code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os def lowerCAmelCase ( UpperCamelCase__ : str = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as in_file: __UpperCAmelCase = in_file.read() __UpperCAmelCase = [[int(UpperCamelCase__ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] __UpperCAmelCase = [[0 for cell in row] for row in grid] __UpperCAmelCase = len(grid[0] ) __UpperCAmelCase = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] __UpperCAmelCase = grid[0][0] for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCamelCase__ ): for j in range(1 , UpperCamelCase__ ): __UpperCAmelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) __UpperCAmelCase = [True] * (num + 1) __UpperCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , UpperCamelCase__ ): __UpperCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[Any] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' from functools import lru_cache def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = 2 __UpperCAmelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase__ ) if n > 1: factors.add(UpperCamelCase__ ) return factors @lru_cache def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" return len(unique_prime_factors(UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" return len(set(UpperCamelCase__ ) ) in (0, 1) def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = 2 while True: # Increment each value of a generated range __UpperCAmelCase = [base + i for i in range(UpperCamelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __UpperCAmelCase = [upf_len(UpperCamelCase__ ) for x in group] checker.append(UpperCamelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase__ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase ( UpperCamelCase__ : int = 4 ): """simple docstring""" __UpperCAmelCase = run(UpperCamelCase__ ) return results[0] if len(UpperCamelCase__ ) else None if __name__ == "__main__": print(solution())
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" if b == 0: return (1, 0) ((__UpperCAmelCase) , (__UpperCAmelCase)) = extended_euclid(UpperCamelCase__ , a % b ) __UpperCAmelCase = a // b return (y, x - k * y) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" ((__UpperCAmelCase) , (__UpperCAmelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = na * na __UpperCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" ((__UpperCAmelCase) , (__UpperCAmelCase)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__ ) if b < 0: __UpperCAmelCase = (b % n + n) % n return b def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = invert_modulo(UpperCamelCase__ , UpperCamelCase__ ), invert_modulo(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = na * na __UpperCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('''String lengths must match!''' ) __UpperCAmelCase = 0 for chara, chara in zip(UpperCamelCase__ , UpperCamelCase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): """simple docstring""" if index == r: for j in range(UpperCamelCase__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCAmelCase = arr[i] combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any ): """simple docstring""" # A temporary array to store all combination one by one __UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 0 , UpperCamelCase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowerCAmelCase : List[str] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): """simple docstring""" if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [parquet_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=("train",) ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): """simple docstring""" if split: __UpperCAmelCase = {split: parquet_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': parquet_path, '''test''': parquet_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCAmelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __UpperCAmelCase = pf.read() assert dataset.data.table == output_table def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = str(shared_datadir / '''test_image_rgb.jpg''' ) __UpperCAmelCase = {'''image''': [image_path]} __UpperCAmelCase = Features({'''image''': Image()} ) __UpperCAmelCase = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) __UpperCAmelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCAmelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __UpperCAmelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" assert get_writer_batch_size(UpperCamelCase__ ) == expected
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase : str = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase : Optional[Any] = { "camembert-base": 512, } __lowerCAmelCase : str = "▁" class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __a : int , __a : Union[str, Any]="<s>" , __a : Tuple="</s>" , __a : Optional[int]="</s>" , __a : Dict="<s>" , __a : Tuple="<unk>" , __a : List[str]="<pad>" , __a : List[str]="<mask>" , __a : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , __a : Optional[Dict[str, Any]] = None , **__a : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __UpperCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __UpperCAmelCase = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} __UpperCAmelCase = len(self.fairseq_tokens_to_ids ) __UpperCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case__ ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self : Dict ) -> str: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self : Union[str, Any] , __a : str ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def snake_case__ ( self : int , __a : Union[str, Any] ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__a ) def snake_case__ ( self : Optional[Any] , __a : List[Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__ ( self : Dict , __a : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase = [] __UpperCAmelCase = '''''' __UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __UpperCAmelCase = True __UpperCAmelCase = [] else: current_sub_tokens.append(__a ) __UpperCAmelCase = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self : Optional[Any] ) -> Tuple: __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : List[Any] , __a : Optional[int] ) -> Tuple: __UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase = {} __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , '''wb''' ) as fi: __UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCAmelCase : Any = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCAmelCase : Dict = { "jukebox": 512, } class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_LYRIC_TOKENS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __a : str , __a : Optional[int] , __a : Tuple , __a : Union[str, Any]=["v3", "v2", "v2"] , __a : List[Any]=5_1_2 , __a : Tuple=5 , __a : List[Any]="<|endoftext|>" , **__a : Optional[Any] , ) -> Any: __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( unk_token=__a , n_genres=__a , version=__a , max_n_lyric_tokens=__a , **__a , ) __UpperCAmelCase = version __UpperCAmelCase = max_n_lyric_tokens __UpperCAmelCase = n_genres with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) __UpperCAmelCase = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: __UpperCAmelCase = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __UpperCAmelCase = regex.compile(__a ) __UpperCAmelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCAmelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCAmelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case__ ( self : Optional[int] ) -> List[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case__ ( self : Dict ) -> Optional[Any]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case__ ( self : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = [self.artists_encoder.get(__a , 0 ) for artist in list_artists] for genres in range(len(__a ) ): __UpperCAmelCase = [self.genres_encoder.get(__a , 0 ) for genre in list_genres[genres]] __UpperCAmelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCAmelCase = [[self.lyrics_encoder.get(__a , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case__ ( self : List[str] , __a : List[Any] ) -> Optional[int]: return list(__a ) def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : str , **__a : Optional[Any] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.prepare_for_tokenization(__a , __a , __a ) __UpperCAmelCase = self._tokenize(__a ) return artist, genre, lyrics def snake_case__ ( self : int , __a : str , __a : str , __a : str , __a : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCAmelCase = artists[idx].lower() __UpperCAmelCase = [genres[idx].lower()] else: __UpperCAmelCase = self._normalize(artists[idx] ) + '''.v2''' __UpperCAmelCase = [ self._normalize(__a ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCAmelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __UpperCAmelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __UpperCAmelCase = {vocab[index]: index + 1 for index in range(len(__a ) )} __UpperCAmelCase = 0 __UpperCAmelCase = len(__a ) + 1 __UpperCAmelCase = self.vocab __UpperCAmelCase = {v: k for k, v in self.vocab.items()} __UpperCAmelCase = '''''' else: __UpperCAmelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __UpperCAmelCase = self._run_strip_accents(__a ) __UpperCAmelCase = lyrics.replace('''\\''' , '''\n''' ) __UpperCAmelCase = self.out_of_vocab.sub('''''' , __a ), [], [] return artists, genres, lyrics def snake_case__ ( self : Optional[int] , __a : Tuple ) -> Optional[int]: __UpperCAmelCase = unicodedata.normalize('''NFD''' , __a ) __UpperCAmelCase = [] for char in text: __UpperCAmelCase = unicodedata.category(__a ) if cat == "Mn": continue output.append(__a ) return "".join(__a ) def snake_case__ ( self : int , __a : str ) -> str: __UpperCAmelCase = ( [chr(__a ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(__a ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(__a ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __UpperCAmelCase = frozenset(__a ) __UpperCAmelCase = re.compile(r'''_+''' ) __UpperCAmelCase = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __UpperCAmelCase = pattern.sub('''_''' , __a ).strip('''_''' ) return text def snake_case__ ( self : Union[str, Any] , __a : List[str] ) -> str: return " ".join(__a ) def snake_case__ ( self : List[str] , __a : Dict , __a : Optional[Union[str, TensorType]] = None , __a : bool = False ) -> Union[str, Any]: # Convert to TensorType if not isinstance(__a , __a ): __UpperCAmelCase = TensorType(__a ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __UpperCAmelCase = tf.constant __UpperCAmelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __UpperCAmelCase = torch.tensor __UpperCAmelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __UpperCAmelCase = jnp.array __UpperCAmelCase = _is_jax else: __UpperCAmelCase = np.asarray __UpperCAmelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCAmelCase = [inputs] if not is_tensor(__a ): __UpperCAmelCase = as_tensor(__a ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Dict , __a : Optional[int] , __a : Union[str, Any] , __a : int="" , __a : Dict="pt" ) -> BatchEncoding: __UpperCAmelCase = [0, 0, 0] __UpperCAmelCase = [artist] * len(self.version ) __UpperCAmelCase = [genres] * len(self.version ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.tokenize(__a , __a , __a ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._convert_token_to_id(__a , __a , __a ) __UpperCAmelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCAmelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__a ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case__ ( self : Tuple , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__a ) ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__a ) ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__a ) ) return (artists_file, genres_file, lyrics_file) def snake_case__ ( self : List[Any] , __a : Dict , __a : str , __a : str ) -> str: __UpperCAmelCase = self.artists_decoder.get(__a ) __UpperCAmelCase = [self.genres_decoder.get(__a ) for genre in genres_index] __UpperCAmelCase = [self.lyrics_decoder.get(__a ) for character in lyric_index] return artist, genres, lyrics
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Dict = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __lowerCAmelCase : str = 5 __lowerCAmelCase : Union[str, Any] = 10 @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = SpeechaTextTokenizer a_ = False a_ = True def snake_case__ ( self : Tuple ) -> List[Any]: super().setUp() __UpperCAmelCase = sp.SentencePieceProcessor() spm_model.Load(__a ) __UpperCAmelCase = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__a ) )] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str] ) -> Optional[int]: __UpperCAmelCase = '''<pad>''' __UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__a ) , 1_0_0_1 ) def snake_case__ ( self : List[Any] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def snake_case__ ( self : Tuple ) -> Optional[int]: # fmt: off __UpperCAmelCase = {'''input_ids''': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class A ( unittest.TestCase ): a_ = '''valhalla/s2t_mustc_multilinguial_medium''' a_ = '''C\'est trop cool''' a_ = '''Esto es genial''' @classmethod def snake_case__ ( cls : Any ) -> List[Any]: __UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case__ ( self : List[Any] ) -> List[str]: self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 1_1 ) def snake_case__ ( self : Tuple ) -> Tuple: self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def snake_case__ ( self : int ) -> Dict: self.assertIn(__a , self.tokenizer.all_special_ids ) __UpperCAmelCase = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] __UpperCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = '''fr''' __UpperCAmelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __UpperCAmelCase = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCAmelCase : Tuple = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class A ( UpperCAmelCase ): a_ = '''albert''' def __init__( self : Union[str, Any] , __a : str=3_0_0_0_0 , __a : List[str]=1_2_8 , __a : List[Any]=4_0_9_6 , __a : str=1_2 , __a : List[str]=1 , __a : Tuple=6_4 , __a : Optional[int]=1_6_3_8_4 , __a : List[Any]=1 , __a : Any="gelu_new" , __a : Any=0 , __a : Dict=0 , __a : Any=5_1_2 , __a : int=2 , __a : List[Any]=0.0_2 , __a : Union[str, Any]=1e-12 , __a : List[str]=0.1 , __a : Union[str, Any]="absolute" , __a : Optional[Any]=0 , __a : Dict=2 , __a : List[str]=3 , **__a : Tuple , ) -> int: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = embedding_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_hidden_groups __UpperCAmelCase = num_attention_heads __UpperCAmelCase = inner_group_num __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = classifier_dropout_prob __UpperCAmelCase = position_embedding_type class A ( UpperCAmelCase ): @property def snake_case__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCAmelCase : str = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : tuple , UpperCamelCase__ : Path , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=False , ): """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCAmelCase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = Path(UpperCamelCase__ ) # VAE DECODER __UpperCAmelCase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __UpperCAmelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCAmelCase = vae_decoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , 2_5 , 2_5 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=UpperCamelCase__ , ) del vae_decoder if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __lowerCAmelCase : Optional[int] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCAmelCase : List[Any] = HfArgumentParser(InitializationArguments) __lowerCAmelCase : int = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCAmelCase : int = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCAmelCase : Dict = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = IFInpaintingSuperResolutionPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) a_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case__ ( self : Tuple ) -> List[str]: return self._get_superresolution_dummy_components() def snake_case__ ( self : Optional[int] , __a : List[str] , __a : List[str]=0 ) -> Any: if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case__ ( self : int ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case__ ( self : str ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case__ ( self : Tuple ) -> str: self._test_save_load_local() def snake_case__ ( self : Any ) -> Tuple: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = OpenAIGPTTokenizer a_ = OpenAIGPTTokenizerFast a_ = True a_ = False def snake_case__ ( self : Dict ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def snake_case__ ( self : Optional[Any] , __a : Optional[Any] ) -> List[Any]: return "lower newer", "lower newer" def snake_case__ ( self : Any ) -> Optional[int]: __UpperCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCAmelCase = '''lower''' __UpperCAmelCase = ['''low''', '''er</w>'''] __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + ['''<unk>'''] __UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def snake_case__ ( self : Tuple , __a : int=1_5 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __UpperCAmelCase = '''This is a simple input''' __UpperCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: pass @require_ftfy @require_spacy @require_tokenizers class A ( UpperCAmelCase ): pass
