("""target_size""" ) lowercase = model_inputs.pop("""candidate_label""" ) lowercase = model_inputs.pop("""is_last""" ) lowercase = self.model(**lowerCAmelCase_ ) lowercase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0.1 , _lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowercase = [] for model_output in model_outputs: lowercase = model_output["""candidate_label"""] lowercase = BaseModelOutput(lowerCAmelCase_ ) lowercase = self.image_processor.post_process_object_detection( outputs=lowerCAmelCase_ , threshold=lowerCAmelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): lowercase = outputs["""scores"""][index].item() lowercase = self._get_bounding_box(outputs["""boxes"""][index][0] ) lowercase = {"""score""": score, """label""": label, """box""": box} results.append(lowerCAmelCase_ ) lowercase = sorted(lowerCAmelCase_ , key=lambda _lowerCAmelCase : x["score"] , reverse=lowerCAmelCase_ ) if top_k: lowercase = results[:top_k] return results def _a ( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) lowercase , lowercase , lowercase , lowercase = box.int().tolist() lowercase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): # Initialise PyTorch model lowercase = RemBertConfig.from_json_file(a_ ) print("""Building PyTorch model from configuration: {}""".format(str(a_ ) ) ) lowercase = RemBertModel(a_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(a_ , a_ , a_ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(a_ ) ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : int=True , lowercase_ : str="pt" ): lowercase = {"""add_prefix_space""": True} if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not line.startswith(""" """ ) else {} lowercase = padding_side return tokenizer( [line] , max_length=UpperCAmelCase__ , padding="""max_length""" if pad_to_max_length else None , truncation=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str , lowercase_ : int=None , ): lowercase = input_ids.ne(UpperCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase (_a ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="train" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="" , ) -> str: '''simple docstring''' super().__init__() lowercase = Path(_A ).joinpath(type_path + """.source""" ) lowercase = Path(_A ).joinpath(type_path + """.target""" ) lowercase = self.get_char_lens(self.src_file ) lowercase = max_source_length lowercase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" lowercase = tokenizer lowercase = prefix if n_obs is not None: lowercase = self.src_lens[:n_obs] lowercase = src_lang lowercase = tgt_lang def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = index + 1 # linecache starts at 1 lowercase = self.prefix + linecache.getline(str(self.src_file ) , _A ).rstrip("""\n""" ) lowercase = linecache.getline(str(self.tgt_file ) , _A ).rstrip("""\n""" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _A ) else self.tokenizer ) lowercase = self.tokenizer.generator if isinstance(self.tokenizer , _A ) else self.tokenizer lowercase = encode_line(_A , _A , self.max_source_length , """right""" ) lowercase = encode_line(_A , _A , self.max_target_length , """right""" ) lowercase = source_inputs["""input_ids"""].squeeze() lowercase = target_inputs["""input_ids"""].squeeze() lowercase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def _a ( self , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase = torch.stack([x["""input_ids"""] for x in batch] ) lowercase = torch.stack([x["""attention_mask"""] for x in batch] ) lowercase = torch.stack([x["""decoder_input_ids"""] for x in batch] ) lowercase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _A ) else self.tokenizer.pad_token_id ) lowercase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _A ) else self.tokenizer.pad_token_id ) lowercase = trim_batch(_A , _A ) lowercase , lowercase = trim_batch(_A , _A , attention_mask=_A ) lowercase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowercase_ : Dict = getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): return list(itertools.chain.from_iterable(UpperCAmelCase__ ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): lowercase = get_git_info() save_json(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """git_log.json""" ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[str]=4 , **lowercase_ : Optional[Any] ): with open(UpperCAmelCase__ , """w""" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , indent=UpperCAmelCase__ , **UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): with open(UpperCAmelCase__ ) as f: return json.load(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( ): lowercase = git.Repo(search_parent_directories=UpperCAmelCase__ ) lowercase = { """repo_id""": str(UpperCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : List[str] ): return list(map(UpperCAmelCase__ , UpperCAmelCase__ ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Optional[Any] ): with open(UpperCAmelCase__ , """wb""" ) as f: return pickle.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): def remove_articles(lowercase_ : Optional[int] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , UpperCAmelCase__ ) def white_space_fix(lowercase_ : int ): return " ".join(text.split() ) def remove_punc(lowercase_ : List[Any] ): lowercase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Any ): lowercase = normalize_answer(UpperCAmelCase__ ).split() lowercase = normalize_answer(UpperCAmelCase__ ).split() lowercase = Counter(UpperCAmelCase__ ) & Counter(UpperCAmelCase__ ) lowercase = sum(common.values() ) if num_same == 0: return 0 lowercase = 1.0 * num_same / len(UpperCAmelCase__ ) lowercase = 1.0 * num_same / len(UpperCAmelCase__ ) lowercase = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : List[Any] ): return normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : List[Any] ): assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) lowercase = 0 for hypo, pred in zip(UpperCAmelCase__ , UpperCAmelCase__ ): em += exact_match_score(UpperCAmelCase__ , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: em /= len(UpperCAmelCase__ ) return {"em": em} def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return model_prefix.startswith("""rag""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str ): lowercase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase = """dropout_rate""" for p in extra_params: if getattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) and not hasattr(UpperCAmelCase__ , equivalent_param[p] ): logger.info("""config doesn\'t have a `{}` attribute""".format(UpperCAmelCase__ ) ) delattr(UpperCAmelCase__ , UpperCAmelCase__ ) continue lowercase = p if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) else equivalent_param[p] setattr(UpperCAmelCase__ , UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) delattr(UpperCAmelCase__ , UpperCAmelCase__ ) return hparams, config
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping lowercase_ : Tuple = tuple[int, int] class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = vertices lowercase = { (min(_lowerCAmelCase ), max(_lowerCAmelCase )): weight for edge, weight in edges.items() } def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase = weight def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = Graph({min(self.vertices )} , {} ) lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase = edge lowercase = weight subgraph.add_edge(_lowerCAmelCase , _lowerCAmelCase ) return subgraph def SCREAMING_SNAKE_CASE ( lowercase_ : str = "p107_network.txt" ): lowercase = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) lowercase = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase = {} lowercase = 42 lowercase = 42 lowercase = 42 with open(_UpperCamelCase ) as f: lowercase = f.read().strip().split("""\n""" ) lowercase = [line.split(""",""" ) for line in data] for edgea in range(1 , len(_UpperCamelCase ) ): for edgea in range(_UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowercase = int(adjaceny_matrix[edgea][edgea] ) lowercase = Graph(set(range(len(_UpperCamelCase ) ) ) , _UpperCamelCase ) lowercase = graph.prims_algorithm() lowercase = sum(graph.edges.values() ) lowercase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Union[str, Any] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ : int = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def SCREAMING_SNAKE_CASE ( lowercase_ : str = "mumbai" ): lowercase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowercase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowercase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Tuple=7 ): lowercase = None if token is not None: lowercase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase = '''636036''' lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase = requests.get(snake_case_ , headers=snake_case_ ).json() return result["workflow_runs"] def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = get_daily_ci_runs(snake_case_ ) lowercase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase = workflow_run['''id'''] break return workflow_run_id def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str] ): lowercase = get_last_daily_ci_runs(snake_case_ ) if workflow_run_id is not None: lowercase = get_artifacts_links(worflow_run_id=snake_case_ , token=snake_case_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case_ , artifact_url=snake_case_ , output_dir=snake_case_ , token=snake_case_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : int , lowercase_ : str ): get_last_daily_ci_artifacts(snake_case_ , snake_case_ , snake_case_ ) lowercase = {} for artifact_name in artifact_names: lowercase = os.path.join(snake_case_ , F"""{artifact_name}.zip""" ) if os.path.isfile(snake_case_ ): lowercase = {} with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file with z.open(snake_case_ ) as f: lowercase = f.read().decode("""UTF-8""" ) return results
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): lowercase = np.inf def set_batch_size(lowercase_ : Optional[int] ) -> None: nonlocal batch_size if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase = min(UpperCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase = min(UpperCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and feature.dtype == "binary": lowercase = min(UpperCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(UpperCamelCase__ , UpperCamelCase__ ) return None if batch_size is np.inf else batch_size class __UpperCamelCase (lowercase_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( _lowerCAmelCase , split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) lowercase = path_or_paths if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else {self.split: path_or_paths} lowercase = _PACKAGED_DATASETS_MODULES["""parquet"""][1] lowercase = Parquet( cache_dir=_lowerCAmelCase , data_files=_lowerCAmelCase , features=_lowerCAmelCase , hash=_lowerCAmelCase , **_lowerCAmelCase , ) def _a ( self ) -> Tuple: '''simple docstring''' if self.streaming: lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) lowercase = self.builder.as_dataset( split=self.split , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = dataset lowercase = path_or_buf lowercase = batch_size or get_writer_batch_size(dataset.features ) lowercase = parquet_writer_kwargs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: lowercase = self._write(file_obj=_lowerCAmelCase , batch_size=_lowerCAmelCase , **self.parquet_writer_kwargs ) else: lowercase = self._write(file_obj=self.path_or_buf , batch_size=_lowerCAmelCase , **self.parquet_writer_kwargs ) return written def _a ( self , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = 0 lowercase = parquet_writer_kwargs.pop("""path_or_buf""" , _lowerCAmelCase ) lowercase = self.dataset.features.arrow_schema lowercase = pq.ParquetWriter(_lowerCAmelCase , schema=_lowerCAmelCase , **_lowerCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _lowerCAmelCase ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): lowercase = query_table( table=self.dataset._data , key=slice(_lowerCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_lowerCAmelCase ) written += batch.nbytes writer.close() return written
