code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase ): a_ = ['''image_processor''', '''tokenizer'''] a_ = '''BlipImageProcessor''' a_ = '''AutoTokenizer''' def __init__( self : Optional[Any] , __a : List[Any] , __a : Optional[int] ) -> int: __UpperCAmelCase = False super().__init__(__a , __a ) __UpperCAmelCase = self.image_processor def __call__( self : List[Any] , __a : ImageInput = None , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Tuple , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __UpperCAmelCase = self.tokenizer __UpperCAmelCase = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values __UpperCAmelCase = self.image_processor(__a , return_tensors=__a ) if text is not None: __UpperCAmelCase = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: __UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def snake_case__ ( self : Tuple , *__a : Dict , **__a : Dict ) -> Optional[int]: return self.tokenizer.batch_decode(*__a , **__a ) def snake_case__ ( self : Optional[Any] , *__a : Dict , **__a : Dict ) -> List[Any]: return self.tokenizer.decode(*__a , **__a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase = self.tokenizer.model_input_names __UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Any = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class A ( UpperCAmelCase ): a_ = '''swin2sr''' a_ = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , __a : str=6_4 , __a : Optional[int]=1 , __a : List[str]=3 , __a : Optional[Any]=1_8_0 , __a : Optional[int]=[6, 6, 6, 6, 6, 6] , __a : Dict=[6, 6, 6, 6, 6, 6] , __a : Optional[Any]=8 , __a : Dict=2.0 , __a : str=True , __a : Any=0.0 , __a : Any=0.0 , __a : Union[str, Any]=0.1 , __a : List[Any]="gelu" , __a : int=False , __a : Dict=0.0_2 , __a : Union[str, Any]=1e-5 , __a : int=2 , __a : Optional[Any]=1.0 , __a : Optional[Any]="1conv" , __a : int="pixelshuffle" , **__a : List[Any] , ) -> Any: super().__init__(**__a ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(__a ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = upscale __UpperCAmelCase = img_range __UpperCAmelCase = resi_connection __UpperCAmelCase = upsampler
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __a : Union[str, Any]="</s>" , __a : Dict="<unk>" , __a : Any="<pad>" , __a : str=1_2_5 , __a : int=None , **__a : Any , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase = [f"""<extra_id_{i}>""" for i in range(__a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase = len(set(filter(lambda __a : bool('''extra_id''' in str(__a ) ) , __a ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( eos_token=__a , unk_token=__a , pad_token=__a , extra_ids=__a , additional_special_tokens=__a , **__a , ) __UpperCAmelCase = extra_ids __UpperCAmelCase = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase = len(self.special_tokens_encoder ) __UpperCAmelCase = len(__a ) for i, token in enumerate(__a ): __UpperCAmelCase = self.vocab_size + i - n __UpperCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__ ( self : Optional[int] ) -> Tuple: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__a )) + [1] return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def snake_case__ ( self : Dict , __a : List[int] ) -> List[int]: if len(__a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = self._add_eos_if_not_present(__a ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase = self._add_eos_if_not_present(__a ) return token_ids_a + token_ids_a def snake_case__ ( self : Tuple , __a : str ) -> List[str]: __UpperCAmelCase = [chr(__a ) for i in text.encode('''utf-8''' )] return tokens def snake_case__ ( self : Tuple , __a : str ) -> Optional[Any]: if token in self.special_tokens_encoder: __UpperCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase = self.added_tokens_encoder[token] elif len(__a ) != 1: __UpperCAmelCase = self.unk_token_id else: __UpperCAmelCase = ord(__a ) + self._num_special_tokens return token_id def snake_case__ ( self : str , __a : List[str] ) -> List[Any]: if index in self.special_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[index] else: __UpperCAmelCase = chr(index - self._num_special_tokens ) return token def snake_case__ ( self : Tuple , __a : Dict ) -> Tuple: __UpperCAmelCase = b'''''' for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __UpperCAmelCase = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __UpperCAmelCase = token.encode('''utf-8''' ) else: __UpperCAmelCase = bytes([ord(__a )] ) bstring += tok_string __UpperCAmelCase = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__ ( self : List[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: return ()
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A : def __init__( self : Dict , __a : Optional[int] , __a : List[Any]=2 , __a : Any=True , __a : str=False , __a : Tuple=1_0 , __a : str=3 , __a : Optional[int]=3_2 * 8 , __a : List[str]=3_2 * 8 , __a : Union[str, Any]=4 , __a : Dict=6_4 , ) -> Optional[int]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = is_training __UpperCAmelCase = use_auxiliary_loss __UpperCAmelCase = num_queries __UpperCAmelCase = num_channels __UpperCAmelCase = min_size __UpperCAmelCase = max_size __UpperCAmelCase = num_labels __UpperCAmelCase = hidden_dim __UpperCAmelCase = hidden_dim def snake_case__ ( self : Optional[Any] ) -> List[Any]: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __a ) __UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__a ) __UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__a ) > 0.5 ).float() __UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=__a ) > 0.5).long() __UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCAmelCase = self.num_queries __UpperCAmelCase = self.num_labels __UpperCAmelCase = [1, 1, 1, 1] __UpperCAmelCase = self.num_channels __UpperCAmelCase = 6_4 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = self.hidden_dim __UpperCAmelCase = self.hidden_dim __UpperCAmelCase = self.hidden_dim return config def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Dict ) -> Union[str, Any]: __UpperCAmelCase = output.encoder_hidden_states __UpperCAmelCase = output.pixel_decoder_hidden_states __UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , config.decoder_layers ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Dict , __a : Dict=False ) -> str: with torch.no_grad(): __UpperCAmelCase = MaskaFormerModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(pixel_values=__a , pixel_mask=__a ) __UpperCAmelCase = model(__a , output_hidden_states=__a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__a , __a ) def snake_case__ ( self : Optional[int] , __a : str , __a : List[Any] , __a : Dict , __a : Any , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = MaskaFormerForUniversalSegmentation(config=__a ) model.to(__a ) model.eval() def comm_check_on_output(__a : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCAmelCase = model(pixel_values=__a , pixel_mask=__a ) __UpperCAmelCase = model(__a ) comm_check_on_output(__a ) __UpperCAmelCase = model( pixel_values=__a , pixel_mask=__a , mask_labels=__a , class_labels=__a ) comm_check_on_output(__a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def snake_case__ ( self : str ) -> List[str]: __UpperCAmelCase = MaskaFormerModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case__ ( self : Tuple ) -> Optional[Any]: self.config_tester.run_common_tests() def snake_case__ ( self : Optional[int] ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def snake_case__ ( self : Optional[Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def snake_case__ ( self : List[Any] ) -> Dict: pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def snake_case__ ( self : str ) -> Any: pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def snake_case__ ( self : Optional[int] ) -> Tuple: pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def snake_case__ ( self : List[str] ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case__ ( self : List[str] ) -> Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : Optional[int] ) -> Any: pass def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__a ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a ) @slow def snake_case__ ( self : Tuple ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCAmelCase = MaskaFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = (self.model_tester.min_size,) * 2 __UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=__a ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__a ), '''class_labels''': torch.zeros(2 , 1_0 , device=__a ).long(), } __UpperCAmelCase = self.model_tester.get_config() __UpperCAmelCase = MaskaFormerForUniversalSegmentation(__a ).to(__a ) __UpperCAmelCase = model(**__a ) self.assertTrue(outputs.loss is not None ) def snake_case__ ( self : Optional[int] ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def snake_case__ ( self : Optional[int] ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__a ).to(__a ) __UpperCAmelCase = model(**__a , output_attentions=__a ) self.assertTrue(outputs.attentions is not None ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: if not self.model_tester.is_training: return __UpperCAmelCase = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = model_class(__a ) model.to(__a ) model.train() __UpperCAmelCase = model(__a , mask_labels=__a , class_labels=__a ).loss loss.backward() def snake_case__ ( self : str ) -> Dict: __UpperCAmelCase = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = model_class(__a ).to(__a ) model.train() __UpperCAmelCase = model(__a , mask_labels=__a , class_labels=__a ) __UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : Dict = 1e-4 def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class A ( unittest.TestCase ): @cached_property def snake_case__ ( self : str ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case__ ( self : Optional[int] ) -> Optional[Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__a ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(__a , return_tensors='''pt''' ).to(__a ) __UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __UpperCAmelCase = model(**__a ) __UpperCAmelCase = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(__a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __UpperCAmelCase = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(__a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __UpperCAmelCase = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(__a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __a , atol=__a ) ) def snake_case__ ( self : List[str] ) -> Any: __UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(__a , return_tensors='''pt''' ).to(__a ) __UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __UpperCAmelCase = model(**__a ) # masks_queries_logits __UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCAmelCase = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] __UpperCAmelCase = torch.tensor(__a ).to(__a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __a , atol=__a ) ) # class_queries_logits __UpperCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCAmelCase = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(__a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=__a ) ) def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) __UpperCAmelCase = inputs['''pixel_values'''].to(__a ) __UpperCAmelCase = [el.to(__a ) for el in inputs['''mask_labels''']] __UpperCAmelCase = [el.to(__a ) for el in inputs['''class_labels''']] with torch.no_grad(): __UpperCAmelCase = model(**__a ) self.assertTrue(outputs.loss is not None )