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = os.path.abspath(UpperCamelCase__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model __UpperCAmelCase = tf.train.list_variables(UpperCamelCase__ ) __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __UpperCAmelCase = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' __UpperCAmelCase = name[1:] # figure out how many levels deep the name is __UpperCAmelCase = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(UpperCamelCase__ ) # read data __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) names.append('''/'''.join(UpperCamelCase__ ) ) arrays.append(UpperCamelCase__ ) logger.info(f"""Read a total of {len(UpperCamelCase__ ):,} layers""" ) # Sanity check if len(set(UpperCamelCase__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(UpperCamelCase__ ) )})""" ) __UpperCAmelCase = list(set(UpperCamelCase__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = full_name.split('''/''' ) __UpperCAmelCase = model __UpperCAmelCase = [] for i, m_name in enumerate(UpperCamelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __UpperCAmelCase = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''encoder''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''layer''' ) __UpperCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''pooler''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''intermediate''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary __UpperCAmelCase = '''.'''.join(UpperCamelCase__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , UpperCamelCase__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , UpperCamelCase__ ): __UpperCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __UpperCAmelCase = array.transpose() if pointer.shape == array.shape: __UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): """simple docstring""" # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) __UpperCAmelCase = BertConfig.from_json_file(UpperCamelCase__ ) __UpperCAmelCase = BertModel(UpperCamelCase__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) __lowerCAmelCase : List[str] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' import math import os import sys def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = '''''' try: with open(UpperCamelCase__ , '''rb''' ) as binary_file: __UpperCAmelCase = binary_file.read() for dat in data: __UpperCAmelCase = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : dict[str, str] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str ): """simple docstring""" lexicon.pop(UpperCamelCase__ ) __UpperCAmelCase = last_match_id if math.loga(UpperCamelCase__ ).is_integer(): for curr_key in lexicon: __UpperCAmelCase = '''0''' + lexicon[curr_key] __UpperCAmelCase = bin(UpperCamelCase__ )[2:] def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = {'''0''': '''0''', '''1''': '''1'''} __UpperCAmelCase , __UpperCAmelCase = '''''', '''''' __UpperCAmelCase = len(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCAmelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) index += 1 __UpperCAmelCase = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __UpperCAmelCase = lexicon[curr_string] result += last_match_id return result def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = os.path.getsize(UpperCamelCase__ ) __UpperCAmelCase = bin(UpperCamelCase__ )[2:] __UpperCAmelCase = len(UpperCamelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = 8 try: with open(UpperCamelCase__ , '''wb''' ) as opened_file: __UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCamelCase__ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = read_file_binary(UpperCamelCase__ ) __UpperCAmelCase = compress_data(UpperCamelCase__ ) __UpperCAmelCase = add_file_length(UpperCamelCase__ , UpperCamelCase__ ) write_file_binary(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' import random def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : int ): """simple docstring""" # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(UpperCamelCase__ ) or index < 0: return None __UpperCAmelCase = items[random.randint(0 , len(UpperCamelCase__ ) - 1 )] __UpperCAmelCase = 0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = _partition(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__ , UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__ , index - (m + count) )
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''pixel_values'''] def __init__( self : int , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PIL.Image.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : Union[int, float] = 1 / 2_5_5 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Optional[Any] , ) -> None: super().__init__(**__a ) __UpperCAmelCase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} __UpperCAmelCase = get_size_dict(__a ) __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase = get_size_dict(__a , param_name='''crop_size''' ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( __a , size=(size['''height'''], size['''width''']) , resample=__a , data_format=__a , **__a ) def snake_case__ ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a ) def snake_case__ ( self : Union[str, Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> Tuple: return rescale(__a , scale=__a , data_format=__a , **__a ) def snake_case__ ( self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def snake_case__ ( self : Tuple , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : Optional[int]=None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[str] , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(__a ) __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(__a , param_name='''crop_size''' ) __UpperCAmelCase = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(__a ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(__a , __a ) for image in images] __UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a )
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase : str = "naver-clova-ix/donut-base" class A ( unittest.TestCase ): def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = DonutProcessor.from_pretrained(__a ) def snake_case__ ( self : int ) -> int: __UpperCAmelCase = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __UpperCAmelCase = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __UpperCAmelCase = self.processor.tokenajson(__a ) self.assertDictEqual(__a , __a )
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCAmelCase ): a_ = (IPNDMScheduler,) a_ = (('''num_inference_steps''', 5_0),) def snake_case__ ( self : Optional[int] , **__a : str ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_0_0_0} config.update(**__a ) return config def snake_case__ ( self : str , __a : Optional[Any]=0 , **__a : List[str] ) -> Dict: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**__a ) __UpperCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __UpperCAmelCase = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Dict ) -> List[str]: pass def snake_case__ ( self : List[str] , __a : Union[str, Any]=0 , **__a : int ) -> Tuple: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __UpperCAmelCase = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : str , **__a : Any ) -> str: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**__a ) __UpperCAmelCase = scheduler_class(**__a ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(__a , __a ) __UpperCAmelCase = scheduler.step(__a , __a , __a ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(__a , __a ) __UpperCAmelCase = scheduler.step(__a , __a , __a ).prev_sample return sample def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__a ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__a , '''set_timesteps''' ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self : Dict ) -> Dict: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__a , time_step=__a ) def snake_case__ ( self : Dict ) -> Optional[Any]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__a , time_step=__a ) def snake_case__ ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A ( unittest.TestCase ): def snake_case__ ( self : List[str] ) -> List[str]: __UpperCAmelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices(__a , __a , __a ) self.assertEqual(__a , ['''c'''] ) self.assertEqual(__a , [2] ) # Out indices set to match out features __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , __a , __a ) self.assertEqual(__a , ['''a''', '''c'''] ) self.assertEqual(__a , [0, 2] ) # Out features set to match out indices __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices(__a , [0, 2] , __a ) self.assertEqual(__a , ['''a''', '''c'''] ) self.assertEqual(__a , [0, 2] ) # Out features selected from negative indices __UpperCAmelCase , __UpperCAmelCase = get_aligned_output_features_output_indices(__a , [-3, -1] , __a ) self.assertEqual(__a , ['''a''', '''c'''] ) self.assertEqual(__a , [-3, -1] ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: # Stage names must be set with self.assertRaises(__a ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , __a ) # Out features must be a list with self.assertRaises(__a ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(__a ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(__a ): verify_out_features_out_indices(__a , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(__a ): verify_out_features_out_indices(__a , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(__a ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(__a ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(__a ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = BackboneMixin() __UpperCAmelCase = ['''a''', '''b''', '''c'''] __UpperCAmelCase = ['''a''', '''c'''] __UpperCAmelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __UpperCAmelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) __UpperCAmelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __UpperCAmelCase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(UpperCamelCase__ ) # Let's go __UpperCAmelCase = parser.parse_args() if not hasattr(UpperCamelCase__ , '''func''' ): parser.print_help() exit(1 ) # Run __UpperCAmelCase = args.func(UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' __lowerCAmelCase : str = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __lowerCAmelCase : Optional[Any] = [{"type": "code", "content": INSTALL_CONTENT}] __lowerCAmelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Any = "https://openaipublic.azureedge.net/jukebox/models/" __lowerCAmelCase : Optional[Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 1_0: __UpperCAmelCase = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 1_0: __UpperCAmelCase = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 1_0: __UpperCAmelCase = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 1_0: __UpperCAmelCase = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __UpperCAmelCase = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __UpperCAmelCase = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __UpperCAmelCase = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __UpperCAmelCase = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = {} import re __UpperCAmelCase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __UpperCAmelCase = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __UpperCAmelCase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __UpperCAmelCase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __UpperCAmelCase = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __UpperCAmelCase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __UpperCAmelCase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __UpperCAmelCase = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __UpperCAmelCase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_encoder_block_conv_in.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) __UpperCAmelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __UpperCAmelCase = re_encoder_block_conv_in.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_encoder_block_resnet.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_encoder_block_resnet.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) __UpperCAmelCase = {'''1''': 1, '''3''': 2}[groups[-2]] __UpperCAmelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __UpperCAmelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __UpperCAmelCase = prefix + resnet_block __UpperCAmelCase = re_encoder_block_resnet.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_encoder_block_proj_out.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_encoder_block_proj_out.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __UpperCAmelCase = re_encoder_block_proj_out.sub(UpperCamelCase__ , UpperCamelCase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_decoder_block_conv_out.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __UpperCAmelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __UpperCAmelCase = re_decoder_block_conv_out.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_decoder_block_resnet.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_decoder_block_resnet.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __UpperCAmelCase = {'''1''': 1, '''3''': 2}[groups[-2]] __UpperCAmelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __UpperCAmelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __UpperCAmelCase = prefix + resnet_block __UpperCAmelCase = re_decoder_block_resnet.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_decoder_block_proj_in.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_decoder_block_proj_in.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __UpperCAmelCase = re_decoder_block_proj_in.sub(UpperCamelCase__ , UpperCamelCase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_prior_cond_conv_out.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __UpperCAmelCase = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __UpperCAmelCase = re_prior_cond_conv_out.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_prior_cond_resnet.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_prior_cond_resnet.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __UpperCAmelCase = {'''1''': 1, '''3''': 2}[groups[-2]] __UpperCAmelCase = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __UpperCAmelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __UpperCAmelCase = prefix + resnet_block __UpperCAmelCase = re_prior_cond_resnet.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_prior_cond_proj_in.fullmatch(UpperCamelCase__ ): __UpperCAmelCase = re_prior_cond_proj_in.match(UpperCamelCase__ ) __UpperCAmelCase = regex_match.groups() __UpperCAmelCase = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __UpperCAmelCase = re_prior_cond_proj_in.sub(UpperCamelCase__ , UpperCamelCase__ ) # keep original key else: __UpperCAmelCase = original_key __UpperCAmelCase = replace_key(UpperCamelCase__ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: __UpperCAmelCase = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __UpperCAmelCase = original_key __UpperCAmelCase = original_key __UpperCAmelCase = value return new_dict @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): __UpperCAmelCase = requests.get(f"""{PREFIX}{file}""" , allow_redirects=UpperCamelCase__ ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=UpperCamelCase__ ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , '''wb''' ).write(r.content ) __UpperCAmelCase = MODEL_MAPPING[model_name.split('''/''' )[-1]] __UpperCAmelCase = JukeboxConfig.from_pretrained(UpperCamelCase__ ) __UpperCAmelCase = JukeboxModel(UpperCamelCase__ ) __UpperCAmelCase = [] __UpperCAmelCase = {} for i, dict_name in enumerate(UpperCamelCase__ ): __UpperCAmelCase = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['''model'''] __UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __UpperCAmelCase = old_dic[k] elif k.endswith('''.w''' ): __UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __UpperCAmelCase = old_dic[k] else: __UpperCAmelCase = old_dic[k] __UpperCAmelCase = '''vqvae''' if i == 0 else f"""priors.{3 - i}""" __UpperCAmelCase = fix_jukebox_keys(UpperCamelCase__ , model.state_dict() , UpperCamelCase__ , UpperCamelCase__ ) weight_dict.append(UpperCamelCase__ ) __UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCAmelCase : Any = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __lowerCAmelCase : Optional[int] = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class A : a_ = 42 a_ = None a_ = None a_ = None a_ = None def snake_case__ ( self : str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = _str_to_version_tuple(self.version_str ) def __repr__( self : List[Any] ) -> Optional[Any]: return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def snake_case__ ( self : Dict ) -> Union[str, Any]: return self.major, self.minor, self.patch def snake_case__ ( self : int , __a : List[str] ) -> Dict: if isinstance(__a , __a ): return Version(__a ) elif isinstance(__a , __a ): return other raise TypeError(f"""{other} (type {type(__a )}) cannot be compared to version.""" ) def __eq__( self : Any , __a : Tuple ) -> Tuple: try: __UpperCAmelCase = self._validate_operand(__a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] , __a : str ) -> Union[str, Any]: __UpperCAmelCase = self._validate_operand(__a ) return self.tuple < other.tuple def __hash__( self : int ) -> Optional[int]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def snake_case__ ( cls : List[Any] , __a : List[str] ) -> Union[str, Any]: __UpperCAmelCase = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def snake_case__ ( self : Union[str, Any] ) -> str: return self.version_str def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = _VERSION_REG.match(UpperCamelCase__ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(UpperCamelCase__ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" return ".".join(str(UpperCamelCase__ ) for v in version_tuple )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase , unittest.TestCase ): a_ = ShapEImgaImgPipeline a_ = ['''image'''] a_ = ['''image'''] a_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] a_ = False @property def snake_case__ ( self : Tuple ) -> List[str]: return 3_2 @property def snake_case__ ( self : Optional[Any] ) -> Optional[int]: return 3_2 @property def snake_case__ ( self : Optional[int] ) -> str: return self.time_input_dim * 4 @property def snake_case__ ( self : List[Any] ) -> int: return 8 @property def snake_case__ ( self : Optional[int] ) -> str: torch.manual_seed(0 ) __UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __UpperCAmelCase = CLIPVisionModel(__a ) return model @property def snake_case__ ( self : int ) -> Union[str, Any]: __UpperCAmelCase = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_2_4 , ) return image_processor @property def snake_case__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __UpperCAmelCase = PriorTransformer(**__a ) return model @property def snake_case__ ( self : Dict ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase = ShapERenderer(**__a ) return model def snake_case__ ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase = self.dummy_prior __UpperCAmelCase = self.dummy_image_encoder __UpperCAmelCase = self.dummy_image_processor __UpperCAmelCase = self.dummy_renderer __UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __UpperCAmelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def snake_case__ ( self : Tuple , __a : Dict , __a : Union[str, Any]=0 ) -> List[str]: __UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = pipe(**self.get_dummy_inputs(__a ) ) __UpperCAmelCase = output.images[0] __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) __UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : str ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' __UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase = batch_size * [inputs[key]] __UpperCAmelCase = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : Any ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Dict ) -> Any: __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(0 ) __UpperCAmelCase = pipe( __a , generator=__a , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__a , __a )