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __UpperCamelCase (_UpperCAmelCase ): def _a ( self ) -> Any: '''simple docstring''' lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """num_attention_heads""" ) ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=64 , _lowerCAmelCase=3 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=16 , _lowerCAmelCase=[128, 256, 384] , _lowerCAmelCase=[4, 6, 8] , _lowerCAmelCase=[2, 3, 4] , _lowerCAmelCase=[16, 16, 16] , _lowerCAmelCase=0 , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=2 , ) -> int: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = kernel_size lowercase = stride lowercase = padding lowercase = hidden_sizes lowercase = num_attention_heads lowercase = depths lowercase = key_dim lowercase = drop_path_rate lowercase = patch_size lowercase = attention_ratio lowercase = mlp_ratio lowercase = initializer_range lowercase = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase = is_training lowercase = use_labels lowercase = num_labels lowercase = initializer_range def _a ( self ) -> List[str]: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> List[str]: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = LevitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) lowercase = (self.image_size, self.image_size) lowercase , lowercase = image_size[0], image_size[1] for _ in range(4 ): lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = LevitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __A = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Tuple: '''simple docstring''' lowercase = LevitModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> Dict: '''simple docstring''' return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def _a ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def _a ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="""Levit does not output attentions""" ) def _a ( self ) -> Dict: '''simple docstring''' pass def _a ( self ) -> Any: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase = (self.model_tester.image_size, self.model_tester.image_size) lowercase , lowercase = image_size[0], image_size[1] for _ in range(4 ): lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Dict: '''simple docstring''' pass def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Dict: '''simple docstring''' lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowercase = model(**_lowerCAmelCase ).loss loss.backward() def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase = False lowercase = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase = model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowercase = model(**_lowerCAmelCase ).loss loss.backward() def _a ( self ) -> List[Any]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase = problem_type["""title"""] lowercase = problem_type["""num_labels"""] lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if problem_type["num_labels"] > 1: lowercase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCAmelCase ) as warning_list: lowercase = model(**_lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _a ( self ) -> int: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LevitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> Any: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self ) -> List[str]: '''simple docstring''' lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase_ : List[str] = logging.get_logger(__name__) # General docstring lowercase_ : str = '''PoolFormerConfig''' # Base docstring lowercase_ : Optional[int] = '''sail/poolformer_s12''' lowercase_ : str = [1, 512, 7, 7] # Image classification docstring lowercase_ : int = '''sail/poolformer_s12''' lowercase_ : Dict = '''tabby, tabby cat''' lowercase_ : int = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : float = 0.0 , lowercase_ : bool = False ): if drop_prob == 0.0 or not training: return input lowercase = 1 - drop_prob lowercase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase = keep_prob + torch.rand(lowercase_ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowercase = input.div(lowercase_ ) * random_tensor return output class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase = None ) -> None: '''simple docstring''' super().__init__() lowercase = drop_prob def _a ( self , _lowerCAmelCase ) -> torch.Tensor: '''simple docstring''' return drop_path(_lowerCAmelCase , self.drop_prob , self.training ) def _a ( self ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' super().__init__() lowercase = patch_size if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) lowercase = stride if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (stride, stride) lowercase = padding if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (padding, padding) lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase ) lowercase = norm_layer(_lowerCAmelCase ) if norm_layer else nn.Identity() def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.projection(_lowerCAmelCase ) lowercase = self.norm(_lowerCAmelCase ) return embeddings class __UpperCamelCase (nn.GroupNorm ): def __init__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(1 , _lowerCAmelCase , **_lowerCAmelCase ) class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase = nn.AvgPoolad(_lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.pool(_lowerCAmelCase ) - hidden_states class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' super().__init__() lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) lowercase = PoolFormerDropPath(_lowerCAmelCase ) if isinstance(config.hidden_act , _lowerCAmelCase ): lowercase = ACTaFN[config.hidden_act] else: lowercase = config.hidden_act def _a ( self , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase = self.conva(_lowerCAmelCase ) lowercase = self.act_fn(_lowerCAmelCase ) lowercase = self.drop(_lowerCAmelCase ) lowercase = self.conva(_lowerCAmelCase ) lowercase = self.drop(_lowerCAmelCase ) return hidden_states class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase = PoolFormerPooling(_lowerCAmelCase ) lowercase = PoolFormerOutput(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase = PoolFormerGroupNorm(_lowerCAmelCase ) lowercase = PoolFormerGroupNorm(_lowerCAmelCase ) # Useful for training neural nets lowercase = PoolFormerDropPath(_lowerCAmelCase ) if drop_path > 0.0 else nn.Identity() lowercase = config.use_layer_scale if config.use_layer_scale: lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if self.use_layer_scale: lowercase = self.pooling(self.before_norm(_lowerCAmelCase ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase = hidden_states + self.drop_path(_lowerCAmelCase ) lowercase = () lowercase = self.output(self.after_norm(_lowerCAmelCase ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase = hidden_states + self.drop_path(_lowerCAmelCase ) lowercase = (output,) + outputs return outputs else: lowercase = self.drop_path(self.pooling(self.before_norm(_lowerCAmelCase ) ) ) # First residual connection lowercase = pooling_output + hidden_states lowercase = () # Second residual connection inside the PoolFormerOutput block lowercase = self.drop_path(self.output(self.after_norm(_lowerCAmelCase ) ) ) lowercase = hidden_states + layer_output lowercase = (output,) + outputs return outputs class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase = config # stochastic depth decay rule lowercase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowercase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowercase = nn.ModuleList(_lowerCAmelCase ) # Transformer blocks lowercase = [] lowercase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_lowerCAmelCase ) ) lowercase = nn.ModuleList(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True ) -> Tuple: '''simple docstring''' lowercase = () if output_hidden_states else None lowercase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowercase , lowercase = layers # Get patch embeddings from hidden_states lowercase = embedding_layer(_lowerCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_lowerCAmelCase ): lowercase = blk(_lowerCAmelCase ) lowercase = layer_outputs[0] if output_hidden_states: lowercase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): __A = PoolFormerConfig __A = '''poolformer''' __A = '''pixel_values''' __A = True def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> int: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = value lowercase_ : Any = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ : List[str] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , _UpperCAmelCase , ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase ) -> str: '''simple docstring''' super().__init__(_lowerCAmelCase ) lowercase = config lowercase = PoolFormerEncoder(_lowerCAmelCase ) # Initialize weights and apply final processing self.post_init() def _a ( self ) -> Tuple: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowercase = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) lowercase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase = nn.Linear(config.hidden_size , config.hidden_size ) def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.dense(_lowerCAmelCase ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , _UpperCAmelCase , ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase ) -> str: '''simple docstring''' super().__init__(_lowerCAmelCase ) lowercase = config.num_labels lowercase = PoolFormerModel(_lowerCAmelCase ) # Final norm lowercase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.poolformer( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) lowercase = outputs[0] lowercase = self.classifier(self.norm(_lowerCAmelCase ).mean([-2, -1] ) ) lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase = """single_label_classification""" else: lowercase = """multi_label_classification""" if self.config.problem_type == "regression": lowercase = MSELoss() if self.num_labels == 1: lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase = BCEWithLogitsLoss() lowercase = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): __A = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __A = Features({'''image''': Image()} ) __A = Features({'''labels''': ClassLabel} ) __A = '''image''' __A = '''labels''' def _a ( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _lowerCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) lowercase = copy.deepcopy(self ) lowercase = self.label_schema.copy() lowercase = features[self.label_column] lowercase = label_schema return task_template @property def _a ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''lxmert''' __A = {} def __init__( self , _lowerCAmelCase=3_0522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=9500 , _lowerCAmelCase=1600 , _lowerCAmelCase=400 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=9 , _lowerCAmelCase=5 , _lowerCAmelCase=5 , _lowerCAmelCase=2048 , _lowerCAmelCase=4 , _lowerCAmelCase=6.67 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Any: '''simple docstring''' lowercase = vocab_size lowercase = hidden_size lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = num_qa_labels lowercase = num_object_labels lowercase = num_attr_labels lowercase = l_layers lowercase = x_layers lowercase = r_layers lowercase = visual_feat_dim lowercase = visual_pos_dim lowercase = visual_loss_normalizer lowercase = task_matched lowercase = task_mask_lm lowercase = task_obj_predict lowercase = task_qa lowercase = visual_obj_loss lowercase = visual_attr_loss lowercase = visual_feat_loss lowercase = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**_lowerCAmelCase )