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' import re from filelock import FileLock try: import nltk __lowerCAmelCase : Optional[int] = True except (ImportError, ModuleNotFoundError): __lowerCAmelCase : List[str] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" re.sub('''<n>''' , '''''' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class A : def __init__( self : str ) -> str: __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 2_5_6 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 def snake_case__ ( self : List[str] , __a : Any ) -> Tuple: __UpperCAmelCase = cva.imread(__a , 0 ) __UpperCAmelCase = copy.deepcopy(self.img ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label='''x''' ) __UpperCAmelCase = np.sum(__a ) for i in range(len(__a ) ): __UpperCAmelCase = x[i] / self.k self.sk += prk __UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: __UpperCAmelCase = int(last % last ) __UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) __UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) __UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: __UpperCAmelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def snake_case__ ( self : List[Any] ) -> Tuple: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : List[str] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class A ( UpperCAmelCase ): def __init__( self : str , *__a : Union[str, Any] , **__a : str ) -> None: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( UpperCAmelCase ): a_ = '''wav2vec2''' def __init__( self : List[Any] , __a : str=3_2 , __a : str=7_6_8 , __a : Tuple=1_2 , __a : List[Any]=1_2 , __a : Any=3_0_7_2 , __a : Union[str, Any]="gelu" , __a : Any=0.1 , __a : List[Any]=0.1 , __a : Any=0.1 , __a : str=0.0 , __a : Optional[Any]=0.0 , __a : int=0.1 , __a : str=0.1 , __a : Tuple=0.0_2 , __a : List[str]=1e-5 , __a : Union[str, Any]="group" , __a : Any="gelu" , __a : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __a : Tuple=(5, 2, 2, 2, 2, 2, 2) , __a : str=(1_0, 3, 3, 3, 3, 2, 2) , __a : Optional[int]=False , __a : Optional[int]=1_2_8 , __a : Any=1_6 , __a : Any=False , __a : List[Any]=True , __a : Optional[int]=0.0_5 , __a : int=1_0 , __a : Tuple=2 , __a : Any=0.0 , __a : int=1_0 , __a : Optional[Any]=0 , __a : Dict=3_2_0 , __a : int=2 , __a : Union[str, Any]=0.1 , __a : str=1_0_0 , __a : str=2_5_6 , __a : str=2_5_6 , __a : Optional[int]=0.1 , __a : str="sum" , __a : Any=False , __a : Any=False , __a : Union[str, Any]=2_5_6 , __a : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __a : Tuple=(5, 3, 3, 1, 1) , __a : str=(1, 2, 3, 1, 1) , __a : Optional[Any]=5_1_2 , __a : Any=0 , __a : Dict=1 , __a : Tuple=2 , __a : Optional[int]=False , __a : List[str]=3 , __a : List[Any]=2 , __a : Union[str, Any]=3 , __a : Any=None , __a : Dict=None , **__a : Union[str, Any] , ) -> Any: super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __UpperCAmelCase = hidden_size __UpperCAmelCase = feat_extract_norm __UpperCAmelCase = feat_extract_activation __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = conv_bias __UpperCAmelCase = num_conv_pos_embeddings __UpperCAmelCase = num_conv_pos_embedding_groups __UpperCAmelCase = len(self.conv_dim ) __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = feat_proj_dropout __UpperCAmelCase = final_dropout __UpperCAmelCase = layerdrop __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = vocab_size __UpperCAmelCase = do_stable_layer_norm __UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase = apply_spec_augment __UpperCAmelCase = mask_time_prob __UpperCAmelCase = mask_time_length __UpperCAmelCase = mask_time_min_masks __UpperCAmelCase = mask_feature_prob __UpperCAmelCase = mask_feature_length __UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCAmelCase = num_codevectors_per_group __UpperCAmelCase = num_codevector_groups __UpperCAmelCase = contrastive_logits_temperature __UpperCAmelCase = feat_quantizer_dropout __UpperCAmelCase = num_negatives __UpperCAmelCase = codevector_dim __UpperCAmelCase = proj_codevector_dim __UpperCAmelCase = diversity_loss_weight # ctc loss __UpperCAmelCase = ctc_loss_reduction __UpperCAmelCase = ctc_zero_infinity # adapter __UpperCAmelCase = add_adapter __UpperCAmelCase = adapter_kernel_size __UpperCAmelCase = adapter_stride __UpperCAmelCase = num_adapter_layers __UpperCAmelCase = output_hidden_size or hidden_size __UpperCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = xvector_output_dim @property def snake_case__ ( self : Optional[Any] ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCAmelCase ( UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('''env''' ) else: __UpperCAmelCase = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=UpperCamelCase__ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = torch.__version__ __UpperCAmelCase = torch.cuda.is_available() __UpperCAmelCase = is_xpu_available() __UpperCAmelCase = is_npu_available() __UpperCAmelCase = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCamelCase__ ): __UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() __UpperCAmelCase = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(UpperCamelCase__ ), '''PyTorch NPU available''': str(UpperCamelCase__ ), '''System RAM''': f"""{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB""", } if pt_cuda_available: __UpperCAmelCase = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __UpperCAmelCase = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f"""\t{accelerate_config}""" ) print(UpperCamelCase__ ) __UpperCAmelCase = accelerate_config return info def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = env_command_parser() __UpperCAmelCase = parser.parse_args() env_command(UpperCamelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class A ( UpperCAmelCase , unittest.TestCase ): a_ = BartphoTokenizer a_ = False a_ = True def snake_case__ ( self : Tuple ) -> int: super().setUp() __UpperCAmelCase = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = {'''unk_token''': '''<unk>'''} __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __UpperCAmelCase = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : int , **__a : str ) -> str: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case__ ( self : Tuple , __a : Optional[int] ) -> Any: __UpperCAmelCase = '''This is a là test''' __UpperCAmelCase = '''This is a<unk><unk> test''' return input_text, output_text def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = BartphoTokenizer(__a , self.monolingual_vocab_file , **self.special_tokens_map ) __UpperCAmelCase = '''This is a là test''' __UpperCAmelCase = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + [tokenizer.unk_token] __UpperCAmelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A ( UpperCAmelCase ): def __init__( self : Optional[Any] , __a : int = 1_0_1 ) -> str: __UpperCAmelCase = length def __len__( self : Tuple ) -> List[str]: return self.length def __getitem__( self : List[Any] , __a : Any ) -> int: return i class A : def __call__( self : List[str] , __a : Any ) -> int: return {"input_ids": torch.tensor(__a ), "labels": torch.tensor(__a )} class A ( nn.Module ): def __init__( self : str ) -> Any: super().