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( UpperCAmelCase , unittest.TestCase ): a_ = BioGptTokenizer a_ = False def snake_case__ ( self : Any ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def snake_case__ ( self : Dict , __a : Any ) -> List[Any]: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) __UpperCAmelCase = '''lower''' __UpperCAmelCase = ['''low''', '''er</w>'''] __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + ['''<unk>'''] __UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCAmelCase : List[str] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" __lowerCAmelCase : Optional[Any] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" __lowerCAmelCase : int = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def snake_case__ ( self : List[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def snake_case__ ( self : str , __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any]=None , __a : Optional[Any]=None , __a : Dict=None , __a : Dict=None , __a : int="auto" , __a : List[Any]=-1 , __a : Any=0.9 , __a : Tuple=5 , __a : str=5_0_0 , __a : int="gpt2-large" , __a : List[Any]=-1 , __a : Optional[int]=1_0_2_4 , __a : Tuple=2_5 , __a : List[str]=5 , __a : int=True , __a : str=2_5 , ) -> List[Any]: __UpperCAmelCase = compute_mauve( p_text=__a , q_text=__a , p_features=__a , q_features=__a , p_tokens=__a , q_tokens=__a , num_buckets=__a , pca_max_data=__a , kmeans_explained_var=__a , kmeans_num_redo=__a , kmeans_max_iter=__a , featurize_model_name=__a , device_id=__a , max_text_length=__a , divergence_curve_discretization_size=__a , mauve_scaling_factor=__a , verbose=__a , seed=__a , ) return out
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A : a_ = PegasusConfig a_ = {} a_ = '''gelu''' def __init__( self : Tuple , __a : int , __a : List[str]=1_3 , __a : Dict=7 , __a : Dict=True , __a : Dict=False , __a : Dict=9_9 , __a : Tuple=3_2 , __a : Optional[Any]=2 , __a : Optional[int]=4 , __a : str=3_7 , __a : str=0.1 , __a : Optional[Any]=0.1 , __a : List[Any]=4_0 , __a : str=2 , __a : Union[str, Any]=1 , __a : int=0 , ) -> List[str]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase = prepare_pegasus_inputs_dict(__a , __a , __a ) return config, inputs_dict def snake_case__ ( self : Optional[int] , __a : Optional[int] , __a : List[Any] ) -> int: __UpperCAmelCase = TFPegasusModel(config=__a ).get_decoder() __UpperCAmelCase = inputs_dict['''input_ids'''] __UpperCAmelCase = input_ids[:1, :] __UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] __UpperCAmelCase = inputs_dict['''head_mask'''] __UpperCAmelCase = 1 # first forward pass __UpperCAmelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCAmelCase = model(__a , attention_mask=__a )[0] __UpperCAmelCase = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , ): """simple docstring""" if attention_mask is None: __UpperCAmelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a_ = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a_ = True a_ = False a_ = False def snake_case__ ( self : int ) -> Optional[Any]: __UpperCAmelCase = TFPegasusModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a ) def snake_case__ ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_sentencepiece @require_tokenizers @require_tf class A ( unittest.TestCase ): a_ = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a_ = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a_ = '''google/pegasus-xsum''' @cached_property def snake_case__ ( self : str ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case__ ( self : Dict ) -> Tuple: __UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case__ ( self : Optional[int] , **__a : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = self.translate_src_text(**__a ) assert self.expected_text == generated_words def snake_case__ ( self : str , **__a : List[str] ) -> str: __UpperCAmelCase = self.tokenizer(self.src_text , **__a , padding=__a , return_tensors='''tf''' ) __UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__a , ) __UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a ) return generated_words @slow def snake_case__ ( self : int ) -> Tuple: self._assert_generated_batch_equal_expected()
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCAmelCase : List[str] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = test_results.split(''' ''' ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __UpperCAmelCase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCamelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = {} __UpperCAmelCase = None __UpperCAmelCase = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , UpperCamelCase__ ): __UpperCAmelCase = True __UpperCAmelCase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __UpperCAmelCase = line __UpperCAmelCase = False return failures class A : def __init__( self : Union[str, Any] , __a : str , __a : Dict ) -> str: __UpperCAmelCase = title __UpperCAmelCase = doc_test_results['''time_spent'''].split(''',''' )[0] __UpperCAmelCase = doc_test_results['''success'''] __UpperCAmelCase = doc_test_results['''failures'''] __UpperCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __UpperCAmelCase = doc_test_results @property def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = [self._time_spent] __UpperCAmelCase = 0 for time in time_spent: __UpperCAmelCase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__a ) == 1: __UpperCAmelCase = [0, 0, time_parts[0]] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return f"""{int(__a )}h{int(__a )}m{int(__a )}s""" @property def snake_case__ ( self : Optional[int] ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case__ ( self : List[str] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def snake_case__ ( self : int ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = 4_0 __UpperCAmelCase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__a , __a )} __UpperCAmelCase = '''''' for category, failures in category_failures.items(): if len(__a ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def snake_case__ ( self : str ) -> str: __UpperCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__a ) @staticmethod def snake_case__ ( ) -> Dict: __UpperCAmelCase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(__a )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=__a , ) def snake_case__ ( self : int ) -> Union[str, Any]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' __UpperCAmelCase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=__a , ) def snake_case__ ( self : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : str , __a : List[Any] ) -> Tuple: __UpperCAmelCase = '''''' for key, value in failures.items(): __UpperCAmelCase = value[:2_0_0] + ''' [Truncated]''' if len(__a ) > 2_5_0 else value failures_text += f"""*{key}*\n_{value}_\n\n""" __UpperCAmelCase = job_name __UpperCAmelCase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __UpperCAmelCase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case__ ( self : str ) -> List[str]: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __UpperCAmelCase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __a : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __UpperCAmelCase = f"""*Num failures* :{len(job_result['failed'] )} \n""" __UpperCAmelCase = job_result['''failures'''] __UpperCAmelCase = self.get_reply_blocks(__a , __a , __a , text=__a ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=f"""Results for {job}""" , blocks=__a , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = os.environ['''GITHUB_RUN_ID'''] __UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" __UpperCAmelCase = requests.get(UpperCamelCase__ ).json() __UpperCAmelCase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , UpperCamelCase__ ) return {} def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = {} if os.path.exists(UpperCamelCase__ ): __UpperCAmelCase = os.listdir(UpperCamelCase__ ) for file in files: try: with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , encoding='''utf-8''' ) as f: __UpperCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(UpperCamelCase__ , UpperCamelCase__ )}.""" ) from e return _artifact def lowerCAmelCase ( ): """simple docstring""" class A : def __init__( self : Union[str, Any] , __a : str ) -> int: __UpperCAmelCase = name __UpperCAmelCase = [] def __str__( self : str ) -> List[str]: return self.name def snake_case__ ( self : Optional[Any] , __a : str ) -> List[Any]: self.paths.append({'''name''': self.name, '''path''': path} ) __UpperCAmelCase = {} __UpperCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: __UpperCAmelCase = directory if artifact_name not in _available_artifacts: __UpperCAmelCase = Artifact(UpperCamelCase__ ) _available_artifacts[artifact_name].add_path(UpperCamelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCAmelCase : Optional[int] = get_job_links() __lowerCAmelCase : Any = retrieve_available_artifacts() __lowerCAmelCase : List[Any] = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCAmelCase : Dict = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCAmelCase : str = github_actions_job_links.get("run_doctests") __lowerCAmelCase : Dict = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __lowerCAmelCase : Tuple = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = handle_test_results(artifact["stats"]) __lowerCAmelCase : Dict = failed __lowerCAmelCase : str = success __lowerCAmelCase : Optional[Any] = time_spent[1:-1] + ", " __lowerCAmelCase : Dict = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __lowerCAmelCase : Any = line.replace("FAILED ", "") __lowerCAmelCase : Optional[Any] = line.split()[0].replace("\n", "") if "::" in line: __lowerCAmelCase , __lowerCAmelCase : Optional[int] = line.split("::") else: __lowerCAmelCase , __lowerCAmelCase : Any = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCAmelCase : Optional[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCAmelCase : Optional[int] = all_failures[test] if test in all_failures else "N/A" __lowerCAmelCase : Union[str, Any] = failure break __lowerCAmelCase : int = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' class A : def __init__( self : Optional[Any] , __a : int , __a : List[str]=None , __a : Optional[Any]=None ) -> Dict: __UpperCAmelCase = data __UpperCAmelCase = previous __UpperCAmelCase = next_node def __str__( self : Tuple ) -> str: return f"""{self.data}""" def snake_case__ ( self : Dict ) -> int: return self.data def snake_case__ ( self : List[Any] ) -> Any: return self.next def snake_case__ ( self : str ) -> Dict: return self.previous class A : def __init__( self : List[str] , __a : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = head def __iter__( self : Tuple ) -> List[Any]: return self def snake_case__ ( self : List[str] ) -> List[Any]: if not self.current: raise StopIteration else: __UpperCAmelCase = self.current.get_data() __UpperCAmelCase = self.current.get_next() return value class A : def __init__( self : int ) -> int: __UpperCAmelCase = None # First node in list __UpperCAmelCase = None # Last node in list def __str__( self : List[str] ) -> List[str]: __UpperCAmelCase = self.head __UpperCAmelCase = [] while current is not None: nodes.append(current.get_data() ) __UpperCAmelCase = current.get_next() return " ".join(str(__a ) for node in nodes ) def __contains__( self : Optional[Any] , __a : int ) -> Union[str, Any]: __UpperCAmelCase = self.head while current: if current.get_data() == value: return True __UpperCAmelCase = current.get_next() return False def __iter__( self : Union[str, Any] ) -> int: return LinkedListIterator(self.head ) def snake_case__ ( self : Tuple ) -> Any: if self.head: return self.head.get_data() return None def snake_case__ ( self : List[Any] ) -> List[str]: if self.tail: return self.tail.get_data() return None def snake_case__ ( self : Optional[int] , __a : Node ) -> None: if self.head is None: __UpperCAmelCase = node __UpperCAmelCase = node else: self.insert_before_node(self.head , __a ) def snake_case__ ( self : List[str] , __a : Node ) -> None: if self.head is None: self.set_head(__a ) else: self.insert_after_node(self.tail , __a ) def snake_case__ ( self : Dict , __a : int ) -> None: __UpperCAmelCase = Node(__a ) if self.head is None: self.set_head(__a ) else: self.set_tail(__a ) def snake_case__ ( self : List[Any] , __a : Node , __a : Node ) -> None: __UpperCAmelCase = node __UpperCAmelCase = node.previous if node.get_previous() is None: __UpperCAmelCase = node_to_insert else: __UpperCAmelCase = node_to_insert __UpperCAmelCase = node_to_insert def snake_case__ ( self : int , __a : Node , __a : Node ) -> None: __UpperCAmelCase = node __UpperCAmelCase = node.next if node.get_next() is None: __UpperCAmelCase = node_to_insert else: __UpperCAmelCase = node_to_insert __UpperCAmelCase = node_to_insert def snake_case__ ( self : Optional[Any] , __a : int , __a : int ) -> None: __UpperCAmelCase = 1 __UpperCAmelCase = Node(__a ) __UpperCAmelCase = self.head while node: if current_position == position: self.insert_before_node(__a , __a ) return current_position += 1 __UpperCAmelCase = node.next self.insert_after_node(self.tail , __a ) def snake_case__ ( self : Optional[int] , __a : int ) -> Node: __UpperCAmelCase = self.head while node: if node.get_data() == item: return node __UpperCAmelCase = node.get_next() raise Exception('''Node not found''' ) def snake_case__ ( self : Tuple , __a : int ) -> int: if (node := self.get_node(__a )) is not None: if node == self.head: __UpperCAmelCase = self.head.get_next() if node == self.tail: __UpperCAmelCase = self.tail.get_previous() self.remove_node_pointers(__a ) @staticmethod def snake_case__ ( __a : Node ) -> None: if node.get_next(): __UpperCAmelCase = node.previous if node.get_previous(): __UpperCAmelCase = node.next __UpperCAmelCase = None __UpperCAmelCase = None def snake_case__ ( self : int ) -> Any: return self.head is None def lowerCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' __lowerCAmelCase : Dict = 0 # The first color of the flag. __lowerCAmelCase : Optional[Any] = 1 # The second color of the flag. __lowerCAmelCase : List[Any] = 2 # The third color of the flag. __lowerCAmelCase : int = (red, white, blue) def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" if not sequence: return [] if len(UpperCamelCase__ ) == 1: return list(UpperCamelCase__ ) __UpperCAmelCase = 0 __UpperCAmelCase = len(UpperCamelCase__ ) - 1 __UpperCAmelCase = 0 while mid <= high: if sequence[mid] == colors[0]: __UpperCAmelCase , __UpperCAmelCase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __UpperCAmelCase , __UpperCAmelCase = sequence[high], sequence[mid] high -= 1 else: __UpperCAmelCase = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(UpperCamelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] = input("Enter numbers separated by commas:\n").strip() __lowerCAmelCase : int = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCAmelCase : List[Any] = "hf-internal-testing/tiny-random-bert" __lowerCAmelCase : int = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __lowerCAmelCase : List[str] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A ( unittest.TestCase ): def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , '''refs''' , '''main''' ) ) as f: __UpperCAmelCase = f.read() self.assertEqual(__a , os.path.join(__a , '''snapshots''' , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. __UpperCAmelCase = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. __UpperCAmelCase = cached_file(__a , __a , revision='''9b8c223''' ) self.assertEqual(__a , os.path.join(__a , '''snapshots''' , __a , __a ) ) def snake_case__ ( self : Tuple ) -> List[Any]: with self.assertRaisesRegex(__a , '''is not a valid model identifier''' ): __UpperCAmelCase = cached_file('''tiny-random-bert''' , __a ) with self.assertRaisesRegex(__a , '''is not a valid git identifier''' ): __UpperCAmelCase = cached_file(__a , __a , revision='''aaaa''' ) with self.assertRaisesRegex(__a , '''does not appear to have a file named''' ): __UpperCAmelCase = cached_file(__a , '''conf''' ) def snake_case__ ( self : List[Any] ) -> Optional[int]: with self.assertRaisesRegex(__a , '''does not appear to have a file named''' ): __UpperCAmelCase = cached_file(__a , '''conf''' ) with open(os.path.join(__a , '''refs''' , '''main''' ) ) as f: __UpperCAmelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , '''.no_exist''' , __a , '''conf''' ) ) ) __UpperCAmelCase = cached_file(__a , '''conf''' , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __UpperCAmelCase = cached_file(__a , '''conf''' , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __UpperCAmelCase = mock.Mock() __UpperCAmelCase = 5_0_0 __UpperCAmelCase = {} __UpperCAmelCase = HTTPError __UpperCAmelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__a ) as mock_head: __UpperCAmelCase = cached_file(__a , '''conf''' , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __a ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __a ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __a ) ) def snake_case__ ( self : Optional[int] ) -> int: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __a , revision='''ahaha''' ) __UpperCAmelCase = get_file_from_repo('''bert-base-cased''' , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. __UpperCAmelCase = json.loads(open(__a , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = Path(__a ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__a , '''a.txt''' ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , '''b.txt''' ) )