702
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowercase_ : Dict = parser.parse_args() lowercase_ : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
703
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ : List[str] = 16 lowercase_ : Optional[Any] = 32 def SCREAMING_SNAKE_CASE ( lowercase_ : Accelerator , lowercase_ : DatasetDict , lowercase_ : List[int] , lowercase_ : List[int] , lowercase_ : int = 16 ): lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase = DatasetDict( { """train""": dataset["""train"""].select(lowercase_ ), """validation""": dataset["""train"""].select(lowercase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowercase_ : Dict ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase = DataLoader( tokenized_datasets["""test"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader, test_dataloader def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Any ): # New Code # lowercase = [] # Download the dataset lowercase = load_dataset("""glue""" , """mrpc""" ) # Create our splits lowercase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase = batch_size // MAX_GPU_BATCH_SIZE lowercase = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) # New Code # # Create our folds: lowercase = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) lowercase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase_ ): lowercase , lowercase , lowercase = get_fold_dataloaders( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**lowercase_ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowercase_ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) # New Code # # We also run predictions on the test set at the very end lowercase = [] for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowercase_ ) lowercase = outputs.logits lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase = torch.cat(lowercase_ , dim=0 ) lowercase = torch.stack(lowercase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase = metric.compute(predictions=lowercase_ , references=lowercase_ ) accelerator.print("""Average test metrics from all folds:""" , lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowercase_ , default=3 , help="""The number of splits to perform across the dataset""" ) lowercase = parser.parse_args() lowercase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
704
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
0
import math def SCREAMING_SNAKE_CASE ( lowercase_ : int ): assert isinstance(lowercase_ , lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowercase = range(3 , int(math.sqrt(lowercase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[str]=1 , **lowercase_ : List[str] ): lowercase = factor * value lowercase = value while not is_prime(lowercase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowercase_ ) return value
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : str = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[Any] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[Any] = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowercase_ : Optional[Any] = trt.Logger(trt.Logger.WARNING) lowercase_ : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowercase_ : Union[str, Any] = logging.getLogger(__name__) lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowercase_ : str = parser.parse_args() if args.tokenizer_name: lowercase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowercase_ : int = args.per_device_eval_batch_size lowercase_ : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowercase_ : Optional[Any] = True lowercase_ : List[str] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowercase_ : Tuple = '''temp_engine/bert-fp16.engine''' if args.inta: lowercase_ : str = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowercase_ : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowercase_ : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] lowercase_ : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowercase_ : Any = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowercase_ : str = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowercase_ : List[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : str , lowercase_ : Any ): lowercase = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase_ ) # start time lowercase = time.time() # Run inference context.execute_async( bindings=[int(lowercase_ ) for d_inp in d_inputs] + [int(lowercase_ ), int(lowercase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase = time.time() lowercase = end_time - start_time lowercase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowercase_ : List[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ : Tuple = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowercase_ : Optional[int] = raw_datasets['''validation'''].column_names lowercase_ : Tuple = '''question''' if '''question''' in column_names else column_names[0] lowercase_ : int = '''context''' if '''context''' in column_names else column_names[1] lowercase_ : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowercase_ : Union[str, Any] = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase_ : str = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowercase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase_ , stride=args.doc_stride , return_overflowing_tokens=lowercase_ , return_offsets_mapping=lowercase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase = tokenized_examples.sequence_ids(lowercase_ ) lowercase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowercase_ : List[Any] = raw_datasets['''validation'''] # Validation Feature Creation lowercase_ : Tuple = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowercase_ : List[str] = default_data_collator lowercase_ : Any = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowercase_ : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. lowercase = postprocess_qa_predictions( examples=lowercase_ , features=lowercase_ , predictions=lowercase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase_ , label_ids=lowercase_ ) lowercase_ : str = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): return trt.volume(engine.get_binding_shape(lowercase_ ) ) * engine.get_binding_dtype(lowercase_ ).itemsize # Allocate device memory for inputs and outputs. lowercase_ : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowercase_ : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowercase_ : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowercase_ : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) lowercase_ : List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowercase_ : List[Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowercase_ : List[Any] = 0.0 lowercase_ : List[str] = 0 lowercase_ : Optional[Any] = timeit.default_timer() lowercase_ : int = None for step, batch in enumerate(eval_dataloader): lowercase_ : Tuple = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowercase_ : Union[str, Any] = outputs lowercase_ : Dict = torch.tensor(start_logits) lowercase_ : str = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowercase_ : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowercase_ : Optional[int] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowercase_ : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowercase_ : Any = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowercase_ : Dict = nested_truncate(all_preds, len(eval_dataset)) lowercase_ : List[str] = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) lowercase_ : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds) lowercase_ : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = None __A = None __A = None __A = None class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=512 , _lowerCAmelCase="cls" , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = project_dim lowercase = pooler_fn lowercase = learn_encoder lowercase = use_attention_mask class __UpperCamelCase (_UpperCAmelCase ): __A = [R'''pooler''', R'''logit_scale'''] __A = [R'''position_ids''', R'''predictions.decoder.bias'''] __A = '''roberta''' __A = RobertaSeriesConfig def __init__( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(_lowerCAmelCase ) lowercase = XLMRobertaModel(_lowerCAmelCase ) lowercase = nn.Linear(config.hidden_size , config.project_dim ) lowercase = getattr(_lowerCAmelCase , """has_pre_transformation""" , _lowerCAmelCase ) if self.has_pre_transformation: lowercase = nn.Linear(config.hidden_size , config.project_dim ) lowercase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _a ( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Any: '''simple docstring''' lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.base_model( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_lowerCAmelCase , ) if self.has_pre_transformation: lowercase = outputs["""hidden_states"""][-2] lowercase = self.pre_LN(_lowerCAmelCase ) lowercase = self.transformation_pre(_lowerCAmelCase ) return TransformationModelOutput( projection_state=_lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowercase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
import math import sys def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = """""" try: with open(lowercase_ , """rb""" ) as binary_file: lowercase = binary_file.read() for dat in data: lowercase = F"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = {"""0""": """0""", """1""": """1"""} lowercase , lowercase = """""", """""" lowercase = len(lowercase_ ) for i in range(len(lowercase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase = lexicon[curr_string] result += last_match_id lowercase = last_match_id + """0""" if math.loga(lowercase_ ).is_integer(): lowercase = {} for curr_key in list(lowercase_ ): lowercase = lexicon.pop(lowercase_ ) lowercase = new_lex lowercase = last_match_id + """1""" index += 1 lowercase = """""" return result def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = 8 try: with open(lowercase_ , """wb""" ) as opened_file: lowercase = [ to_write[i : i + byte_length] for i in range(0 , len(lowercase_ ) , lowercase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowercase_ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase = data_bits[counter:] lowercase = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = read_file_binary(lowercase_ ) lowercase = remove_prefix(lowercase_ ) lowercase = decompress_data(lowercase_ ) write_file_binary(lowercase_ , lowercase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ : Any = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = AlbertTokenizer __A = AlbertTokenizerFast __A = True __A = True __A = True def _a ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = AlbertTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = """this is a test""" lowercase = """this is a test""" return input_text, output_text def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = """<pad>""" lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(_lowerCAmelCase ) , 3_0000 ) def _a ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _a ( self ) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = """I was born in 92000, and this is falsé.""" lowercase = tokenizer.tokenize(_lowerCAmelCase ) lowercase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) lowercase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase = self.get_rust_tokenizer() lowercase = tokenizer.encode(_lowerCAmelCase ) lowercase = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = AlbertTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [48, 25, 21, 1289] ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowercase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowercase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = AlbertTokenizer(_lowerCAmelCase ) lowercase = tokenizer.encode("""sequence builders""" ) lowercase = tokenizer.encode("""multi-sequence build""" ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : str = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __UpperCamelCase (_UpperCAmelCase ): __A = '''efficientformer''' def __init__( self , _lowerCAmelCase = [3, 2, 6, 4] , _lowerCAmelCase = [48, 96, 224, 448] , _lowerCAmelCase = [True, True, True, True] , _lowerCAmelCase = 448 , _lowerCAmelCase = 32 , _lowerCAmelCase = 4 , _lowerCAmelCase = 7 , _lowerCAmelCase = 5 , _lowerCAmelCase = 8 , _lowerCAmelCase = 4 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 16 , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 1E-5 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = 224 , _lowerCAmelCase = 1E-05 , **_lowerCAmelCase , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = hidden_sizes lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = initializer_range lowercase = layer_norm_eps lowercase = patch_size lowercase = num_channels lowercase = depths lowercase = mlp_expansion_ratio lowercase = downsamples lowercase = dim lowercase = key_dim lowercase = attention_ratio lowercase = resolution lowercase = pool_size lowercase = downsample_patch_size lowercase = downsample_stride lowercase = downsample_pad lowercase = drop_path_rate lowercase = num_metaad_blocks lowercase = distillation lowercase = use_layer_scale lowercase = layer_scale_init_value lowercase = image_size lowercase = batch_norm_eps
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = [] for line in lines: lowercase = re.sub(R"""#.*""" , """""" , lowercase_ ) # remove comments if line: filtered_lines.append(lowercase_ ) lowercase = """\n""".join(lowercase_ ) # Make a hash from all this code lowercase = full_str.encode("""utf-8""" ) return shaaaa(lowercase_ ).hexdigest() # get importable module names and hash for caching lowercase_ : str = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase_ : List[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase_ : List[str] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name lowercase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __UpperCamelCase : __A = 42 __A = None __A = None lowercase_ : str = namedtuple('''CoinsDistribResult''', '''moves excess''') def SCREAMING_SNAKE_CASE ( lowercase_ : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(lowercase_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase = get_distrib(node.left ) lowercase , lowercase = get_distrib(node.right ) lowercase = 1 - left_distrib_excess lowercase = 1 - right_distrib_excess lowercase = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] , lowercase_ : list[int] ): # Check if the input is valid if not len(lowercase_ ) == len(lowercase_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients lowercase , lowercase , lowercase = equationa lowercase , lowercase , lowercase = equationa # Calculate the determinants of the matrices lowercase = aa * ba - aa * ba lowercase = ca * ba - ca * ba lowercase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowercase = determinant_x / determinant lowercase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = model.config lowercase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): if "encoder.model" in name: lowercase = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase = """encoder.""" + name if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] ): for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = int(key_split[5] ) lowercase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Optional[int]=None , lowercase_ : Dict=False ): # load original model lowercase = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model lowercase , lowercase = get_configs(lowercase_ ) lowercase = DonutSwinModel(lowercase_ ) lowercase = MBartForCausalLM(lowercase_ ) lowercase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() lowercase = original_model.state_dict() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document lowercase = load_dataset("""hf-internal-testing/example-documents""" ) lowercase = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) lowercase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase = DonutProcessor(lowercase_ , lowercase_ ) lowercase = processor(lowercase_ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase = """When is the coffee break?""" lowercase = task_prompt.replace("""{user_input}""" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="""pt""" )[ """input_ids""" ] lowercase = original_model.encoder.model.patch_embed(lowercase_ ) lowercase , lowercase = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states lowercase = original_model.encoder(lowercase_ ) lowercase = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states lowercase = original_model(lowercase_ , lowercase_ , lowercase_ ).logits lowercase = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) lowercase_ : Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) # TODO Update this lowercase_ : str = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __UpperCamelCase (_UpperCAmelCase ): __A = '''esm''' def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1026 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , mask_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = emb_layer_norm_before lowercase = token_dropout lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowercase = EsmFoldConfig() elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = EsmFoldConfig(**_lowerCAmelCase ) lowercase = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowercase = get_default_vocab_list() else: lowercase = vocab_list else: lowercase = None lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , _lowerCAmelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = super().to_dict() if isinstance(self.esmfold_config , _lowerCAmelCase ): lowercase = self.esmfold_config.to_dict() return output @dataclass class __UpperCamelCase : __A = None __A = True __A = False __A = False __A = False __A = 0 __A = True __A = False __A = 128 __A = None def _a ( self ) -> int: '''simple docstring''' if self.trunk is None: lowercase = TrunkConfig() elif isinstance(self.trunk , _lowerCAmelCase ): lowercase = TrunkConfig(**self.trunk ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = asdict(self ) lowercase = self.trunk.to_dict() return output @dataclass class __UpperCamelCase : __A = 48 __A = 1024 __A = 128 __A = 32 __A = 32 __A = 32 __A = 0 __A = 0 __A = False __A = 4 __A = 128 __A = None def _a ( self ) -> int: '''simple docstring''' if self.structure_module is None: lowercase = StructureModuleConfig() elif isinstance(self.structure_module , _lowerCAmelCase ): lowercase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowercase = self.sequence_state_dim // self.sequence_head_width lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _a ( self ) -> int: '''simple docstring''' lowercase = asdict(self ) lowercase = self.structure_module.to_dict() return output @dataclass class __UpperCamelCase : __A = 384 __A = 128 __A = 16 __A = 128 __A = 12 __A = 4 __A = 8 __A = 0.1 __A = 8 __A = 1 __A = 2 __A = 7 __A = 10 __A = 1e-8 __A = 1e5 def _a ( self ) -> Optional[int]: '''simple docstring''' return asdict(self ) def SCREAMING_SNAKE_CASE ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( lowercase_ : str ): for param in module.parameters(): lowercase = False def SCREAMING_SNAKE_CASE ( ): lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = plt.imshow(lowercase_ ) fig.axes.get_xaxis().set_visible(lowercase_ ) fig.axes.get_yaxis().set_visible(lowercase_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): lowercase = datetime.now() lowercase = current_time.strftime("""%H:%M:%S""" ) return timestamp
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int = 1000 ): lowercase , lowercase = 1, 1 lowercase = [] for i in range(1 , n + 1 ): lowercase = prev_numerator + 2 * prev_denominator lowercase = prev_numerator + prev_denominator if len(str(lowercase_ ) ) > len(str(lowercase_ ) ): result.append(lowercase_ ) lowercase = numerator lowercase = denominator return len(lowercase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowercase_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase_ : List[str] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : str ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = _TestCommandArgs(dataset=lowercase_ , all_configs=lowercase_ , save_infos=lowercase_ ) lowercase = TestCommand(*lowercase_ ) test_command.run() lowercase = os.path.join(lowercase_ , """README.md""" ) assert os.path.exists(lowercase_ ) lowercase = DatasetInfosDict.from_directory(lowercase_ ) lowercase = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 235_1563, """num_examples""": 1_0000, }, { """name""": """validation""", """num_bytes""": 23_8418, """num_examples""": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase , lowercase = getattr(dataset_infos["""default"""] , lowercase_ ), getattr(expected_dataset_infos["""default"""] , lowercase_ ) if key == "num_bytes": assert is_apercent_close(lowercase_ , lowercase_ ) elif key == "splits": assert list(lowercase_ ) == list(lowercase_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ : Optional[int] = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : List[str]=False , lowercase_ : str=True ): if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowercase , lowercase , lowercase , lowercase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowercase = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models ) lowercase = config_class.from_json_file(lowercase_ ) lowercase = True lowercase = True print(F"""Building TensorFlow model from configuration: {config}""" ) lowercase = model_class(lowercase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowercase = cached_file( lowercase_ , lowercase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowercase = load_pytorch_checkpoint_in_tfa_model(lowercase_ , lowercase_ ) if compare_with_pt_model: lowercase = tf_model(tf_model.dummy_inputs , training=lowercase_ ) # build the network lowercase = torch.load(lowercase_ , map_location="""cpu""" ) lowercase = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowercase_ , config=lowercase_ , state_dict=lowercase_ ) with torch.no_grad(): lowercase = pt_model(**pt_model.dummy_inputs ) lowercase = pto[0].numpy() lowercase = tfo[0].numpy() lowercase = np.amax(np.abs(np_pt - np_tf ) ) print(F"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, F"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(F"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(lowercase_ , save_format="""h5""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : int , lowercase_ : Tuple=None , lowercase_ : Optional[int]=None , lowercase_ : int=False , lowercase_ : List[str]=False , lowercase_ : Dict=False , lowercase_ : List[Any]=False , ): if args_model_type is None: lowercase = list(MODEL_CLASSES.keys() ) else: lowercase = [args_model_type] for j, model_type in enumerate(lowercase_ , start=1 ): print("""=""" * 100 ) print(F""" Converting model type {j}/{len(lowercase_ )}: {model_type}""" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowercase , lowercase , lowercase , lowercase , lowercase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowercase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowercase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowercase_ , lowercase_ ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue lowercase = model_shortcut_name elif only_convert_finetuned_models: print(F""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( F""" Converting checkpoint {i}/{len(lowercase_ )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: lowercase = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models ) else: lowercase = config_shortcut_name if model_shortcut_name in aws_model_maps: lowercase = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models ) else: lowercase = model_shortcut_name if os.path.isfile(lowercase_ ): lowercase = """converted_model""" convert_pt_checkpoint_to_tf( model_type=lowercase_ , pytorch_checkpoint_path=lowercase_ , config_file=lowercase_ , tf_dump_path=os.path.join(lowercase_ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=lowercase_ , ) if remove_cached_files: os.remove(lowercase_ ) os.remove(lowercase_ ) if __name__ == "__main__": lowercase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( f'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowercase_ : Union[str, Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __UpperCamelCase (_UpperCAmelCase ): __A = '''beit''' def __init__( self , _lowerCAmelCase=8192 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=[3, 5, 7, 11] , _lowerCAmelCase=[1, 2, 3, 6] , _lowerCAmelCase=True , _lowerCAmelCase=0.4 , _lowerCAmelCase=256 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=255 , **_lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = use_mask_token lowercase = use_absolute_position_embeddings lowercase = use_relative_position_bias lowercase = use_shared_relative_position_bias lowercase = layer_scale_init_value lowercase = drop_path_rate lowercase = use_mean_pooling # decode head attributes (semantic segmentation) lowercase = out_indices lowercase = pool_scales # auxiliary head attributes (semantic segmentation) lowercase = use_auxiliary_head lowercase = auxiliary_loss_weight lowercase = auxiliary_channels lowercase = auxiliary_num_convs lowercase = auxiliary_concat_input lowercase = semantic_loss_ignore_index class __UpperCamelCase (_UpperCAmelCase ): __A = version.parse('''1.11''' ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ) -> float: '''simple docstring''' return 1E-4
702
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): if isinstance(lowercase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class __UpperCamelCase (_UpperCAmelCase ): __A = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = size if size is not None else {"""shortest_edge""": 224} lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = resample lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: lowercase = get_resize_output_image_size(_lowerCAmelCase , size["""shortest_edge"""] , default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: lowercase = (size["""height"""], size["""width"""]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> List[str]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase = to_numpy_array(_lowerCAmelCase ) if do_resize: lowercase = self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) if do_center_crop: lowercase = self.center_crop(_lowerCAmelCase , size=_lowerCAmelCase ) if do_rescale: lowercase = self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) if do_normalize: lowercase = self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) lowercase = to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) return image def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowercase = make_batched(_lowerCAmelCase ) lowercase = [ [ self._preprocess_image( image=_lowerCAmelCase , do_resize=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , crop_size=_lowerCAmelCase , do_rescale=_lowerCAmelCase , rescale_factor=_lowerCAmelCase , do_normalize=_lowerCAmelCase , image_mean=_lowerCAmelCase , image_std=_lowerCAmelCase , data_format=_lowerCAmelCase , ) for img in video ] for video in videos ] lowercase = {"""pixel_values""": videos} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
703
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
704
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowercase_ : Union[str, Any] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' lowercase_ : Any = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' lowercase_ : List[Any] = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase (datasets.Metric ): def _a ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = 0.0 for i, j in zip(_lowerCAmelCase , _lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCAmelCase , _lowerCAmelCase ) else 0.0 lowercase = n_correct / len(_lowerCAmelCase ) return { "accuracy": accuracy, }
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : Any = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = ['''ConditionalDetrFeatureExtractor'''] lowercase_ : Union[str, Any] = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ) -> List[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def _a ( self ) -> Any: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self ) -> Any: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = True __A = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = FlaxRobertaModelTester(self ) @slow def _a ( self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""roberta-base""" , from_pt=_lowerCAmelCase ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase_ : Optional[Any] = False class __UpperCamelCase (unittest.TestCase ): def _a ( self , _lowerCAmelCase=32 ) -> Union[str, Any]: '''simple docstring''' set_seed(0 ) lowercase = UNetaDModel(sample_size=_lowerCAmelCase , in_channels=3 , out_channels=3 ) lowercase = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=_lowerCAmelCase , ) lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=_lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_lowerCAmelCase ) for _ in range(4 )] lowercase = [torch.randn((4, 3, 32, 32) ).to(_lowerCAmelCase ) for _ in range(4 )] lowercase = [torch.randint(0 , 1000 , (4,) ).long().to(_lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase , lowercase = self.get_model_optimizer(resolution=32 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase = model(_lowerCAmelCase , timesteps[i] ).sample lowercase = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase , lowercase = self.get_model_optimizer(resolution=32 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase = model(_lowerCAmelCase , timesteps[i] ).sample lowercase = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) )
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
import numpy as np lowercase_ : str = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class __UpperCamelCase : def __init__( self ) -> None: '''simple docstring''' lowercase = np.array(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> np.ndarray: '''simple docstring''' lowercase , lowercase = np.where(letter == self.SQUARE ) lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = message.lower() lowercase = message.replace(""" """ , """""" ) lowercase = message.replace("""j""" , """i""" ) lowercase = np.empty((2, len(_lowerCAmelCase )) ) for letter_index in range(len(_lowerCAmelCase ) ): lowercase = self.letter_to_numbers(message[letter_index] ) lowercase = numbers[0] lowercase = numbers[1] lowercase = first_step.reshape(2 * len(_lowerCAmelCase ) ) lowercase = """""" for numbers_index in range(len(_lowerCAmelCase ) ): lowercase = int(second_step[numbers_index * 2] ) lowercase = int(second_step[(numbers_index * 2) + 1] ) lowercase = self.numbers_to_letter(_lowerCAmelCase , _lowerCAmelCase ) lowercase = encoded_message + letter return encoded_message def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = message.lower() message.replace(""" """ , """""" ) lowercase = np.empty(2 * len(_lowerCAmelCase ) ) for letter_index in range(len(_lowerCAmelCase ) ): lowercase = self.letter_to_numbers(message[letter_index] ) lowercase = numbers[0] lowercase = numbers[1] lowercase = first_step.reshape((2, len(_lowerCAmelCase )) ) lowercase = """""" for numbers_index in range(len(_lowerCAmelCase ) ): lowercase = int(second_step[0, numbers_index] ) lowercase = int(second_step[1, numbers_index] ) lowercase = self.numbers_to_letter(_lowerCAmelCase , _lowerCAmelCase ) lowercase = decoded_message + letter return decoded_message
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' from __future__ import annotations lowercase_ : List[str] = '''Muhammad Umer Farooq''' lowercase_ : List[str] = '''MIT''' lowercase_ : str = '''1.0.0''' lowercase_ : Dict = '''Muhammad Umer Farooq''' lowercase_ : Optional[Any] = '''[email protected]''' lowercase_ : Any = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase ) -> None: '''simple docstring''' super().__init__() lowercase = [] lowercase = domain def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowercase = parse.urljoin(self.domain , _lowerCAmelCase ) self.urls.append(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return ".".join(get_sub_domain_name(lowercase_ ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): return parse.urlparse(lowercase_ ).netloc def SCREAMING_SNAKE_CASE ( lowercase_ : str = "https://github.com" ): lowercase = get_domain_name(lowercase_ ) # Initialize the parser lowercase = Parser(lowercase_ ) try: # Open URL lowercase = requests.get(lowercase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowercase = requests.get(lowercase_ ) # Get the valid email. lowercase = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase_ ) if __name__ == "__main__": lowercase_ : int = emails_from_url('''https://github.com''') print(f'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase_ : Dict = logging.get_logger(__name__) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=32 * 4 , _lowerCAmelCase=32 * 6 , _lowerCAmelCase=4 , _lowerCAmelCase=32 , ) -> Optional[int]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = is_training lowercase = use_auxiliary_loss lowercase = num_queries lowercase = num_channels lowercase = min_size lowercase = max_size lowercase = num_labels lowercase = mask_feature_size def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) lowercase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) lowercase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() lowercase = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() lowercase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _a ( self ) -> List[Any]: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase , lowercase = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = output.encoder_hidden_states lowercase = output.pixel_decoder_hidden_states lowercase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): lowercase = MaskFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) lowercase = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __A = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def _a ( self ) -> int: '''simple docstring''' lowercase = MaskFormerModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _a ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def _a ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def _a ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def _a ( self ) -> Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> int: '''simple docstring''' pass def _a ( self ) -> str: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def _a ( self ) -> int: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase = MaskFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = (self.model_tester.min_size,) * 2 lowercase = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowerCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=_lowerCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } lowercase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase ) lowercase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def _a ( self ) -> str: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) lowercase = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _a ( self ) -> int: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase = self.all_model_classes[1] lowercase , lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs() lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.all_model_classes[1] lowercase , lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs() lowercase = True lowercase = True lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) lowercase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase_ : Dict = 1e-4 def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> Optional[Any]: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def _a ( self ) -> Any: '''simple docstring''' lowercase = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) lowercase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) lowercase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_lowerCAmelCase ) .eval() ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # masks_queries_logits lowercase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] lowercase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits lowercase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _a ( self ) -> str: '''simple docstring''' lowercase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(_lowerCAmelCase ) .eval() ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # masks_queries_logits lowercase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] lowercase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits lowercase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _a ( self ) -> Any: '''simple docstring''' lowercase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_lowerCAmelCase ) .eval() ) lowercase = self.default_image_processor lowercase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowercase = inputs["""pixel_values"""].to(_lowerCAmelCase ) lowercase = [el.to(_lowerCAmelCase ) for el in inputs["""mask_labels"""]] lowercase = [el.to(_lowerCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' import qiskit def SCREAMING_SNAKE_CASE ( lowercase_ : int = 2 ): lowercase = qubits # Using Aer's simulator lowercase = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowercase = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowercase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowercase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowercase_ ) ) , list(range(lowercase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowercase = qiskit.execute(lowercase_ , lowercase_ , shots=1000 ) return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase (_UpperCAmelCase ): __A = (UnCLIPScheduler,) def _a ( self , **_lowerCAmelCase ) -> str: '''simple docstring''' lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self ) -> str: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def _a ( self ) -> Any: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.001_0011 < 1E-5 def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = scheduler.timesteps lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) lowercase = scheduler.timesteps lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: lowercase = None else: lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _a ( self ) -> Tuple: '''simple docstring''' pass def _a ( self ) -> Optional[int]: '''simple docstring''' pass
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } lowercase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } lowercase = tempfile.mkdtemp() lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub lowercase = """hf-internal-testing/ngram-beam-search-decoder""" def _a ( self , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self , **_lowerCAmelCase ) -> List[str]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = floats_list((3, 1000) ) lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = """This is a test string""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self , _lowerCAmelCase=(2, 10, 16) , _lowerCAmelCase=77 ) -> List[Any]: '''simple docstring''' np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowercase = processor.decode(_lowerCAmelCase ) lowercase = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowercase = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: lowercase = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: lowercase = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) lowercase , lowercase , lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 15 lowercase = -20.0 lowercase = -4.0 lowercase = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] lowercase = [d[0][2] for d in decoded_decoder_out] lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) lowercase = self._get_dummy_logits() lowercase = 2.0 lowercase = 5.0 lowercase = -20.0 lowercase = True lowercase = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) lowercase = decoded_processor_out.text lowercase = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: lowercase = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) lowercase = processor.decoder.model_container[processor.decoder._model_key] lowercase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() lowercase = os.listdir(_lowerCAmelCase ) lowercase = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = floats_list((3, 1000) ) lowercase = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) lowercase = self._get_dummy_logits() lowercase = processor_wavaveca.batch_decode(_lowerCAmelCase ) lowercase = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = self.get_decoder() lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _a ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = [d[key] for d in offsets] return retrieved_list def _a ( self ) -> str: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits()[0] lowercase = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) lowercase = self._get_dummy_logits() lowercase = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _a ( self ) -> Optional[int]: '''simple docstring''' import torch lowercase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) lowercase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6000 ) ) lowercase = iter(_lowerCAmelCase ) lowercase = next(_lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) lowercase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowercase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): lowercase = model(_lowerCAmelCase ).logits.cpu().numpy() lowercase = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowercase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] lowercase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) lowercase = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off lowercase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowercase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=True , _lowerCAmelCase=1 / 255 , _lowerCAmelCase=True , ) -> Any: '''simple docstring''' lowercase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_rescale lowercase = rescale_factor lowercase = do_pad def _a ( self ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> int: '''simple docstring''' if not batched: lowercase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): lowercase , lowercase = image.size else: lowercase , lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size["""shortest_edge"""] * h / w ) lowercase = self.size["""shortest_edge"""] elif w > h: lowercase = self.size["""shortest_edge"""] lowercase = int(self.size["""shortest_edge"""] * w / h ) else: lowercase = self.size["""shortest_edge"""] lowercase = self.size["""shortest_edge"""] else: lowercase = [] for image in image_inputs: lowercase , lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] lowercase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = YolosImageProcessor if is_vision_available() else None def _a ( self ) -> Any: '''simple docstring''' lowercase = YolosImageProcessingTester(self ) @property def _a ( self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) def _a ( self ) -> str: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) lowercase = self.image_processing_class(do_resize=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_rescale=_lowerCAmelCase ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase = image_processing_a.pad(_lowerCAmelCase , return_tensors="""pt""" ) lowercase = image_processing_a(_lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def _a ( self ) -> Tuple: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowercase = json.loads(f.read() ) lowercase = {"""image_id""": 3_9769, """annotations""": target} # encode them lowercase = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowercase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area lowercase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCAmelCase ) ) # verify boxes lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCAmelCase ) ) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCAmelCase ) ) # verify class_labels lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCAmelCase ) ) # verify orig_size lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCAmelCase ) ) # verify size lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCAmelCase ) ) @slow def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowercase = json.loads(f.read() ) lowercase = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} lowercase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowercase = YolosImageProcessor(format="""coco_panoptic""" ) lowercase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) ) # verify area lowercase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCAmelCase ) ) # verify boxes lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCAmelCase ) lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCAmelCase , atol=1E-3 ) ) # verify image_id lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCAmelCase ) ) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCAmelCase ) ) # verify class_labels lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCAmelCase ) ) # verify masks lowercase = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCAmelCase ) # verify orig_size lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCAmelCase ) ) # verify size lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCAmelCase ) )