__init__() # Add some (unused) params otherwise DDP will complain. __UpperCAmelCase = nn.Linear(1_2_0 , 8_0 ) def snake_case__ ( self : int , __a : Union[str, Any] , __a : List[Any]=None ) -> Dict: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A ( UpperCAmelCase ): @require_torch_neuroncore def snake_case__ ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f"""--output_dir {output_dir}""".split() __UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A ( UpperCAmelCase ): @require_torch_multi_gpu def snake_case__ ( self : int ) -> Any: __UpperCAmelCase = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f"""--output_dir {output_dir}""".split() __UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase : Optional[Any] = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase : Dict = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __lowerCAmelCase : List[Any] = DummyDataset(dataset_length) def lowerCAmelCase ( UpperCamelCase__ : EvalPrediction ): """simple docstring""" __UpperCAmelCase = list(range(len(UpperCamelCase__ ) ) ) __UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __lowerCAmelCase : str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase : Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : Union[str, Any] = 2 __lowerCAmelCase : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : str = None
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=UpperCamelCase__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=UpperCamelCase__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=UpperCamelCase__ ) return parser.parse_args() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = parse_args() # Import training_script as a module. __UpperCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCAmelCase = script_fpath.stem __UpperCAmelCase = importlib.import_module(UpperCamelCase__ ) # Patch sys.argv __UpperCAmelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __lowerCAmelCase : Optional[int] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" __lowerCAmelCase : List[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" __lowerCAmelCase : Dict = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" __lowerCAmelCase : int = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" __lowerCAmelCase : List[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def snake_case__ ( self : List[str] ) -> Optional[int]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : Tuple , __a : Optional[int]=[1, 1_0, 1_0_0] , __a : List[Any]=4 , __a : Any=3.0 ) -> Union[str, Any]: if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=__a ) as executor: __UpperCAmelCase = [] __UpperCAmelCase = Counter() __UpperCAmelCase = 0 __UpperCAmelCase = defaultdict(__a ) for task_id, (candidates, test_case) in enumerate(zip(__a , __a ) ): for candidate in candidates: __UpperCAmelCase = candidate + '''\n''' + test_case __UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCAmelCase = executor.submit(__a , *__a ) futures.append(__a ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__a ): __UpperCAmelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCAmelCase , __UpperCAmelCase = [], [] for result in results.values(): result.sort() __UpperCAmelCase = [r[1]['''passed'''] for r in result] total.append(len(__a ) ) correct.append(sum(__a ) ) __UpperCAmelCase = np.array(__a ) __UpperCAmelCase = np.array(__a ) __UpperCAmelCase = k __UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__a , __a , __a ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): """simple docstring""" def estimator(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = itertools.repeat(UpperCamelCase__ , len(UpperCamelCase__ ) ) else: assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __UpperCAmelCase = iter(UpperCamelCase__ ) return np.array([estimator(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , UpperCamelCase__ ) for n, c in zip(UpperCamelCase__ , UpperCamelCase__ )] )
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" if not is_accelerate_available(): return method __UpperCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCamelCase__ ) < version.parse('''0.17.0''' ): return method def wrapper(self : Optional[int] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : str ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCamelCase__ , **UpperCamelCase__ ) return wrapper
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' __lowerCAmelCase : List[Any] = [0, 2, 4, 6, 8] __lowerCAmelCase : Any = [1, 3, 5, 7, 9] def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __UpperCAmelCase = 0 for digit in range(1_0 ): __UpperCAmelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , UpperCamelCase__ , UpperCamelCase__ ) return result __UpperCAmelCase = 0 for digita in range(1_0 ): __UpperCAmelCase = digita if (remainder + digita) % 2 == 0: __UpperCAmelCase = ODD_DIGITS else: __UpperCAmelCase = EVEN_DIGITS for digita in other_parity_digits: __UpperCAmelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , UpperCamelCase__ , UpperCamelCase__ , ) return result def lowerCAmelCase ( UpperCamelCase__ : int = 9 ): """simple docstring""" __UpperCAmelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase__ , 0 , [0] * length , UpperCamelCase__ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class A ( UpperCAmelCase ): a_ = '''ctrl''' a_ = ['''past_key_values'''] a_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[str] , __a : int=2_4_6_5_3_4 , __a : Dict=2_5_6 , __a : str=1_2_8_0 , __a : int=8_1_9_2 , __a : Any=4_8 , __a : List[str]=1_6 , __a : Dict=0.1 , __a : Any=0.1 , __a : str=1e-6 , __a : Tuple=0.0_2 , __a : Union[str, Any]=True , **__a : List[str] , ) -> Union[str, Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = n_positions __UpperCAmelCase = n_embd __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = dff __UpperCAmelCase = resid_pdrop __UpperCAmelCase = embd_pdrop __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache super().__init__(**__a )