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' import qiskit def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' import re from filelock import FileLock try: import nltk __lowerCAmelCase : Union[str, Any] = True except (ImportError, ModuleNotFoundError): __lowerCAmelCase : List[Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" re.sub('''<n>''' , '''''' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCAmelCase ( UpperCamelCase__ : dict[int, list[int]] ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = len(UpperCamelCase__ ) # No of vertices in graph __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n def dfs(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ): __UpperCAmelCase = True __UpperCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , id_ ) __UpperCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __UpperCAmelCase = min(low[at] , low[to] ) __UpperCAmelCase = [] for i in range(UpperCamelCase__ ): if not visited[i]: dfs(UpperCamelCase__ , -1 , UpperCamelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' from manim import * class A ( UpperCAmelCase ): def snake_case__ ( self : str ) -> List[str]: __UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __UpperCAmelCase = Rectangle(height=0.2_5 , width=0.2_5 ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''CPU''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __UpperCAmelCase = [mem.copy() for i in range(4 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''GPU''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''Model''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) __UpperCAmelCase = [] __UpperCAmelCase = [] for i, rect in enumerate(__a ): __UpperCAmelCase = fill.copy().set_fill(__a , opacity=0.8 ) target.move_to(__a ) model_arr.append(__a ) __UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__a ) self.add(*__a , *__a ) __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''Disk''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4, -1.2_5, 0] ) self.add(__a , __a ) __UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) __UpperCAmelCase = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) __UpperCAmelCase = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) ) __UpperCAmelCase = Square(0.3 ) input.set_fill(__a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __a , buff=0.5 ) self.play(Write(__a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__a , buff=0.0_2 ) self.play(MoveToTarget(__a ) ) self.play(FadeOut(__a ) ) __UpperCAmelCase = Arrow(start=__a , end=__a , color=__a , buff=0.5 ) a.next_to(model_arr[0].get_left() , __a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCAmelCase = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) __UpperCAmelCase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.0_2} self.play( Write(__a ) , Circumscribe(model_arr[0] , color=__a , **__a ) , Circumscribe(model_cpu_arr[0] , color=__a , **__a ) , Circumscribe(gpu_rect[0] , color=__a , **__a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , __a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) __UpperCAmelCase = AnimationGroup( FadeOut(__a , run_time=0.5 ) , MoveToTarget(__a , run_time=0.5 ) , FadeIn(__a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **__a ) , Circumscribe(cpu_left_col_base[i] , **__a ) , Circumscribe(cpu_left_col_base[i + 1] , color=__a , **__a ) , Circumscribe(gpu_rect[0] , color=__a , **__a ) , Circumscribe(model_arr[i + 1] , color=__a , **__a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__a , **__a ) , Circumscribe(cpu_left_col_base[-1] , color=__a , **__a ) , Circumscribe(gpu_rect[0] , color=__a , **__a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCAmelCase = a_c __UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(__a ) , FadeOut(__a , run_time=0.5 ) , ) __UpperCAmelCase = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) , MoveToTarget(__a ) ) self.wait()
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_sql_dataset(UpperCamelCase__ , UpperCamelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_sql_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" with contextlib.closing(sqlitea.connect(UpperCamelCase__ ) ) as con: __UpperCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ ).read() SqlDatasetWriter(UpperCamelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) for rowa, rowa in zip(UpperCamelCase__ , UpperCamelCase__ ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ ).read() SqlDatasetWriter(UpperCamelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) for rowa, rowa in zip(UpperCamelCase__ , UpperCamelCase__ ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ ).read() with pytest.raises(UpperCamelCase__ ): SqlDatasetWriter(UpperCamelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowerCAmelCase : Optional[int] = data_utils.TransfoXLTokenizer __lowerCAmelCase : Any = data_utils.TransfoXLCorpus __lowerCAmelCase : Tuple = data_utils __lowerCAmelCase : List[str] = data_utils def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , '''rb''' ) as fp: __UpperCAmelCase = pickle.load(UpperCamelCase__ , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __UpperCAmelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __UpperCAmelCase = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , UpperCamelCase__ ) __UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __UpperCAmelCase = os.path.abspath(UpperCamelCase__ ) __UpperCAmelCase = os.path.abspath(UpperCamelCase__ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __UpperCAmelCase = TransfoXLConfig() else: __UpperCAmelCase = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCAmelCase = TransfoXLLMHeadModel(UpperCamelCase__ ) __UpperCAmelCase = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model __UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f"""Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) print(f"""Save configuration file to {os.path.abspath(UpperCamelCase__ )}""" ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __lowerCAmelCase : Dict = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : str = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class A ( UpperCAmelCase ): a_ = '''WhisperFeatureExtractor''' a_ = '''WhisperTokenizer''' def __init__( self : int , __a : str , __a : List[Any] ) -> Dict: super().__init__(__a , __a ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def snake_case__ ( self : Tuple , __a : Tuple=None , __a : Tuple=None , __a : List[Any]=True ) -> Dict: return self.tokenizer.get_decoder_prompt_ids(task=__a , language=__a , no_timestamps=__a ) def __call__( self : Dict , *__a : int , **__a : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) __UpperCAmelCase = kwargs.pop('''audio''' , __a ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , __a ) __UpperCAmelCase = kwargs.pop('''text''' , __a ) if len(__a ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __UpperCAmelCase = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: __UpperCAmelCase = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase = encodings['''input_ids'''] return inputs def snake_case__ ( self : Tuple , *__a : List[str] , **__a : Union[str, Any] ) -> Any: return self.tokenizer.batch_decode(*__a , **__a ) def snake_case__ ( self : Optional[Any] , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: return self.tokenizer.decode(*__a , **__a ) def snake_case__ ( self : str , __a : str , __a : List[Any]="np" ) -> Dict: return self.tokenizer.get_prompt_ids(__a , return_tensors=__a )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowerCAmelCase : str = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def snake_case__ ( self : Optional[Any] , __a : Path , __a : Union[str, None] = None , __a : Union[List[str], None] = None , __a : Union[str, List[str], None] = None , __a : bool = True , ) -> Union[str, Any]: __UpperCAmelCase = [file for file in os.listdir(__a ) if os.path.isfile(os.path.join(__a , __a ) )] if identifier is not None: __UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__a , __a ): for n_ in n_identifier: __UpperCAmelCase = [file for file in files if n_ not in file] else: __UpperCAmelCase = [file for file in files if n_identifier not in file] __UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) __UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __a ) if only_modules: __UpperCAmelCase = file.split('''.''' )[0] try: __UpperCAmelCase = getattr(__a , __a ) __UpperCAmelCase = doctest.DocTestSuite(__a ) __UpperCAmelCase = unittest.TextTestRunner().run(__a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: __UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def snake_case__ ( self : List[str] ) -> str: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''modeling''' __UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__a , identifier=__a , ignore_files=__a ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''tokenization''' self.analyze_directory(__a , identifier=__a ) def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''configuration''' self.analyze_directory(__a , identifier=__a ) def snake_case__ ( self : Optional[int] ) -> int: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__a , n_identifier=__a ) def snake_case__ ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase = Path('''docs/source''' ) __UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__a , ignore_files=__a , only_modules=__a )
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowerCAmelCase : Any = pytest.mark.integration @require_faiss class A ( UpperCAmelCase ): def snake_case__ ( self : Dict ) -> Dict: __UpperCAmelCase = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__a ) for x in np.arange(3_0 ).tolist()]} ) return dset def snake_case__ ( self : str ) -> int: import faiss __UpperCAmelCase = self._create_dummy_dataset() __UpperCAmelCase = dset.map( lambda __a , __a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) __UpperCAmelCase = dset.add_faiss_index('''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def snake_case__ ( self : Any ) -> List[Any]: import faiss __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: import faiss __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(__a , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: from elasticsearch import Elasticsearch __UpperCAmelCase = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __UpperCAmelCase = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0 ) __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} __UpperCAmelCase = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=__a ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class A ( UpperCAmelCase ): def snake_case__ ( self : Union[str, Any] ) -> Dict: import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def snake_case__ ( self : int ) -> int: import faiss __UpperCAmelCase = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): __UpperCAmelCase = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def snake_case__ ( self : List[Any] ) -> str: import faiss __UpperCAmelCase = faiss.IndexFlat(5 ) __UpperCAmelCase = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def snake_case__ ( self : int ) -> Any: import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __UpperCAmelCase = '''index.faiss''' __UpperCAmelCase = f"""mock://{index_name}""" index.save(UpperCamelCase__ , storage_options=mockfs.storage_options ) __UpperCAmelCase = FaissIndex.load(UpperCamelCase__ , storage_options=mockfs.storage_options ) __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(UpperCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A ( UpperCAmelCase ): def snake_case__ ( self : Union[str, Any] ) -> str: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __UpperCAmelCase = Elasticsearch() __UpperCAmelCase = {'''acknowledged''': True} __UpperCAmelCase = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query __UpperCAmelCase = '''foo''' __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __UpperCAmelCase , __UpperCAmelCase = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase = '''foo''' __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __UpperCAmelCase , __UpperCAmelCase = index.search(__a , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase = ['''foo''', '''bar''', '''foobar'''] __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __UpperCAmelCase , __UpperCAmelCase = index.search_batch(__a ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout __UpperCAmelCase = ['''foo''', '''bar''', '''foobar'''] __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __UpperCAmelCase , __UpperCAmelCase = index.search_batch(__a , request_timeout=3_0 ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) - pat_len + 1 ): __UpperCAmelCase = True for j in range(UpperCamelCase__ ): if s[i + j] != pattern[j]: __UpperCAmelCase = False break if match_found: position.append(UpperCamelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __lowerCAmelCase : Optional[int] = random.Random() def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=1.0 , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" if rng is None: __UpperCAmelCase = global_rng __UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): def __init__( self : int , __a : int , __a : Tuple=7 , __a : Dict=4_0_0 , __a : str=2_0_0_0 , __a : Optional[Any]=2_0_4_8 , __a : Optional[int]=1_2_8 , __a : Optional[int]=1 , __a : int=5_1_2 , __a : Union[str, Any]=3_0 , __a : Any=4_4_1_0_0 , ) -> Tuple: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = min_seq_length __UpperCAmelCase = max_seq_length __UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase = spectrogram_length __UpperCAmelCase = feature_size __UpperCAmelCase = num_audio_channels __UpperCAmelCase = hop_length __UpperCAmelCase = chunk_length __UpperCAmelCase = sampling_rate def snake_case__ ( self : Union[str, Any] ) -> Dict: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case__ ( self : Union[str, Any] , __a : Optional[Any]=False , __a : int=False ) -> Union[str, Any]: def _flatten(__a : int ): return list(itertools.chain(*__a ) ) if equal_length: __UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase = [np.asarray(__a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( UpperCAmelCase , unittest.TestCase ): a_ = TvltFeatureExtractor def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = TvltFeatureExtractionTester(self ) def snake_case__ ( self : List[str] ) -> str: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__a , '''feature_size''' ) ) self.assertTrue(hasattr(__a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__a , '''hop_length''' ) ) self.assertTrue(hasattr(__a , '''chunk_length''' ) ) self.assertTrue(hasattr(__a , '''sampling_rate''' ) ) def snake_case__ ( self : Tuple ) -> List[str]: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) __UpperCAmelCase = self.feature_extraction_class.from_pretrained(__a ) __UpperCAmelCase = feat_extract_first.to_dict() __UpperCAmelCase = feat_extract_second.to_dict() __UpperCAmelCase = dict_first.pop('''mel_filters''' ) __UpperCAmelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = os.path.join(__a , '''feat_extract.json''' ) feat_extract_first.to_json_file(__a ) __UpperCAmelCase = self.feature_extraction_class.from_json_file(__a ) __UpperCAmelCase = feat_extract_first.to_dict() __UpperCAmelCase = feat_extract_second.to_dict() __UpperCAmelCase = dict_first.pop('''mel_filters''' ) __UpperCAmelCase = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def snake_case__ ( self : str ) -> List[Any]: # Initialize feature_extractor __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = [np.asarray(__a ) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __UpperCAmelCase = feature_extractor(__a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __UpperCAmelCase = feature_extractor( __a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=__a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase = np.asarray(__a ) __UpperCAmelCase = feature_extractor(__a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case__ ( self : Tuple , __a : List[Any] ) -> int: __UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __UpperCAmelCase = ds.sort('''id''' ).select(range(__a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = self._load_datasamples(1 ) __UpperCAmelCase = TvltFeatureExtractor() __UpperCAmelCase = feature_extractor(__a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) __UpperCAmelCase = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __a , atol=1e-4 ) )