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Dict = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''rwkv''' __A = {'''max_position_embeddings''': '''context_length'''} def __init__( self , _lowerCAmelCase=5_0277 , _lowerCAmelCase=1024 , _lowerCAmelCase=4096 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=6 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase = vocab_size lowercase = context_length lowercase = hidden_size lowercase = num_hidden_layers lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase = layer_norm_epsilon lowercase = rescale_every lowercase = use_cache lowercase = bos_token_id lowercase = eos_token_id super().__init__( tie_word_embeddings=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
'''simple docstring''' import re import subprocess import sys lowercase_ : Union[str, Any] = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowercase_ : Tuple = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() ) lowercase_ : Optional[int] = '''|'''.join(sys.argv[1:]) lowercase_ : str = re.compile(rf'''^({joined_dirs}).*?\.py$''') lowercase_ : str = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=False , ) -> Optional[Any]: '''simple docstring''' lowercase = size if size is not None else {"""height""": 20, """width""": 20} lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_reduce_labels def _a ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE ( ): lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase = Image.open(dataset[0]["""file"""] ) lowercase = Image.open(dataset[1]["""file"""] ) return image, map def SCREAMING_SNAKE_CASE ( ): lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase = Image.open(ds[0]["""file"""] ) lowercase = Image.open(ds[1]["""file"""] ) lowercase = Image.open(ds[2]["""file"""] ) lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = BeitImageProcessor if is_vision_available() else None def _a ( self ) -> int: '''simple docstring''' lowercase = BeitImageProcessingTester(self ) @property def _a ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) lowercase = [] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) lowercase , lowercase = prepare_semantic_batch_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) lowercase = True lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : Optional[Any] = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''nllb-moe''' __A = ['''past_key_values'''] __A = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowerCAmelCase=12_8112 , _lowerCAmelCase=1024 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=12 , _lowerCAmelCase=4096 , _lowerCAmelCase=16 , _lowerCAmelCase=0.05 , _lowerCAmelCase=0.05 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=1024 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="float32" , _lowerCAmelCase=False , _lowerCAmelCase=128 , _lowerCAmelCase=64 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=0.001 , _lowerCAmelCase=0.001 , _lowerCAmelCase="all" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=1.0 , _lowerCAmelCase=0.2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True lowercase = router_z_loss_coef lowercase = router_aux_loss_coef lowercase = decoder_sparse_step lowercase = encoder_sparse_step lowercase = num_experts lowercase = expert_capacity lowercase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) lowercase = router_dtype lowercase = router_ignore_padding_tokens lowercase = batch_prioritized_routing lowercase = second_expert_policy lowercase = normalize_router_prob_before_dropping lowercase = moe_eval_capacity_token_fraction lowercase = moe_token_dropout lowercase = output_router_logits super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
721
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase = DDIMScheduler() torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(_lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> int: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = """french fries""" lowercase = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_lowerCAmelCase ) lowercase = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = self.get_dummy_inputs(_lowerCAmelCase ) lowercase = sd_pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase = torch.manual_seed(_lowerCAmelCase ) lowercase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _a ( self ) -> str: '''simple docstring''' lowercase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Any: '''simple docstring''' lowercase = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowercase = latents[0, -3:, -3:, -1] lowercase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase = False lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = """stabilityai/stable-diffusion-2-base""" lowercase = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = self.get_inputs() lowercase = pipe(**_lowerCAmelCase ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
653
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( lowercase_ : int = 100_0000 , lowercase_ : int = 10 ): lowercase = defaultdict(lowercase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowercase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowercase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def SCREAMING_SNAKE_CASE ( ): with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" lowercase = [1, 2, 3] with pytest.raises(lowercase_ ): with parallel_backend("""unsupported backend""" ): map_nested(lowercase_ , lowercase_ , num_proc=2 ) with pytest.raises(lowercase_ ): with parallel_backend("""unsupported backend""" ): map_nested(lowercase_ , lowercase_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = [1, 2] lowercase = {"""a""": 1, """b""": 2} lowercase = {"""a""": [1, 2], """b""": [3, 4]} lowercase = {"""a""": {"""1""": 1}, """b""": 2} lowercase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowercase = [2, 3] lowercase = {"""a""": 2, """b""": 3} lowercase = {"""a""": [2, 3], """b""": [4, 5]} lowercase = {"""a""": {"""1""": 2}, """b""": 3} lowercase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(lowercase_ , lowercase_ , num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_ , lowercase_ , num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_ , lowercase_ , num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_ , lowercase_ , num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_ , lowercase_ , num_proc=lowercase_ ) == expected_map_nested_sa
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ) -> Optional[int]: '''simple docstring''' lowercase = size if size is not None else {"""shortest_edge""": 20} lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_flip_channel_order def _a ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = MobileViTImageProcessor if is_vision_available() else None def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = MobileViTImageProcessingTester(self ) @property def _a ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_flip_channel_order""" ) ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
702
'''simple docstring''' from ... import PretrainedConfig lowercase_ : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __A = '''nezha''' def __init__( self , _lowerCAmelCase=2_1128 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : list , lowercase_ : list , lowercase_ : int ): lowercase = len(lowercase_ ) lowercase = [[0] * n for i in range(lowercase_ )] for i in range(lowercase_ ): lowercase = y_points[i] for i in range(2 , lowercase_ ): for j in range(lowercase_ , lowercase_ ): lowercase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowercase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = git.Repo(search_parent_directories=lowercase_ ) lowercase = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowercase_ , """git_log.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=4 ) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if params.n_gpu <= 0: lowercase = 0 lowercase = -1 lowercase = True lowercase = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = int(os.environ["""N_GPU_NODE"""] ) lowercase = int(os.environ["""RANK"""] ) # number of nodes / node ID lowercase = params.world_size // params.n_gpu_per_node lowercase = params.global_rank // params.n_gpu_per_node lowercase = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase = 1 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 1 lowercase = 1 lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase = params.node_id == 0 and params.local_rank == 0 lowercase = params.n_nodes > 1 # summary lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
653
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase_ : Dict = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowercase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests lowercase_ : List[str] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowercase_ : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens lowercase_ : Union[str, Any] = os.environ.get('''USER_TOKEN''', '''''') def SCREAMING_SNAKE_CASE ( lowercase_ : str ): lowercase = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase_ , headers=lowercase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
653
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): def get_matched_characters(lowercase_ : str , lowercase_ : str ) -> str: lowercase = [] lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase = int(max(0 , i - limit ) ) lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase_ ) lowercase = F"""{_stra[0:_stra.index(lowercase_ )]} {_stra[_stra.index(lowercase_ ) + 1:]}""" return "".join(lowercase_ ) # matching characters lowercase = get_matched_characters(lowercase_ , lowercase_ ) lowercase = get_matched_characters(lowercase_ , lowercase_ ) lowercase = len(lowercase_ ) # transposition lowercase = ( len([(ca, ca) for ca, ca in zip(lowercase_ , lowercase_ ) if ca != ca] ) // 2 ) if not match_count: lowercase = 0.0 else: lowercase = ( 1 / 3 * ( match_count / len(lowercase_ ) + match_count / len(lowercase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
706
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
653
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Dict: '''simple docstring''' lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowercase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) lowercase = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _a ( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def _a ( self , **_lowerCAmelCase ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def _a ( self , **_lowerCAmelCase ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def _a ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) lowercase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) lowercase = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(_lowerCAmelCase ) lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : str = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase (_UpperCAmelCase ): __A = '''vit_msn''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = qkv_bias
653