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A ( unittest.TestCase ): def __init__( self : int , __a : List[str] , __a : Optional[int]=7 , __a : List[str]=3 , __a : Dict=1_8 , __a : Optional[int]=3_0 , __a : Optional[Any]=4_0_0 , __a : List[str]=True , __a : Union[str, Any]=None , __a : List[Any]=True , __a : Optional[int]=None , __a : int=True , ) -> Tuple: __UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_0} __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_flip_channel_order def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A ( UpperCAmelCase , unittest.TestCase ): a_ = MobileViTImageProcessor if is_vision_available() else None def snake_case__ ( self : List[str] ) -> int: __UpperCAmelCase = MobileViTImageProcessingTester(self ) @property def snake_case__ ( self : Dict ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , '''do_resize''' ) ) self.assertTrue(hasattr(__a , '''size''' ) ) self.assertTrue(hasattr(__a , '''do_center_crop''' ) ) self.assertTrue(hasattr(__a , '''center_crop''' ) ) self.assertTrue(hasattr(__a , '''do_flip_channel_order''' ) ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 2_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def snake_case__ ( self : Dict ) -> List[str]: pass def snake_case__ ( self : List[Any] ) -> int: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> List[str]: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): # noqa: E741 """simple docstring""" while r - l > 1: __UpperCAmelCase = (l + r) // 2 if v[m] >= key: __UpperCAmelCase = m else: __UpperCAmelCase = m # noqa: E741 return r def lowerCAmelCase ( UpperCamelCase__ : list[int] ): """simple docstring""" if len(UpperCamelCase__ ) == 0: return 0 __UpperCAmelCase = [0] * len(UpperCamelCase__ ) __UpperCAmelCase = 1 __UpperCAmelCase = v[0] for i in range(1 , len(UpperCamelCase__ ) ): if v[i] < tail[0]: __UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: __UpperCAmelCase = v[i] length += 1 else: __UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Optional[int] = 16 __lowerCAmelCase : List[Any] = 32 def lowerCAmelCase ( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 1_6 ): """simple docstring""" __UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase__ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase = 1_6 elif accelerator.mixed_precision != "no": __UpperCAmelCase = 8 else: __UpperCAmelCase = None return tokenizer.pad( UpperCamelCase__ , padding='''longest''' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) __UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCAmelCase : str = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase__ ) == "1": __UpperCAmelCase = 2 # New Code # __UpperCAmelCase = int(args.gradient_accumulation_steps ) __UpperCAmelCase = int(args.local_sgd_steps ) # Initialize accelerator __UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCamelCase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase = config['''lr'''] __UpperCAmelCase = int(config['''num_epochs'''] ) __UpperCAmelCase = int(config['''seed'''] ) __UpperCAmelCase = int(config['''batch_size'''] ) __UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) set_seed(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler __UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() with LocalSGD( accelerator=UpperCamelCase__ , model=UpperCamelCase__ , local_sgd_steps=UpperCamelCase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase__ ): __UpperCAmelCase = model(**UpperCamelCase__ ) __UpperCAmelCase = output.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase = model(**UpperCamelCase__ ) __UpperCAmelCase = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) __UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=UpperCamelCase__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=UpperCamelCase__ , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' from math import factorial def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0 ): """simple docstring""" return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A ( UpperCAmelCase ): a_ = '''''' a_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) a_ = None # compression type in fsspec. ex: "gzip" a_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Union[str, Any] , __a : str = "" , __a : Optional[str] = None , __a : Optional[dict] = None , **__a : int ) -> Union[str, Any]: super().__init__(self , **__a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCAmelCase = fsspec.open( __a , mode='''rb''' , protocol=__a , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCAmelCase = os.path.basename(self.file.path.split('''::''' )[0] ) __UpperCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __UpperCAmelCase = None @classmethod def snake_case__ ( cls : Any , __a : Any ) -> int: # compressed file paths are always relative to the archive root return super()._strip_protocol(__a ).lstrip('''/''' ) def snake_case__ ( self : Any ) -> List[Any]: if self.dir_cache is None: __UpperCAmelCase = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __UpperCAmelCase = {f['''name''']: f} def snake_case__ ( self : List[Any] , __a : str ) -> List[Any]: return self.file.open().read() def snake_case__ ( self : Optional[int] , __a : str , __a : str = "rb" , __a : str=None , __a : Optional[Any]=True , __a : List[str]=None , **__a : Tuple , ) -> str: __UpperCAmelCase = self._strip_protocol(__a ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class A ( UpperCAmelCase ): a_ = '''bz2''' a_ = '''bz2''' a_ = '''.bz2''' class A ( UpperCAmelCase ): a_ = '''gzip''' a_ = '''gzip''' a_ = '''.gz''' class A ( UpperCAmelCase ): a_ = '''lz4''' a_ = '''lz4''' a_ = '''.lz4''' class A ( UpperCAmelCase ): a_ = '''xz''' a_ = '''xz''' a_ = '''.xz''' class A ( UpperCAmelCase ): a_ = '''zstd''' a_ = '''zstd''' a_ = '''.zst''' def __init__( self : Any , __a : str , __a : str = "rb" , __a : Optional[str] = None , __a : Optional[dict] = None , __a : int = DEFAULT_BLOCK_SIZE , **__a : Any , ) -> List[Any]: super().