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase : List[str] = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : str = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __lowerCAmelCase : int = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def snake_case__ ( self : int ) -> int: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : int = CHRF.CHAR_ORDER , __a : int = CHRF.WORD_ORDER , __a : int = CHRF.BETA , __a : bool = False , __a : bool = False , __a : bool = False , ) -> Tuple: __UpperCAmelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __UpperCAmelCase = [[refs[i] for refs in references] for i in range(__a )] __UpperCAmelCase = CHRF(__a , __a , __a , __a , __a , __a ) __UpperCAmelCase = sb_chrf.corpus_score(__a , __a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=UpperCamelCase__ ) __UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCamelCase__ ) EnvironmentCommand.register_subcommand(UpperCamelCase__ ) TestCommand.register_subcommand(UpperCamelCase__ ) RunBeamCommand.register_subcommand(UpperCamelCase__ ) DummyDataCommand.register_subcommand(UpperCamelCase__ ) # Parse args __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if not hasattr(UpperCamelCase__ , '''func''' ): parser.print_help() exit(1 ) __UpperCAmelCase = parse_unknown_args(UpperCamelCase__ ) # Run __UpperCAmelCase = args.func(UpperCamelCase__ , **UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def snake_case__ ( *__a : Dict , **__a : Tuple ) -> int: pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): a_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case__ ( self : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] ) -> List[str]: __UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) __UpperCAmelCase = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def snake_case__ ( self : List[str] , __a : Tuple , __a : Any ) -> Dict: __UpperCAmelCase = vqa_pipeline(__a , top_k=1 ) self.assertEqual( __a , [ [{'''score''': ANY(__a ), '''answer''': ANY(__a )}], [{'''score''': ANY(__a ), '''answer''': ANY(__a )}], ] , ) @require_torch def snake_case__ ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) __UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __UpperCAmelCase = '''How many cats are there?''' __UpperCAmelCase = vqa_pipeline(image=__a , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( __a , [{'''score''': ANY(__a ), '''answer''': ANY(__a )}, {'''score''': ANY(__a ), '''answer''': ANY(__a )}] ) __UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( __a , [{'''score''': ANY(__a ), '''answer''': ANY(__a )}, {'''score''': ANY(__a ), '''answer''': ANY(__a )}] ) @slow @require_torch def snake_case__ ( self : Optional[Any] ) -> List[Any]: __UpperCAmelCase = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) __UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __UpperCAmelCase = '''How many cats are there?''' __UpperCAmelCase = vqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) __UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) __UpperCAmelCase = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def snake_case__ ( self : Tuple ) -> str: pass
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __lowerCAmelCase : Optional[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) return (preds == labels).mean() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) __UpperCAmelCase = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) __UpperCAmelCase = pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] __UpperCAmelCase = spearmanr(UpperCamelCase__ , UpperCamelCase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), f"""Predictions and labels have mismatched lengths {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "mrpc": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "sts-b": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "qqp": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Any ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError(UpperCamelCase__ )
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class A ( UpperCAmelCase ): a_ = '''lxmert''' a_ = {} def __init__( self : int , __a : Dict=3_0_5_2_2 , __a : Union[str, Any]=7_6_8 , __a : int=1_2 , __a : Optional[int]=9_5_0_0 , __a : int=1_6_0_0 , __a : List[Any]=4_0_0 , __a : Tuple=3_0_7_2 , __a : Any="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : Tuple=5_1_2 , __a : str=2 , __a : str=0.0_2 , __a : Tuple=1e-12 , __a : str=9 , __a : List[str]=5 , __a : str=5 , __a : List[str]=2_0_4_8 , __a : List[str]=4 , __a : int=6.6_7 , __a : Any=True , __a : List[Any]=True , __a : List[Any]=True , __a : Optional[int]=True , __a : List[Any]=True , __a : Tuple=True , __a : Optional[Any]=True , **__a : Any , ) -> int: __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = num_qa_labels __UpperCAmelCase = num_object_labels __UpperCAmelCase = num_attr_labels __UpperCAmelCase = l_layers __UpperCAmelCase = x_layers __UpperCAmelCase = r_layers __UpperCAmelCase = visual_feat_dim __UpperCAmelCase = visual_pos_dim __UpperCAmelCase = visual_loss_normalizer __UpperCAmelCase = task_matched __UpperCAmelCase = task_mask_lm __UpperCAmelCase = task_obj_predict __UpperCAmelCase = task_qa __UpperCAmelCase = visual_obj_loss __UpperCAmelCase = visual_attr_loss __UpperCAmelCase = visual_feat_loss __UpperCAmelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__a )
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( UpperCAmelCase ): def __init__( self : Union[str, Any] , __a : TransformeraDModel , __a : AutoencoderKL , __a : KarrasDiffusionSchedulers , __a : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=__a , vae=__a , scheduler=__a ) # create a imagenet -> id dictionary for easier use __UpperCAmelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __UpperCAmelCase = int(__a ) __UpperCAmelCase = dict(sorted(self.labels.items() ) ) def snake_case__ ( self : Optional[Any] , __a : Union[str, List[str]] ) -> List[int]: if not isinstance(__a , __a ): __UpperCAmelCase = list(__a ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[Any] , __a : List[int] , __a : float = 4.0 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : int = 5_0 , __a : Optional[str] = "pil" , __a : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCAmelCase = len(__a ) __UpperCAmelCase = self.transformer.config.sample_size __UpperCAmelCase = self.transformer.config.in_channels __UpperCAmelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__a , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __UpperCAmelCase = torch.tensor(__a , device=self.device ).reshape(-1 ) __UpperCAmelCase = torch.tensor([1_0_0_0] * batch_size , device=self.device ) __UpperCAmelCase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __UpperCAmelCase = latent_model_input[: len(__a ) // 2] __UpperCAmelCase = torch.cat([half, half] , dim=0 ) __UpperCAmelCase = self.scheduler.scale_model_input(__a , __a ) __UpperCAmelCase = t if not torch.is_tensor(__a ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase = latent_model_input.device.type == '''mps''' if isinstance(__a , __a ): __UpperCAmelCase = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase = torch.intaa if is_mps else torch.intaa __UpperCAmelCase = torch.tensor([timesteps] , dtype=__a , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __UpperCAmelCase = self.transformer( __a , timestep=__a , class_labels=__a ).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase = torch.split(__a , len(__a ) // 2 , dim=0 ) __UpperCAmelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase = torch.cat([half_eps, half_eps] , dim=0 ) __UpperCAmelCase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase = torch.split(__a , __a , dim=1 ) else: __UpperCAmelCase = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(__a , __a , __a ).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase = latent_model_input.chunk(2 , dim=0 ) else: __UpperCAmelCase = latent_model_input __UpperCAmelCase = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase = self.vae.decode(__a ).sample __UpperCAmelCase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(__a ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__a )
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[int] = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __lowerCAmelCase : Optional[Any] = { "gpt-neox-20b": 2_048, } class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __a : str=None , __a : List[str]=None , __a : Optional[int]=None , __a : Tuple="<|endoftext|>" , __a : List[str]="<|endoftext|>" , __a : Dict="<|endoftext|>" , __a : Tuple=False , **__a : Optional[int] , ) -> Dict: super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __a ) != add_prefix_space: __UpperCAmelCase = getattr(__a , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**__a ) __UpperCAmelCase = add_prefix_space def snake_case__ ( self : List[str] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def snake_case__ ( self : Tuple , __a : "Conversation" ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' __lowerCAmelCase : Any = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __lowerCAmelCase : Optional[int] = frozenset(["prompt", "negative_prompt"]) __lowerCAmelCase : Tuple = frozenset([]) __lowerCAmelCase : str = frozenset(["image"]) __lowerCAmelCase : int = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __lowerCAmelCase : Optional[Any] = frozenset(["image"]) __lowerCAmelCase : int = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __lowerCAmelCase : str = frozenset(["prompt", "image", "negative_prompt"]) __lowerCAmelCase : Union[str, Any] = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __lowerCAmelCase : int = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __lowerCAmelCase : Any = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __lowerCAmelCase : Union[str, Any] = frozenset(["image", "mask_image"]) __lowerCAmelCase : str = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __lowerCAmelCase : int = frozenset(["example_image", "image", "mask_image"]) __lowerCAmelCase : int = frozenset(["class_labels"]) __lowerCAmelCase : List[str] = frozenset(["class_labels"]) __lowerCAmelCase : Optional[Any] = frozenset(["batch_size"]) __lowerCAmelCase : Union[str, Any] = frozenset([]) __lowerCAmelCase : Union[str, Any] = frozenset(["batch_size"]) __lowerCAmelCase : str = frozenset([]) __lowerCAmelCase : Optional[Any] = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __lowerCAmelCase : List[str] = frozenset(["prompt", "negative_prompt"]) __lowerCAmelCase : int = frozenset(["input_tokens"]) __lowerCAmelCase : Union[str, Any] = frozenset(["input_tokens"])
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' class A : def __init__( self : Optional[Any] ) -> None: __UpperCAmelCase = {} # Mapping from char to TrieNode __UpperCAmelCase = False def snake_case__ ( self : Optional[int] , __a : list[str] ) -> None: for word in words: self.insert(__a ) def snake_case__ ( self : List[str] , __a : str ) -> None: __UpperCAmelCase = self for char in word: if char not in curr.nodes: __UpperCAmelCase = TrieNode() __UpperCAmelCase = curr.nodes[char] __UpperCAmelCase = True def snake_case__ ( self : Optional[int] , __a : str ) -> bool: __UpperCAmelCase = self for char in word: if char not in curr.nodes: return False __UpperCAmelCase = curr.nodes[char] return curr.is_leaf def snake_case__ ( self : Tuple , __a : str ) -> None: def _delete(__a : TrieNode , __a : str , __a : int ) -> bool: if index == len(__a ): # If word does not exist if not curr.is_leaf: return False __UpperCAmelCase = False return len(curr.nodes ) == 0 __UpperCAmelCase = word[index] __UpperCAmelCase = curr.nodes.get(__a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __UpperCAmelCase = _delete(__a , __a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __a , 0 ) def lowerCAmelCase ( UpperCamelCase__ : TrieNode , UpperCamelCase__ : str ): """simple docstring""" if node.is_leaf: print(UpperCamelCase__ , end=''' ''' ) for key, value in node.nodes.items(): print_words(UpperCamelCase__ , word + key ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() __UpperCAmelCase = TrieNode() root.insert_many(UpperCamelCase__ ) # print_words(root, "") assert all(root.find(UpperCamelCase__ ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : bool ): """simple docstring""" print(str(UpperCamelCase__ ) , '''works!''' if passes else '''doesn\'t work :(''' ) def lowerCAmelCase ( ): """simple docstring""" assert test_trie() def lowerCAmelCase ( ): """simple docstring""" print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase , unittest.TestCase ): a_ = KandinskyVaaPriorPipeline a_ = ['''prompt'''] a_ = ['''prompt''', '''negative_prompt'''] a_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] a_ = False @property def snake_case__ ( self : Union[str, Any] ) -> int: return 3_2 @property def snake_case__ ( self : Optional[Any] ) -> Optional[int]: return 3_2 @property def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: return self.time_input_dim @property def snake_case__ ( self : Optional[Any] ) -> List[str]: return self.time_input_dim * 4 @property def snake_case__ ( self : Any ) -> Dict: return 1_0_0 @property def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def snake_case__ ( self : List[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(__a ) @property def snake_case__ ( self : Optional[int] ) -> List[Any]: torch.manual_seed(0 ) __UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_2, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __UpperCAmelCase = PriorTransformer(**__a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __UpperCAmelCase = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case__ ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __UpperCAmelCase = CLIPVisionModelWithProjection(__a ) return model @property def snake_case__ ( self : Dict ) -> Tuple: __UpperCAmelCase = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_2_4 , ) return image_processor def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = self.dummy_prior __UpperCAmelCase = self.dummy_image_encoder __UpperCAmelCase = self.dummy_text_encoder __UpperCAmelCase = self.dummy_tokenizer __UpperCAmelCase = self.dummy_image_processor __UpperCAmelCase = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=__a , clip_sample_range=1_0.0 , ) __UpperCAmelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def snake_case__ ( self : Any , __a : Any , __a : str=0 ) -> Optional[int]: if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = pipe(**self.get_dummy_inputs(__a ) ) __UpperCAmelCase = output.image_embeds __UpperCAmelCase = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] __UpperCAmelCase = image[0, -1_0:] __UpperCAmelCase = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __UpperCAmelCase = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case__ ( self : List[Any] ) -> Any: __UpperCAmelCase = torch_device == '''cpu''' __UpperCAmelCase = True __UpperCAmelCase = False self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , test_mean_pixel_difference=__a , ) @skip_mps def snake_case__ ( self : int ) -> List[str]: __UpperCAmelCase = torch_device == '''cpu''' __UpperCAmelCase = False self._test_attention_slicing_forward_pass( test_max_difference=__a , test_mean_pixel_difference=__a , )