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_multiple_size lowercase = hidden_act lowercase = hidden_dropout lowercase = attention_dropout lowercase = weight_tying lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = self.get_config() return config, input_ids, input_mask, token_labels def _a ( self ) -> List[Any]: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase , lowercase , lowercase , lowercase = self.prepare_config_and_inputs() lowercase = True return config, input_ids, input_mask, token_labels def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = GPTNeoXJapaneseModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = True lowercase = GPTNeoXJapaneseModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = True lowercase = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) lowercase = output_from_no_past["""hidden_states"""][0] lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0] # select random slice lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __A = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __A = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = GPTNeoXJapaneseModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) @slow def _a ( self ) -> Dict: '''simple docstring''' lowercase = """abeja/gpt-neox-japanese-2.7b""" lowercase = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] lowercase = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] lowercase = GPTNeoXJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) lowercase = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowerCAmelCase ) lowercase = [] for prompt in prompts: lowercase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" ).input_ids lowercase = model.generate(_lowerCAmelCase , max_length=50 ) lowercase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : float ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ : int = 50_0000 lowercase_ , lowercase_ : Union[str, Any] = os.path.split(__file__) lowercase_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Dict ): lowercase = dataset.map(**lowercase_ ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ): lowercase = dataset.filter(**lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowercase = generate_example_dataset( os.path.join(lowercase_ , """dataset.arrow""" ) , lowercase_ , num_examples=lowercase_ ) lowercase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples["""text"""] ) lowercase = map(lowercase_ ) lowercase = map(lowercase_ , batched=lowercase_ ) lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""numpy""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""pandas""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowercase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) lowercase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) lowercase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , """wb""" ) as f: f.write(json.dumps(lowercase_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
653
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : float , lowercase_ : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ : Optional[int] = 16 lowercase_ : Tuple = 32 def SCREAMING_SNAKE_CASE ( lowercase_ : Accelerator , lowercase_ : int = 16 ): lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_ : int ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ : Any = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Dict ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": lowercase = 2 # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase = batch_size // MAX_GPU_BATCH_SIZE lowercase = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) lowercase , lowercase = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**lowercase_ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowercase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowercase_ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase = parser.parse_args() lowercase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase (metaclass=_UpperCAmelCase ): __A = ['''torch''', '''torchsde'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 0: return False lowercase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=sys.maxsize ) -> Dict: '''simple docstring''' lowercase = """bilinear""" lowercase = max_size lowercase = short_edge_length def __call__( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = [] for img in imgs: lowercase , lowercase = img.shape[:2] # later: provide list and randomly choose index for resize lowercase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase = size * 1.0 / min(_lowerCAmelCase , _lowerCAmelCase ) if h < w: lowercase , lowercase = size, scale * w else: lowercase , lowercase = scale * h, size if max(_lowerCAmelCase , _lowerCAmelCase ) > self.max_size: lowercase = self.max_size * 1.0 / max(_lowerCAmelCase , _lowerCAmelCase ) lowercase = newh * scale lowercase = neww * scale lowercase = int(neww + 0.5 ) lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase = Image.fromarray(_lowerCAmelCase ) lowercase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase = np.asarray(_lowerCAmelCase ) else: lowercase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase = nn.functional.interpolate( _lowerCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_lowerCAmelCase ).squeeze(0 ) img_augs.append(_lowerCAmelCase ) return img_augs class __UpperCamelCase : def __init__( self , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase = cfg.INPUT.FORMAT lowercase = cfg.SIZE_DIVISIBILITY lowercase = cfg.PAD_VALUE lowercase = cfg.INPUT.MAX_SIZE_TEST lowercase = cfg.MODEL.DEVICE lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = lambda _lowerCAmelCase : (x - self.pixel_mean) / self.pixel_std def _a ( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = tuple(max(_lowerCAmelCase ) for s in zip(*[img.shape for img in images] ) ) lowercase = [im.shape[-2:] for im in images] lowercase = [ nn.functional.pad( _lowerCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_lowerCAmelCase , _lowerCAmelCase ) ] return torch.stack(_lowerCAmelCase ), torch.tensor(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> Dict: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = [images] if single_image: assert len(_lowerCAmelCase ) == 1 for i in range(len(_lowerCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_lowerCAmelCase , images.pop(_lowerCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _lowerCAmelCase , torch.as_tensor(img_tensorize(images.pop(_lowerCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase = torch.tensor([im.shape[:2] for im in images] ) lowercase = self.aug(_lowerCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase = [self.normalizer(_lowerCAmelCase ) for x in images] # now pad them to do the following operations lowercase , lowercase = self.pad(_lowerCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase = torch.true_divide(_lowerCAmelCase , _lowerCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Dict ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Tuple[int, int] ): assert torch.isfinite(lowercase_ ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowercase_ ) tensor[:, 1].clamp_(min=0 , max=lowercase_ ) tensor[:, 2].clamp_(min=0 , max=lowercase_ ) tensor[:, 3].clamp_(min=0 , max=lowercase_ )
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> int: '''simple docstring''' lowercase = parent lowercase = 13 lowercase = 7 lowercase = True lowercase = True lowercase = True lowercase = True lowercase = 99 lowercase = 384 lowercase = 2 lowercase = 4 lowercase = 37 lowercase = """gelu""" lowercase = 0.1 lowercase = 0.1 lowercase = 512 lowercase = 16 lowercase = 2 lowercase = 0.02 lowercase = 3 lowercase = 4 lowercase = 128 lowercase = 2 lowercase = 9 lowercase = 1 lowercase = None def _a ( self ) -> Any: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = TFConvBertModel(config=_lowerCAmelCase ) lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase = [input_ids, input_mask] lowercase = model(_lowerCAmelCase ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase = TFConvBertForMaskedLM(config=_lowerCAmelCase ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase = self.num_labels lowercase = TFConvBertForSequenceClassification(config=_lowerCAmelCase ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = self.num_choices lowercase = TFConvBertForMultipleChoice(config=_lowerCAmelCase ) lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase = self.num_labels lowercase = TFConvBertForTokenClassification(config=_lowerCAmelCase ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = TFConvBertForQuestionAnswering(config=_lowerCAmelCase ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __A = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __A = False __A = False __A = False def _a ( self ) -> int: '''simple docstring''' lowercase = TFConvBertModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = True if hasattr(_lowerCAmelCase , """use_cache""" ): lowercase = True lowercase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) lowercase = model_class(_lowerCAmelCase ) lowercase = len(model(_lowerCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase , saved_model=_lowerCAmelCase ) lowercase = os.path.join(_lowerCAmelCase , """saved_model""" , """1""" ) lowercase = tf.keras.models.load_model(_lowerCAmelCase ) lowercase = model(_lowerCAmelCase ) if self.is_encoder_decoder: lowercase = outputs["""encoder_hidden_states"""] lowercase = outputs["""encoder_attentions"""] else: lowercase = outputs["""hidden_states"""] lowercase = outputs["""attentions"""] self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _a ( self ) -> Dict: '''simple docstring''' lowercase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowercase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) def check_decoder_attentions_output(_lowerCAmelCase ): lowercase = len(_lowerCAmelCase ) self.assertEqual(out_len % 2 , 0 ) lowercase = outputs.decoder_attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowerCAmelCase ): lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = model_class(_lowerCAmelCase ) lowercase = model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = len(_lowerCAmelCase ) self.assertEqual(config.output_hidden_states , _lowerCAmelCase ) check_encoder_attentions_output(_lowerCAmelCase ) if self.is_encoder_decoder: lowercase = model_class(_lowerCAmelCase ) lowercase = model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , _lowerCAmelCase ) check_decoder_attentions_output(_lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(_lowerCAmelCase ) lowercase = model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , _lowerCAmelCase ) check_encoder_attentions_output(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(_lowerCAmelCase ) lowercase = model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _lowerCAmelCase ) check_encoder_attentions_output(_lowerCAmelCase ) @require_tf class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase = model(_lowerCAmelCase )[0] lowercase = [1, 6, 768] self.assertEqual(output.shape , _lowerCAmelCase ) lowercase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
716
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): lowercase = HfArgumentParser(lowercase_ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowercase_ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowercase_ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
653
0
'''simple docstring''' from string import ascii_uppercase lowercase_ : List[Any] = {char: i for i, char in enumerate(ascii_uppercase)} lowercase_ : List[Any] = dict(enumerate(ascii_uppercase)) def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = len(lowercase_ ) lowercase = 0 while True: if x == i: lowercase = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = """""" lowercase = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = """""" lowercase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def SCREAMING_SNAKE_CASE ( ): lowercase = """THE GERMAN ATTACK""" lowercase = """SECRET""" lowercase = generate_key(lowercase_ , lowercase_ ) lowercase = cipher_text(lowercase_ , lowercase_ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(lowercase_ , lowercase_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
653
0