__init__( fo=__a , mode=__a , target_protocol=__a , target_options=__a , block_size=__a , **__a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCAmelCase = self.file.__enter__ class A : def __init__( self : Tuple , __a : int ) -> Optional[Any]: __UpperCAmelCase = file_ def __enter__( self : Optional[int] ) -> List[str]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *__a : str , **__a : Union[str, Any] ) -> List[Any]: self._file.__exit__(*__a , **__a ) def __iter__( self : Optional[Any] ) -> List[str]: return iter(self._file ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: return next(self._file ) def __getattr__( self : List[str] , __a : Dict ) -> Optional[Any]: return getattr(self._file , __a ) def fixed_enter(*__a : Tuple , **__a : List[Any] ): return WrappedFile(_enter(*__a , **__a ) ) __UpperCAmelCase = fixed_enter
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = MobileBertTokenizer a_ = MobileBertTokenizerFast a_ = True a_ = True a_ = filter_non_english a_ = '''google/mobilebert-uncased''' def snake_case__ ( self : Tuple ) -> Optional[int]: super().setUp() __UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __UpperCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def snake_case__ ( self : Optional[int] , __a : Any ) -> Tuple: __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = '''unwanted, running''' return input_text, output_text def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def snake_case__ ( self : Tuple ) -> Any: if not self.test_rust_tokenizer: return __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = tokenizer.tokenize(__a ) __UpperCAmelCase = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(__a ) __UpperCAmelCase = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing __UpperCAmelCase = self.get_tokenizer(do_lower_case=__a ) __UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=__a ) __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = tokenizer.tokenize(__a ) __UpperCAmelCase = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(__a ) __UpperCAmelCase = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def snake_case__ ( self : List[Any] ) -> Any: __UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case__ ( self : Tuple ) -> int: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def snake_case__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case__ ( self : List[Any] ) -> Any: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case__ ( self : List[str] ) -> str: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __UpperCAmelCase = {} for i, token in enumerate(__a ): __UpperCAmelCase = i __UpperCAmelCase = WordpieceTokenizer(vocab=__a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def snake_case__ ( self : Optional[int] ) -> List[str]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def snake_case__ ( self : str ) -> str: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def snake_case__ ( self : Tuple ) -> List[Any]: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def snake_case__ ( self : Tuple ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __UpperCAmelCase = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(__a , '''do_lower_case''' ) else False __UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = ['''的''', '''人''', '''有'''] __UpperCAmelCase = ''''''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = tokenizer_p.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_r.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__a ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = False __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = tokenizer_r.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_p.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__a ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' import random def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = a[left_index] __UpperCAmelCase = left_index + 1 for j in range(left_index + 1 , UpperCamelCase__ ): if a[j] < pivot: __UpperCAmelCase , __UpperCAmelCase = a[i], a[j] i += 1 __UpperCAmelCase , __UpperCAmelCase = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): """simple docstring""" if left < right: __UpperCAmelCase = random.randint(UpperCamelCase__ , right - 1 ) __UpperCAmelCase , __UpperCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCAmelCase = partition(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) quick_sort_random( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( UpperCamelCase__ , pivot_index + 1 , UpperCamelCase__ ) # recursive quicksort to the right of the pivot point def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = input('''Enter numbers separated by a comma:\n''' ).strip() __UpperCAmelCase = [int(UpperCamelCase__ ) for item in user_input.split(''',''' )] quick_sort_random(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) if __name__ == "__main__": main()