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A ( UpperCAmelCase ): def __init__( self : Dict , __a : str , __a : Dict=1_3 , __a : Any=7 , __a : Tuple=True , __a : List[str]=True , __a : int=False , __a : Optional[Any]=True , __a : str=9_9 , __a : Optional[int]=3_2 , __a : int=5 , __a : str=4 , __a : int=6_4 , __a : Dict="gelu" , __a : Dict=0.1 , __a : List[Any]=0.1 , __a : List[str]=5_1_2 , __a : int=1_6 , __a : Tuple=2 , __a : Optional[Any]=0.0_2 , __a : Tuple=3 , __a : List[Any]=4 , __a : Dict=None , __a : Union[str, Any]=2 , __a : Dict=2 , __a : Dict=2 , __a : Optional[Any]=2 , __a : Dict=4 , __a : Optional[Any]=1 , ) -> str: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope __UpperCAmelCase = q_groups __UpperCAmelCase = k_groups __UpperCAmelCase = v_groups __UpperCAmelCase = post_attention_groups __UpperCAmelCase = intermediate_groups __UpperCAmelCase = output_groups def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Optional[Any] ) -> int: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def snake_case__ ( self : Dict , __a : List[str] , __a : Optional[Any] , __a : Any , __a : Union[str, Any] , __a : Any , __a : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = SqueezeBertModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , __a ) __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any] , __a : Any , __a : List[str] , __a : List[Any] , __a : Union[str, Any] , __a : int , __a : Union[str, Any] ) -> str: __UpperCAmelCase = SqueezeBertForMaskedLM(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : str , __a : List[str] , __a : Optional[Any] , __a : str , __a : str , __a : Optional[Any] , __a : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase = SqueezeBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : int , __a : List[Any] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Any , __a : Any ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SqueezeBertForSequenceClassification(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[Any] , __a : Tuple , __a : int , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SqueezeBertForTokenClassification(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any , __a : Union[str, Any] , __a : List[Any] , __a : Any , __a : Any , __a : Any , __a : int ) -> Tuple: __UpperCAmelCase = self.num_choices __UpperCAmelCase = SqueezeBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a_ = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = True a_ = False def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = SqueezeBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__a ) def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__a ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__a ) def snake_case__ ( self : int ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__a ) def snake_case__ ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__a ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__a ) @slow def snake_case__ ( self : Dict ) -> Union[str, Any]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SqueezeBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_sentencepiece @require_tokenizers @require_torch class A ( unittest.TestCase ): @slow def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __UpperCAmelCase = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , __a ) __UpperCAmelCase = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(__a , __a , atol=1e-4 ) )
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' from math import sqrt def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCamelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class A : def __init__( self : Tuple , __a : int | None = None ) -> str: __UpperCAmelCase = value __UpperCAmelCase = None # Added in order to delete a node easier __UpperCAmelCase = None __UpperCAmelCase = None def __repr__( self : Optional[Any] ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class A : def __init__( self : int , __a : Node | None = None ) -> List[Any]: __UpperCAmelCase = root def __str__( self : Any ) -> str: return str(self.root ) def snake_case__ ( self : List[str] , __a : Node , __a : Node | None ) -> None: if new_children is not None: # reset its kids __UpperCAmelCase = node.parent if node.parent is not None: # reset its parent if self.is_right(__a ): # If it is the right children __UpperCAmelCase = new_children else: __UpperCAmelCase = new_children else: __UpperCAmelCase = new_children def snake_case__ ( self : List[str] , __a : Node ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def snake_case__ ( self : str ) -> bool: return self.root is None def snake_case__ ( self : Optional[int] , __a : List[str] ) -> None: __UpperCAmelCase = Node(__a ) # create a new Node if self.empty(): # if Tree is empty __UpperCAmelCase = new_node # set its root else: # Tree is not empty __UpperCAmelCase = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __UpperCAmelCase = new_node # We insert the new node in a leaf break else: __UpperCAmelCase = parent_node.left else: if parent_node.right is None: __UpperCAmelCase = new_node break else: __UpperCAmelCase = parent_node.right __UpperCAmelCase = parent_node def snake_case__ ( self : str , *__a : int ) -> None: for value in values: self.__insert(__a ) def snake_case__ ( self : Optional[int] , __a : Dict ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: __UpperCAmelCase = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __UpperCAmelCase = node.left if value < node.value else node.right return node def snake_case__ ( self : List[Any] , __a : Node | None = None ) -> Node | None: if node is None: if self.root is None: return None __UpperCAmelCase = self.root if not self.empty(): while node.right is not None: __UpperCAmelCase = node.right return node def snake_case__ ( self : Any , __a : Node | None = None ) -> Node | None: if node is None: __UpperCAmelCase = self.root if self.root is None: return None if not self.empty(): __UpperCAmelCase = self.root while node.left is not None: __UpperCAmelCase = node.left return node def snake_case__ ( self : Tuple , __a : int ) -> None: __UpperCAmelCase = self.search(__a ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__a , __a ) elif node.left is None: # Has only right children self.__reassign_nodes(__a , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__a , node.left ) else: __UpperCAmelCase = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __UpperCAmelCase = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def snake_case__ ( self : Optional[Any] , __a : Node | None ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def snake_case__ ( self : Any , __a : Optional[int]=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def snake_case__ ( self : Any , __a : list , __a : Node | None ) -> None: if node: self.inorder(__a , node.left ) arr.append(node.value ) self.inorder(__a , node.right ) def snake_case__ ( self : Any , __a : int , __a : Node ) -> int: __UpperCAmelCase = [] self.inorder(__a , __a ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase ( UpperCamelCase__ : Node | None ): """simple docstring""" __UpperCAmelCase = [] if curr_node is not None: __UpperCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) __UpperCAmelCase = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase__ ) # Prints all the elements of the list in order traversal print(UpperCamelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase__ ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.2_5) = }""") print(F"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=1E-1_2 ): """simple docstring""" __UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase__ , axis=1 ) , a_min=UpperCamelCase__ ) ).T __UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase__ , axis=1 ) , a_min=UpperCamelCase__ ) ).T return jnp.matmul(UpperCamelCase__ , norm_emb_a.T ) class A ( nn.Module ): a_ = 42 a_ = jnp.floataa def snake_case__ ( self : int ) -> str: __UpperCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__a , dtype=self.dtype ) __UpperCAmelCase = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) __UpperCAmelCase = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) __UpperCAmelCase = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Tuple , __a : Any ) -> str: __UpperCAmelCase = self.vision_model(__a )[1] __UpperCAmelCase = self.visual_projection(__a ) __UpperCAmelCase = jax_cosine_distance(__a , self.special_care_embeds ) __UpperCAmelCase = jax_cosine_distance(__a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase = 0.0 __UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase = jnp.round(__a , 3 ) __UpperCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__a ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase = is_special_care * 0.0_1 __UpperCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase = jnp.round(__a , 3 ) __UpperCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A ( UpperCAmelCase ): a_ = CLIPConfig a_ = '''clip_input''' a_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[int] , __a : CLIPConfig , __a : Optional[Tuple] = None , __a : int = 0 , __a : jnp.dtype = jnp.floataa , __a : bool = True , **__a : Optional[Any] , ) -> Optional[Any]: if input_shape is None: __UpperCAmelCase = (1, 2_2_4, 2_2_4, 3) __UpperCAmelCase = self.module_class(config=__a , dtype=__a , **__a ) super().__init__(__a , __a , input_shape=__a , seed=__a , dtype=__a , _do_init=_do_init ) def snake_case__ ( self : List[Any] , __a : jax.random.KeyArray , __a : Tuple , __a : FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase = jax.random.normal(__a , __a ) __UpperCAmelCase , __UpperCAmelCase = jax.random.split(__a ) __UpperCAmelCase = {'''params''': params_rng, '''dropout''': dropout_rng} __UpperCAmelCase = self.module.init(__a , __a )['''params'''] return random_params def __call__( self : int , __a : List[str] , __a : dict = None , ) -> Dict: __UpperCAmelCase = jnp.transpose(__a , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__a , dtype=jnp.floataa ) , rngs={} , )
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" class A : def __init__( self : Tuple , __a : List[str] ) -> Tuple: __UpperCAmelCase = metric_id class A : a_ = [MetricMock(UpperCAmelCase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def snake_case__ ( self : List[str] ) -> Tuple: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): """simple docstring""" if "tmp_path" in args: __UpperCAmelCase = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(UpperCamelCase__ , match='''https://huggingface.co/docs/evaluate''' ): func(*UpperCamelCase__ )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A ( UpperCAmelCase ): def __init__( self : Optional[Any] , __a : Union[str, "sqlalchemy.sql.Selectable"] , __a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __a : Optional[Features] = None , __a : str = None , __a : bool = False , **__a : Dict , ) -> Tuple: super().__init__(features=__a , cache_dir=__a , keep_in_memory=__a , **__a ) __UpperCAmelCase = Sql( cache_dir=__a , features=__a , sql=__a , con=__a , **__a , ) def snake_case__ ( self : Any ) -> Optional[int]: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , ) # Build dataset for splits __UpperCAmelCase = self.builder.as_dataset( split='''train''' , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset class A : def __init__( self : List[str] , __a : Dataset , __a : str , __a : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , __a : Optional[int] = None , __a : Optional[int] = None , **__a : Optional[Any] , ) -> Any: if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __UpperCAmelCase = dataset __UpperCAmelCase = name __UpperCAmelCase = con __UpperCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCAmelCase = num_proc __UpperCAmelCase = to_sql_kwargs def snake_case__ ( self : List[Any] ) -> int: __UpperCAmelCase = self.to_sql_kwargs.pop('''sql''' , __a ) __UpperCAmelCase = self.to_sql_kwargs.pop('''con''' , __a ) __UpperCAmelCase = self.to_sql_kwargs.pop('''index''' , __a ) __UpperCAmelCase = self._write(index=__a , **self.to_sql_kwargs ) return written def snake_case__ ( self : str , __a : Optional[Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = args __UpperCAmelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCAmelCase = query_table( table=self.dataset.data , key=slice(__a , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCAmelCase = batch.to_pandas() __UpperCAmelCase = df.to_sql(self.name , self.con , index=__a , **__a ) return num_rows or len(__a ) def snake_case__ ( self : str , __a : Optional[int] , **__a : List[str] ) -> int: __UpperCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCAmelCase , __UpperCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , __a , __a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase ( UpperCamelCase__ : Tuple="ro" , UpperCamelCase__ : Any="en" , UpperCamelCase__ : Dict="wmt16" , UpperCamelCase__ : Dict=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __UpperCAmelCase = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __UpperCAmelCase = datasets.load_dataset(UpperCamelCase__ , UpperCamelCase__ ) if save_dir is None: __UpperCAmelCase = f"""{dataset}-{pair}""" __UpperCAmelCase = Path(UpperCamelCase__ ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __UpperCAmelCase = '''val''' if split == '''validation''' else split __UpperCAmelCase = save_dir.joinpath(f"""{fn}.source""" ) __UpperCAmelCase = save_dir.joinpath(f"""{fn}.target""" ) __UpperCAmelCase = src_path.open('''w+''' ) __UpperCAmelCase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __UpperCAmelCase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowerCAmelCase : int = pytest.mark.integration __lowerCAmelCase : Dict = {"comet"} __lowerCAmelCase : str = importlib.util.find_spec("fairseq") is not None __lowerCAmelCase : Dict = {"code_eval"} __lowerCAmelCase : Any = os.name == "nt" __lowerCAmelCase : Optional[Any] = {"bertscore", "frugalscore", "perplexity"} __lowerCAmelCase : str = importlib.util.find_spec("transformers") is not None def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" @wraps(UpperCamelCase__ ) def wrapper(self : List[Any] , UpperCamelCase__ : Dict ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" @wraps(UpperCamelCase__ ) def wrapper(self : List[Any] , UpperCamelCase__ : Any ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" @wraps(UpperCamelCase__ ) def wrapper(self : Union[str, Any] , UpperCamelCase__ : Tuple ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @local class A ( parameterized.TestCase ): a_ = {} a_ = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = '''[...]''' __UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __a ) ).module_path ) __UpperCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=__a ) # check parameters __UpperCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__a , metric_module.__name__ ): with self.use_local_metrics(): try: __UpperCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def snake_case__ ( self : Union[str, Any] , __a : Any ) -> List[Any]: __UpperCAmelCase = '''[...]''' __UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , __a ) ).module_path ) # run doctest with self.use_local_metrics(): __UpperCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def snake_case__ ( self : Any , __a : List[Any] , __a : Tuple ) -> Dict: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__a ): yield else: yield @contextmanager def snake_case__ ( self : Optional[Any] ) -> List[str]: def load_local_metric(__a : str , *__a : str , **__a : Any ): return load_metric(os.path.join('''metrics''' , __a ) , *__a , **__a ) with patch('''datasets.load_metric''' ) as mock_load_metric: __UpperCAmelCase = load_local_metric yield @classmethod def snake_case__ ( cls : str , __a : Optional[Any] ) -> Optional[Any]: def wrapper(__a : str ): __UpperCAmelCase = contextmanager(__a ) __UpperCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class A ( UpperCAmelCase ): def snake_case__ ( self : str , __a : List[Any] ) -> List[str]: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __UpperCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" import torch def bert_cos_score_idf(UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : Any , **UpperCamelCase__ : str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __UpperCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ): """simple docstring""" def load_from_checkpoint(UpperCamelCase__ : Tuple ): class A : def snake_case__ ( self : List[Any] , __a : Optional[Any] , *__a : Any , **__a : List[Any] ) -> Optional[Any]: assert len(__a ) == 2 __UpperCAmelCase = [0.1_9, 0.9_2] return scores, sum(__a ) / len(__a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __UpperCAmelCase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __UpperCAmelCase = load_from_checkpoint yield def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) __UpperCAmelCase = '''ERROR''' __UpperCAmelCase = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase__ )
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A : a_ = XGLMConfig a_ = {} a_ = '''gelu''' def __init__( self : List[str] , __a : int , __a : Optional[Any]=1_4 , __a : Optional[int]=7 , __a : Dict=True , __a : Optional[int]=True , __a : Tuple=True , __a : int=9_9 , __a : Optional[int]=3_2 , __a : str=2 , __a : Tuple=4 , __a : Any=3_7 , __a : int="gelu" , __a : Tuple=0.1 , __a : Optional[int]=0.1 , __a : str=5_1_2 , __a : List[str]=0.0_2 , ) -> Optional[Any]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = d_model __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = ffn_dim __UpperCAmelCase = activation_function __UpperCAmelCase = activation_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = 2 __UpperCAmelCase = 1 def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def snake_case__ ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = self.get_config() __UpperCAmelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case__ ( self : Optional[int] ) -> Tuple: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__a , ) def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () a_ = (TFXGLMForCausalLM,) if is_tf_available() else () a_ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) a_ = False a_ = False a_ = False def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = TFXGLMModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , n_embd=3_7 ) def snake_case__ ( self : Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() @slow def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = TFXGLMModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def snake_case__ ( self : List[Any] ) -> int: super().test_resize_token_embeddings() @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : Dict , __a : Optional[Any]=True ) -> Union[str, Any]: __UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __UpperCAmelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCAmelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on __UpperCAmelCase = model.generate(__a , do_sample=__a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __a ) @slow def snake_case__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) __UpperCAmelCase = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) __UpperCAmelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): __UpperCAmelCase = model.generate(__a , do_sample=__a , seed=[7, 0] ) __UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) __UpperCAmelCase = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__a , __a ) @slow def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __UpperCAmelCase = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __UpperCAmelCase = '''left''' # use different length sentences to test batching __UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __UpperCAmelCase = tokenizer(__a , return_tensors='''tf''' , padding=__a ) __UpperCAmelCase = inputs['''input_ids'''] __UpperCAmelCase = model.generate(input_ids=__a , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) __UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __UpperCAmelCase = model.generate(input_ids=__a , max_new_tokens=1_2 ) __UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __UpperCAmelCase = model.generate(input_ids=__a , max_new_tokens=1_2 ) __UpperCAmelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a ) __UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) __UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) __UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] )
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''pixel_values'''] def __init__( self : Optional[Any] , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 2_5_5 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : int , ) -> None: super().__init__(**__a ) __UpperCAmelCase = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase = get_size_dict(__a ) __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''' ) __UpperCAmelCase = do_resize __UpperCAmelCase = do_rescale __UpperCAmelCase = do_normalize __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = rescale_factor __UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case__ ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(__a ) if "shortest_edge" in size: __UpperCAmelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def snake_case__ ( self : List[str] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a ) def snake_case__ ( self : Dict , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] ) -> np.ndarray: return rescale(__a , scale=__a , data_format=__a , **__a ) def snake_case__ ( self : Optional[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def snake_case__ ( self : int , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Dict , ) -> BatchFeature: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(__a ) if not is_batched(__a ): __UpperCAmelCase = [images] if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(__a ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(__a , __a ) for image in images] __UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a )
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self : str , __a : bool , __a : Optional[int] = None , __a : Optional[int] = None ) -> Any: super().__init__() __UpperCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __UpperCAmelCase = torch.zeros(__a , __a ) else: __UpperCAmelCase = None __UpperCAmelCase = torch.nn.Parameter(__a ) class A ( UpperCAmelCase ): a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def __init__( self : List[Any] , __a : VQModel , __a : CLIPTextModel , __a : CLIPTokenizer , __a : TransformeraDModel , __a : VQDiffusionScheduler , __a : LearnedClassifierFreeSamplingEmbeddings , ) -> Optional[int]: super().__init__() self.register_modules( vqvae=__a , transformer=__a , text_encoder=__a , tokenizer=__a , scheduler=__a , learned_classifier_free_sampling_embeddings=__a , ) def snake_case__ ( self : List[str] , __a : int , __a : List[Any] , __a : Optional[Any] ) -> int: __UpperCAmelCase = len(__a ) if isinstance(__a , __a ) else 1 # get prompt text embeddings __UpperCAmelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __UpperCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__a ) # duplicate text embeddings for each generation per prompt __UpperCAmelCase = prompt_embeds.repeat_interleave(__a , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __UpperCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings __UpperCAmelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__a , 1 , 1 ) else: __UpperCAmelCase = [''''''] * batch_size __UpperCAmelCase = text_input_ids.shape[-1] __UpperCAmelCase = self.tokenizer( __a , padding='''max_length''' , max_length=__a , truncation=__a , return_tensors='''pt''' , ) __UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __UpperCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase = negative_prompt_embeds.shape[1] __UpperCAmelCase = negative_prompt_embeds.repeat(1 , __a , 1 ) __UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __a : Union[str, List[str]] , __a : int = 1_0_0 , __a : float = 5.0 , __a : float = 1.0 , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__a , __a ): __UpperCAmelCase = 1 elif isinstance(__a , __a ): __UpperCAmelCase = len(__a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__a )}""" ) __UpperCAmelCase = batch_size * num_images_per_prompt __UpperCAmelCase = guidance_scale > 1.0 __UpperCAmelCase = self._encode_prompt(__a , __a , __a ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__a )}.""" ) # get the initial completely masked latents unless the user supplied it __UpperCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __UpperCAmelCase = self.transformer.num_vector_embeds - 1 __UpperCAmelCase = torch.full(__a , __a ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) __UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__a , device=self.device ) __UpperCAmelCase = self.scheduler.timesteps.to(self.device ) __UpperCAmelCase = latents for i, t in enumerate(self.progress_bar(__a ) ): # expand the sample if we are doing classifier free guidance __UpperCAmelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __UpperCAmelCase = self.transformer(__a , encoder_hidden_states=__a , timestep=__a ).sample if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase = model_output.chunk(2 ) __UpperCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__a , dim=1 , keepdim=__a ) __UpperCAmelCase = self.truncate(__a , __a ) # remove `log(0)`'s (`-inf`s) __UpperCAmelCase = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(__a , timestep=__a , sample=__a , generator=__a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a , __a ) __UpperCAmelCase = self.vqvae.config.vq_embed_dim __UpperCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __UpperCAmelCase = self.vqvae.quantize.get_codebook_entry(__a , shape=__a ) __UpperCAmelCase = self.vqvae.decode(__a , force_not_quantize=__a ).sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a ) def snake_case__ ( self : List[Any] , __a : torch.FloatTensor , __a : float ) -> torch.FloatTensor: __UpperCAmelCase , __UpperCAmelCase = torch.sort(__a , 1 , descending=__a ) __UpperCAmelCase = torch.exp(__a ) __UpperCAmelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __UpperCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , __a ) __UpperCAmelCase = torch.cat((all_true, keep_mask) , dim=1 ) __UpperCAmelCase = keep_mask[:, :-1, :] __UpperCAmelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __UpperCAmelCase = log_p_x_0.clone() __UpperCAmelCase = -torch.inf # -inf = log(0) return rv
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A ( UpperCAmelCase ): def __init__( self : int , __a : int , __a : str ) -> List[str]: __UpperCAmelCase = params __UpperCAmelCase = np.array(__a ) __UpperCAmelCase = np.array([len(__a ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[str] , __a : Optional[int] ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self : int ) -> Union[str, Any]: return len(self.lengths ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase = self.params.max_model_input_size __UpperCAmelCase = self.lengths > max_len logger.info(f"""Splitting {sum(__a )} too long sequences.""" ) def divide_chunks(__a : List[Any] , __a : List[str] ): return [l[i : i + n] for i in range(0 , len(__a ) , __a )] __UpperCAmelCase = [] __UpperCAmelCase = [] if self.params.mlm: __UpperCAmelCase , __UpperCAmelCase = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: __UpperCAmelCase , __UpperCAmelCase = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __UpperCAmelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __UpperCAmelCase = np.insert(__a , 0 , __a ) if sub_s[-1] != sep_id: __UpperCAmelCase = np.insert(__a , len(__a ) , __a ) assert len(__a ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__a ) new_tok_ids.extend(__a ) new_lengths.extend([len(__a ) for l in sub_seqs] ) __UpperCAmelCase = np.array(__a ) __UpperCAmelCase = np.array(__a ) def snake_case__ ( self : Any ) -> Dict: __UpperCAmelCase = len(self ) __UpperCAmelCase = self.lengths > 1_1 __UpperCAmelCase = self.token_ids[indices] __UpperCAmelCase = self.lengths[indices] __UpperCAmelCase = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def snake_case__ ( self : Tuple ) -> Any: if "unk_token" not in self.params.special_tok_ids: return else: __UpperCAmelCase = self.params.special_tok_ids['''unk_token'''] __UpperCAmelCase = len(self ) __UpperCAmelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __UpperCAmelCase = (unk_occs / self.lengths) < 0.5 __UpperCAmelCase = self.token_ids[indices] __UpperCAmelCase = self.lengths[indices] __UpperCAmelCase = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def snake_case__ ( self : int , __a : Optional[Any] ) -> Dict: __UpperCAmelCase = [t[0] for t in batch] __UpperCAmelCase = [t[1] for t in batch] assert len(__a ) == len(__a ) # Max for paddings __UpperCAmelCase = max(__a ) # Pad token ids if self.params.mlm: __UpperCAmelCase = self.params.special_tok_ids['''pad_token'''] else: __UpperCAmelCase = self.params.special_tok_ids['''unk_token'''] __UpperCAmelCase = [list(t.astype(__a ) ) + [pad_idx] * (max_seq_len_ - len(__a )) for t in token_ids] assert len(tk_ ) == len(__a ) assert all(len(__a ) == max_seq_len_ for t in tk_ ) __UpperCAmelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) __UpperCAmelCase = torch.tensor(__a ) # (bs) return tk_t, lg_t
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''audio_values''', '''audio_mask'''] def __init__( self : int , __a : Dict=2_0_4_8 , __a : List[str]=1 , __a : str=[1_6, 1_6] , __a : str=1_2_8 , __a : Any=4_4_1_0_0 , __a : Dict=8_6 , __a : int=2_0_4_8 , __a : List[Any]=0.0 , **__a : List[Any] , ) -> List[Any]: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , **__a , ) __UpperCAmelCase = spectrogram_length __UpperCAmelCase = num_channels __UpperCAmelCase = patch_size __UpperCAmelCase = feature_size // self.patch_size[1] __UpperCAmelCase = n_fft __UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate __UpperCAmelCase = sampling_rate __UpperCAmelCase = padding_value __UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__a , norm='''slaney''' , mel_scale='''slaney''' , ).T def snake_case__ ( self : Optional[Any] , __a : np.array ) -> np.ndarray: __UpperCAmelCase = spectrogram( __a , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=8_0.0 , ) __UpperCAmelCase = log_spec[:, :-1] __UpperCAmelCase = log_spec - 2_0.0 __UpperCAmelCase = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Union[str, Any] , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = True , __a : Optional[int] = None , __a : bool = False , __a : bool = False , **__a : Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCAmelCase = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __UpperCAmelCase = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): __UpperCAmelCase = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __UpperCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __a ): __UpperCAmelCase = [np.asarray(__a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __UpperCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __UpperCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __UpperCAmelCase = np.array(__a ).astype(np.floataa ) # convert into correct format for padding __UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __UpperCAmelCase = np.ones([len(__a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __UpperCAmelCase = padded_audio_features * self.padding_value for i in range(len(__a ) ): __UpperCAmelCase = audio_features[i] __UpperCAmelCase = feature # return as BatchFeature if return_attention_mask: __UpperCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __UpperCAmelCase = {'''audio_values''': padded_audio_features} __UpperCAmelCase = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0_0_0_0_0 , UpperCamelCase__ : int = 1_0 ): """simple docstring""" __UpperCAmelCase = defaultdict(UpperCamelCase__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __UpperCAmelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __UpperCAmelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase ( UpperCamelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): __UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): __UpperCAmelCase , __UpperCAmelCase = image[0].size __UpperCAmelCase , __UpperCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __UpperCAmelCase = np.concatenate(UpperCamelCase__ , axis=0 ) __UpperCAmelCase = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 __UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) __UpperCAmelCase = 2.0 * image - 1.0 __UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): __UpperCAmelCase = torch.cat(UpperCamelCase__ , dim=0 ) return image def lowerCAmelCase ( UpperCamelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" if isinstance(UpperCamelCase__ , torch.Tensor ): return mask elif isinstance(UpperCamelCase__ , PIL.Image.Image ): __UpperCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __UpperCAmelCase , __UpperCAmelCase = mask[0].size __UpperCAmelCase , __UpperCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __UpperCAmelCase = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] __UpperCAmelCase = np.concatenate(UpperCamelCase__ , axis=0 ) __UpperCAmelCase = mask.astype(np.floataa ) / 2_55.0 __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0] , torch.Tensor ): __UpperCAmelCase = torch.cat(UpperCamelCase__ , dim=0 ) return mask class A ( UpperCAmelCase ): a_ = 42 a_ = 42 def __init__( self : Union[str, Any] , __a : Optional[int] , __a : Dict ) -> int: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : Tuple , __a : Union[torch.Tensor, PIL.Image.Image] , __a : Union[torch.Tensor, PIL.Image.Image] , __a : int = 2_5_0 , __a : float = 0.0 , __a : int = 1_0 , __a : int = 1_0 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[str] = "pil" , __a : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCAmelCase = image __UpperCAmelCase = _preprocess_image(__a ) __UpperCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __UpperCAmelCase = _preprocess_mask(__a ) __UpperCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __UpperCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __UpperCAmelCase = original_image.shape __UpperCAmelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__a , __a , __a , self.device ) __UpperCAmelCase = eta __UpperCAmelCase = self.scheduler.timesteps[0] + 1 __UpperCAmelCase = generator[0] if isinstance(__a , __a ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __UpperCAmelCase = self.unet(__a , __a ).sample # compute previous image: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(__a , __a , __a , __a , __a , __a ).prev_sample else: # compute the reverse: x_t-1 -> x_t __UpperCAmelCase = self.scheduler.undo_step(__a , __a , __a ) __UpperCAmelCase = t __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class A : def __init__( self : Union[str, Any] ) -> str: __UpperCAmelCase = {} def snake_case__ ( self : Any , __a : str ) -> None: __UpperCAmelCase = {} def snake_case__ ( self : Optional[Any] , __a : str , __a : str , __a : float ) -> None: if nodea not in self.connections: self.add_node(__a ) if nodea not in self.connections: self.add_node(__a ) __UpperCAmelCase = probability def snake_case__ ( self : Dict ) -> list[str]: return list(self.connections ) def snake_case__ ( self : Any , __a : str ) -> str: __UpperCAmelCase = 0 __UpperCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : list[tuple[str, str, float]] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = Counter(graph.get_nodes() ) __UpperCAmelCase = start for _ in range(UpperCamelCase__ ): __UpperCAmelCase = graph.transition(UpperCamelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return number | (1 << position) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return number & ~(1 << position) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return number ^ (1 << position) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return ((number >> position) & 1) == 1 def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase ) , '''Tatoeba directory does not exist.''' ) class A ( unittest.TestCase ): @cached_property def snake_case__ ( self : Dict ) -> str: __UpperCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a ) @slow def snake_case__ ( self : List[Any] ) -> Tuple: self.resolver.convert_models(['''heb-eng'''] ) @slow def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__a ) assert mmeta["long_pair"] == "heb-eng"