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" if n_term == "": return [] __UpperCAmelCase = [] for temp in range(int(UpperCamelCase__ ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": __lowerCAmelCase : Tuple = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=0.9_99 , UpperCamelCase__ : Dict="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __UpperCAmelCase = [] for i in range(UpperCamelCase__ ): __UpperCAmelCase = i / num_diffusion_timesteps __UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class A ( UpperCAmelCase , UpperCAmelCase ): a_ = [e.name for e in KarrasDiffusionSchedulers] a_ = 2 @register_to_config def __init__( self : Tuple , __a : int = 1_0_0_0 , __a : float = 0.0_0_0_8_5 , __a : float = 0.0_1_2 , __a : str = "linear" , __a : Optional[Union[np.ndarray, List[float]]] = None , __a : str = "epsilon" , __a : Optional[bool] = False , __a : Optional[bool] = False , __a : float = 1.0 , __a : str = "linspace" , __a : int = 0 , ) -> str: if trained_betas is not None: __UpperCAmelCase = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase = betas_for_alpha_bar(__a , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __UpperCAmelCase = betas_for_alpha_bar(__a , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __UpperCAmelCase = 1.0 - self.betas __UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__a , __a , __a ) __UpperCAmelCase = use_karras_sigmas def snake_case__ ( self : Optional[int] , __a : int , __a : List[Any]=None ) -> Any: if schedule_timesteps is None: __UpperCAmelCase = self.timesteps __UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase = 1 if len(__a ) > 1 else 0 else: __UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(__a ) else timestep __UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case__ ( self : List[str] ) -> Tuple: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case__ ( self : int , __a : torch.FloatTensor , __a : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __UpperCAmelCase = self.index_for_timestep(__a ) __UpperCAmelCase = self.sigmas[step_index] __UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case__ ( self : str , __a : int , __a : Union[str, torch.device] = None , __a : Optional[int] = None , ) -> Union[str, Any]: __UpperCAmelCase = num_inference_steps __UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , __a , dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase = (np.arange(0 , __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase = (np.arange(__a , 0 , -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase = np.log(__a ) __UpperCAmelCase = np.interp(__a , np.arange(0 , len(__a ) ) , __a ) if self.config.use_karras_sigmas: __UpperCAmelCase = self._convert_to_karras(in_sigmas=__a , num_inference_steps=self.num_inference_steps ) __UpperCAmelCase = np.array([self._sigma_to_t(__a , __a ) for sigma in sigmas] ) __UpperCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase = torch.from_numpy(__a ).to(device=__a ) __UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase = torch.from_numpy(__a ) __UpperCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__a ).startswith('''mps''' ): # mps does not support float64 __UpperCAmelCase = timesteps.to(__a , dtype=torch.floataa ) else: __UpperCAmelCase = timesteps.to(device=__a ) # empty dt and derivative __UpperCAmelCase = None __UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase = defaultdict(__a ) def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Optional[Any] ) -> List[str]: # get log sigma __UpperCAmelCase = np.log(__a ) # get distribution __UpperCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __UpperCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __UpperCAmelCase = low_idx + 1 __UpperCAmelCase = log_sigmas[low_idx] __UpperCAmelCase = log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase = (low - log_sigma) / (low - high) __UpperCAmelCase = np.clip(__a , 0 , 1 ) # transform interpolation to time range __UpperCAmelCase = (1 - w) * low_idx + w * high_idx __UpperCAmelCase = t.reshape(sigma.shape ) return t def snake_case__ ( self : List[str] , __a : torch.FloatTensor , __a : int ) -> torch.FloatTensor: __UpperCAmelCase = in_sigmas[-1].item() __UpperCAmelCase = in_sigmas[0].item() __UpperCAmelCase = 7.0 # 7.0 is the value used in the paper __UpperCAmelCase = np.linspace(0 , 1 , __a ) __UpperCAmelCase = sigma_min ** (1 / rho) __UpperCAmelCase = sigma_max ** (1 / rho) __UpperCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def snake_case__ ( self : List[Any] ) -> List[Any]: return self.dt is None def snake_case__ ( self : str , __a : Union[torch.FloatTensor, np.ndarray] , __a : Union[float, torch.FloatTensor] , __a : Union[torch.FloatTensor, np.ndarray] , __a : bool = True , ) -> Union[SchedulerOutput, Tuple]: __UpperCAmelCase = self.index_for_timestep(__a ) # advance index counter by 1 __UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase = self.sigmas[step_index] __UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __UpperCAmelCase = self.sigmas[step_index - 1] __UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase = 0 __UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __UpperCAmelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase = sigma_next - sigma_hat # store for 2nd order step __UpperCAmelCase = derivative __UpperCAmelCase = dt __UpperCAmelCase = sample else: # 2. 2nd order / Heun's method __UpperCAmelCase = (sample - pred_original_sample) / sigma_next __UpperCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __UpperCAmelCase = self.dt __UpperCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def snake_case__ ( self : Optional[int] , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 __UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase = self.timesteps.to(original_samples.device ) __UpperCAmelCase = timesteps.to(original_samples.device ) __UpperCAmelCase = [self.index_for_timestep(__a , __a ) for t in timesteps] __UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase = sigma.unsqueeze(-1 ) __UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any] ) -> Tuple: return self.config.num_train_timesteps