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A ( unittest.TestCase ): def __init__( self : Tuple , __a : Dict , __a : Optional[int]=2 , __a : List[Any]=5_6 , __a : int=True , __a : Union[str, Any]=True , __a : str=True , __a : Optional[int]=True , __a : Tuple=9_9 , __a : List[Any]=3_2 , __a : Optional[Any]=2 , __a : str=2 , __a : Any=7 , __a : Union[str, Any]="gelu_new" , __a : str=0.1 , __a : Optional[Any]=0.1 , __a : List[str]=5_1_2 , __a : Union[str, Any]=1_6 , __a : Tuple=2 , __a : Any=0.0_2 , __a : List[str]=4 , __a : Union[str, Any]="block_sparse" , __a : Optional[Any]=True , __a : Any=False , __a : List[Any]=2 , __a : Dict=3 , ) -> Tuple: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_attention_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_choices __UpperCAmelCase = rescale_embeddings __UpperCAmelCase = attention_type __UpperCAmelCase = use_bias __UpperCAmelCase = block_size __UpperCAmelCase = num_random_blocks def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_attention_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class A ( UpperCAmelCase , unittest.TestCase ): a_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a_ = False a_ = False def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Any ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : int ) -> str: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Union[str, Any] ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Any ) -> Tuple: super().test_hidden_states_output() @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__a ) def snake_case__ ( self : List[Any] ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(__a , __a ) __UpperCAmelCase = model_class(__a ) @jax.jit def model_jitted(__a : Any , __a : Any=None , **__a : List[str] ): return model(input_ids=__a , attention_mask=__a , **__a ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = model_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Dict , __a : Optional[int] , __a : Tuple=1e-5 , __a : Tuple="outputs" , __a : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__a , __a , __a , __a , __a , __a )
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : list[int] ): # This function is recursive """simple docstring""" __UpperCAmelCase = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __UpperCAmelCase = array[0] __UpperCAmelCase = False __UpperCAmelCase = 1 __UpperCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: __UpperCAmelCase = True __UpperCAmelCase = [element for element in array[i:] if element >= array[i]] __UpperCAmelCase = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): __UpperCAmelCase = temp_array else: i += 1 __UpperCAmelCase = [element for element in array[1:] if element >= pivot] __UpperCAmelCase = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Optional[Any] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class A ( UpperCAmelCase ): def __init__( self : Any , __a : str , __a : Optional[Any] , __a : str=None , __a : Union[str, Any]=1 ) -> List[str]: __UpperCAmelCase = tokenizer __UpperCAmelCase = dataset __UpperCAmelCase = len(__a ) if n_tasks is None else n_tasks __UpperCAmelCase = n_copies def __iter__( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) __UpperCAmelCase = self.tokenizer(__a , padding=__a , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A ( UpperCAmelCase ): def __init__( self : Dict , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] ) -> Tuple: __UpperCAmelCase = start_length __UpperCAmelCase = eof_strings __UpperCAmelCase = tokenizer def __call__( self : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , **__a : List[Any] ) -> Tuple: __UpperCAmelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __UpperCAmelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__a ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = re.split('''(%s)''' % '''|'''.join(UpperCamelCase__ ) , UpperCamelCase__ ) # last string should be "" return "".join(string_list[:-2] ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int=2_0 , **UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = defaultdict(UpperCamelCase__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCamelCase__ ) ): with torch.no_grad(): __UpperCAmelCase = batch['''ids'''].shape[-1] __UpperCAmelCase = accelerator.unwrap_model(UpperCamelCase__ ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=UpperCamelCase__ , **UpperCamelCase__ ) # each task is generated batch_size times __UpperCAmelCase = batch['''task_id'''].repeat(UpperCamelCase__ ) __UpperCAmelCase = accelerator.pad_across_processes( UpperCamelCase__ , dim=1 , pad_index=tokenizer.pad_token_id ) __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((generated_tokens, generated_tasks) ) __UpperCAmelCase = generated_tokens.cpu().numpy() __UpperCAmelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCamelCase__ , UpperCamelCase__ ): gen_token_dict[task].append(UpperCamelCase__ ) __UpperCAmelCase = [[] for _ in range(UpperCamelCase__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __UpperCAmelCase = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) code_gens[task].append(remove_last_block(UpperCamelCase__ ) ) return code_gens def lowerCAmelCase ( ): """simple docstring""" # Setup configuration __UpperCAmelCase = HfArgumentParser(UpperCamelCase__ ) __UpperCAmelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __UpperCAmelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __UpperCAmelCase = '''false''' if args.num_workers is None: __UpperCAmelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __UpperCAmelCase = Accelerator() set_seed(args.seed , device_specific=UpperCamelCase__ ) # Load model and tokenizer __UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) __UpperCAmelCase = tokenizer.eos_token __UpperCAmelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __UpperCAmelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase__ , UpperCamelCase__ )] ), } # Load evaluation dataset and metric __UpperCAmelCase = load_dataset('''openai_humaneval''' ) __UpperCAmelCase = load_metric('''code_eval''' ) __UpperCAmelCase = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) __UpperCAmelCase = args.n_samples // args.batch_size __UpperCAmelCase = TokenizedDataset(UpperCamelCase__ , human_eval['''test'''] , n_copies=UpperCamelCase__ , n_tasks=UpperCamelCase__ ) # do not confuse args.batch_size, which is actually the num_return_sequences __UpperCAmelCase = DataLoader(UpperCamelCase__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __UpperCAmelCase = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = complete_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , n_tasks=UpperCamelCase__ , batch_size=args.batch_size , **UpperCamelCase__ , ) if accelerator.is_main_process: __UpperCAmelCase = [] for task in tqdm(range(UpperCamelCase__ ) ): __UpperCAmelCase = human_eval['''test'''][task]['''test'''] __UpperCAmelCase = f"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric __UpperCAmelCase , __UpperCAmelCase = code_eval_metric.compute( references=UpperCamelCase__ , predictions=UpperCamelCase__ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" if "model" in orig_key: __UpperCAmelCase = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: __UpperCAmelCase = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: __UpperCAmelCase = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: __UpperCAmelCase = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: __UpperCAmelCase = orig_key.split('''.''' )[0].split('''_''' )[-1] __UpperCAmelCase = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: __UpperCAmelCase = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: __UpperCAmelCase = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: __UpperCAmelCase = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: __UpperCAmelCase = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: __UpperCAmelCase = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: __UpperCAmelCase = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: __UpperCAmelCase = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: __UpperCAmelCase = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: __UpperCAmelCase = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: __UpperCAmelCase = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: __UpperCAmelCase = '''yoso.''' + orig_key return orig_key def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCAmelCase = orig_state_dict.pop(UpperCamelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: __UpperCAmelCase = val __UpperCAmelCase = orig_state_dict['''cls.predictions.decoder.bias'''] __UpperCAmelCase = torch.arange(UpperCamelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model_state_dict'''] __UpperCAmelCase = YosoConfig.from_json_file(UpperCamelCase__ ) __UpperCAmelCase = YosoForMaskedLM(UpperCamelCase__ ) __UpperCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , UpperCamelCase__ ) print(model.load_state_dict(UpperCamelCase__ ) ) model.eval() model.save_pretrained(UpperCamelCase__ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Any = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A : def __init__( self : str , __a : Union[str, Any] , __a : List[str]=1_3 , __a : List[Any]=7 , __a : Optional[Any]=True , __a : Tuple=True , __a : str=True , __a : Union[str, Any]=True , __a : int=9_9 , __a : Optional[int]=3_2 , __a : List[Any]=2 , __a : int=4 , __a : Tuple=3_7 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : int=0.1 , __a : str=5_1_2 , __a : Union[str, Any]=1_6 , __a : Tuple=2 , __a : int=0.0_2 , __a : Union[str, Any]=3 , __a : Any=4 , __a : Any=None , __a : Union[str, Any]=0 , ) -> Union[str, Any]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope __UpperCAmelCase = projection_dim def snake_case__ ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) __UpperCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : List[Any] , __a : List[Any] , __a : str , __a : Dict , __a : Union[str, Any] , __a : List[Any] , __a : int , __a : Dict ) -> str: __UpperCAmelCase = TFDPRContextEncoder(config=__a ) __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a ) __UpperCAmelCase = model(__a , token_type_ids=__a ) __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self : Dict , __a : Union[str, Any] , __a : Tuple , __a : List[str] , __a : List[Any] , __a : int , __a : List[Any] , __a : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = TFDPRQuestionEncoder(config=__a ) __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a ) __UpperCAmelCase = model(__a , token_type_ids=__a ) __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self : Optional[int] , __a : List[str] , __a : int , __a : List[str] , __a : Tuple , __a : Optional[int] , __a : Dict , __a : Tuple ) -> Tuple: __UpperCAmelCase = TFDPRReader(config=__a ) __UpperCAmelCase = model(__a , attention_mask=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a_ = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False def snake_case__ ( self : List[Any] ) -> int: __UpperCAmelCase = TFDPRModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def snake_case__ ( self : List[str] ) -> List[str]: self.config_tester.run_common_tests() def snake_case__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a ) def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a ) def snake_case__ ( self : Optional[Any] ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a ) @slow def snake_case__ ( self : List[Any] ) -> List[Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = TFDPRContextEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained(__a ) self.assertIsNotNone(__a ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = TFDPRReader.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) __UpperCAmelCase = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] __UpperCAmelCase = model(__a )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __UpperCAmelCase = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1e-4 ) )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A : def __init__( self : Optional[int] , __a : Any , __a : List[Any]=1_3 , __a : Any=7 , __a : str=True , __a : Optional[Any]=True , __a : Optional[Any]=True , __a : Optional[int]=True , __a : Optional[Any]=9_9 , __a : Any=6_4 , __a : Any=3_2 , __a : int=5 , __a : int=4 , __a : List[Any]=3_7 , __a : Optional[int]="gelu" , __a : Optional[Any]=0.1 , __a : Union[str, Any]=0.1 , __a : str=5_1_2 , __a : List[Any]=1_6 , __a : Optional[int]=2 , __a : int=0.0_2 , __a : Dict=3 , __a : Optional[Any]=4 , __a : Any=None , ) -> str: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = embedding_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : List[str] ) -> Dict: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def snake_case__ ( self : List[Any] , __a : Any , __a : Optional[Any] , __a : List[Any] , __a : Dict , __a : int , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: __UpperCAmelCase = MegatronBertModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a ) __UpperCAmelCase = model(__a , token_type_ids=__a ) __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : List[str] , __a : Union[str, Any] , __a : Tuple , __a : Any , __a : List[Any] ) -> Optional[int]: __UpperCAmelCase = MegatronBertForMaskedLM(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[int] , __a : Any , __a : Any , __a : Tuple , __a : int , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = MegatronBertForCausalLM(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Any , __a : Tuple , __a : Tuple , __a : List[str] , __a : Optional[int] , __a : Union[str, Any] , __a : Union[str, Any] , __a : int ) -> Tuple: __UpperCAmelCase = MegatronBertForNextSentencePrediction(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case__ ( self : List[Any] , __a : Tuple , __a : List[str] , __a : Tuple , __a : Tuple , __a : Any , __a : Optional[Any] , __a : int ) -> List[str]: __UpperCAmelCase = MegatronBertForPreTraining(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case__ ( self : Dict , __a : List[str] , __a : Optional[Any] , __a : Tuple , __a : str , __a : Dict , __a : Optional[int] , __a : Any ) -> List[str]: __UpperCAmelCase = MegatronBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : str , __a : Dict , __a : List[Any] , __a : str , __a : Union[str, Any] , __a : List[str] , __a : Any , __a : List[str] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForSequenceClassification(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : List[Any] , __a : List[Any] , __a : Any , __a : List[str] , __a : Optional[int] , __a : Optional[int] , __a : Any ) -> str: __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForTokenClassification(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : List[Any] , __a : Any , __a : Dict , __a : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> List[str]: __UpperCAmelCase = self.num_choices __UpperCAmelCase = MegatronBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : str ) -> str: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a_ = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a_ = True # test_resize_embeddings = False a_ = False def snake_case__ ( self : Any , __a : List[Any] , __a : Optional[int] , __a : Optional[int]=False ) -> Any: __UpperCAmelCase = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class in get_values(__a ): __UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def snake_case__ ( self : List[str] ) -> List[str]: __UpperCAmelCase = MegatronBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : List[str] ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__a ) def snake_case__ ( self : Any ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__a ) def snake_case__ ( self : str ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__a ) def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__a ) def snake_case__ ( self : Any ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__a ) def snake_case__ ( self : Dict ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__a ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__a ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) __lowerCAmelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __UpperCAmelCase = os.path.join(os.environ['''MYDIR'''] , __a ) __UpperCAmelCase = MegatronBertModel.from_pretrained(__a ) model.to(__a ) model.half() __UpperCAmelCase = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __a ) __UpperCAmelCase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): __UpperCAmelCase = output[0, ii, jj] __UpperCAmelCase = expected[3 * ii + jj] __UpperCAmelCase = '''ii={} jj={} a={} b={}'''.format(__a , __a , __a , __a ) self.assertTrue(math.isclose(__a , __a , rel_tol=__a , abs_tol=__a ) , msg=__a )
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = RoFormerTokenizer a_ = RoFormerTokenizerFast a_ = True a_ = True def snake_case__ ( self : Tuple ) -> Optional[int]: super().setUp() def snake_case__ ( self : Union[str, Any] , **__a : List[Any] ) -> List[str]: return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__a ) def snake_case__ ( self : Optional[int] , **__a : int ) -> Union[str, Any]: return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__a ) def snake_case__ ( self : List[Any] ) -> List[Any]: __UpperCAmelCase = '''永和服装饰品有限公司,今天天气非常好''' __UpperCAmelCase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def snake_case__ ( self : Tuple ) -> Any: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase , __UpperCAmelCase = self.get_chinese_input_output_texts() __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , output_text.split() ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase , __UpperCAmelCase = self.get_chinese_input_output_texts() __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , output_text.split() ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def snake_case__ ( self : List[Any] ) -> str: pass def snake_case__ ( self : str ) -> Optional[Any]: pass def snake_case__ ( self : Tuple ) -> int: pass
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1