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' __lowerCAmelCase : List[str] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = set() # keep track of all the paths to be checked __UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __UpperCAmelCase = queue.pop(0 ) # get the last node from the path __UpperCAmelCase = path[-1] if node not in explored: __UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __UpperCAmelCase = list(UpperCamelCase__ ) new_path.append(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(UpperCamelCase__ ) # in case there's no path between the 2 nodes return [] def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __UpperCAmelCase = [start] __UpperCAmelCase = set(UpperCamelCase__ ) # Keep tab on distances from `start` node. __UpperCAmelCase = {start: 0, target: -1} while queue: __UpperCAmelCase = queue.pop(0 ) if node == target: __UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) __UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase ): def __init__( self : Optional[int] , __a : WhisperForConditionalGeneration , __a : WhisperProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ) -> Any: super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=__a , speech_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , ) def snake_case__ ( self : Any , __a : Optional[Union[str, int]] = "auto" ) -> Dict: if slice_size == "auto": __UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: self.enable_attention_slicing(__a ) @torch.no_grad() def __call__( self : Optional[int] , __a : int , __a : Union[str, Any]=1_6_0_0_0 , __a : int = 5_1_2 , __a : int = 5_1_2 , __a : int = 5_0 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Optional[int] , ) -> Tuple: __UpperCAmelCase = self.speech_processor.feature_extractor( __a , return_tensors='''pt''' , sampling_rate=__a ).input_features.to(self.device ) __UpperCAmelCase = self.speech_model.generate(__a , max_length=4_8_0_0_0_0 ) __UpperCAmelCase = self.speech_processor.tokenizer.batch_decode(__a , skip_special_tokens=__a , normalize=__a )[ 0 ] if isinstance(__a , __a ): __UpperCAmelCase = 1 elif isinstance(__a , __a ): __UpperCAmelCase = len(__a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__a )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__a )}.""" ) # get prompt text embeddings __UpperCAmelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = text_embeddings.shape __UpperCAmelCase = text_embeddings.repeat(1 , __a , 1 ) __UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , __a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase = 42 if negative_prompt is None: __UpperCAmelCase = [''''''] * batch_size elif type(__a ) is not type(__a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=""" f""" {type(__a )}.""" ) elif isinstance(__a , __a ): __UpperCAmelCase = [negative_prompt] elif batch_size != len(__a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: __UpperCAmelCase = negative_prompt __UpperCAmelCase = text_input_ids.shape[-1] __UpperCAmelCase = self.tokenizer( __a , padding='''max_length''' , max_length=__a , truncation=__a , return_tensors='''pt''' , ) __UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase = uncond_embeddings.shape[1] __UpperCAmelCase = uncond_embeddings.repeat(1 , __a , 1 ) __UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , __a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase = torch.randn(__a , generator=__a , device='''cpu''' , dtype=__a ).to( self.device ) else: __UpperCAmelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase = {} if accepts_eta: __UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual __UpperCAmelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase = noise_pred.chunk(2 ) __UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a , __a ) __UpperCAmelCase = 1 / 0.1_8_2_1_5 * latents __UpperCAmelCase = self.vae.decode(__a ).sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(__a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self : Optional[int] , __a : int | None = None ) -> List[Any]: __UpperCAmelCase = value __UpperCAmelCase = random() __UpperCAmelCase = None __UpperCAmelCase = None def __repr__( self : Any ) -> str: from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Union[str, Any] ) -> str: __UpperCAmelCase = str(self.value ) + ''' ''' __UpperCAmelCase = str(self.left or '''''' ) __UpperCAmelCase = str(self.right or '''''' ) return value + left + right def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __UpperCAmelCase , __UpperCAmelCase = split(root.left , UpperCamelCase__ ) return left, root else: __UpperCAmelCase , __UpperCAmelCase = split(root.right , UpperCamelCase__ ) return root, right def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : Node | None ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __UpperCAmelCase = merge(left.right , UpperCamelCase__ ) return left else: __UpperCAmelCase = merge(UpperCamelCase__ , right.left ) return right def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Node(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = split(UpperCamelCase__ , UpperCamelCase__ ) return merge(merge(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = split(UpperCamelCase__ , value - 1 ) __UpperCAmelCase , __UpperCAmelCase = split(UpperCamelCase__ , UpperCamelCase__ ) return merge(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Node | None ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : str ): """simple docstring""" for arg in args.split(): if arg[0] == "+": __UpperCAmelCase = insert(UpperCamelCase__ , int(arg[1:] ) ) elif arg[0] == "-": __UpperCAmelCase = erase(UpperCamelCase__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __UpperCAmelCase = input() while args != "q": __UpperCAmelCase = interact_treap(UpperCamelCase__ , UpperCamelCase__ ) print(UpperCamelCase__ ) __UpperCAmelCase = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports __lowerCAmelCase : Optional[int] = "\nimport os\n" __lowerCAmelCase : Tuple = "\ndef foo():\n import os\n return False\n" __lowerCAmelCase : Any = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" __lowerCAmelCase : Dict = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" __lowerCAmelCase : Optional[int] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" __lowerCAmelCase : Optional[Any] = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" __lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" __lowerCAmelCase : Union[str, Any] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" __lowerCAmelCase : Dict = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" __lowerCAmelCase : int = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" __lowerCAmelCase : List[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''test_file.py''' ) with open(UpperCamelCase__ , '''w''' ) as _tmp_file: _tmp_file.write(UpperCamelCase__ ) __UpperCAmelCase = get_imports(UpperCamelCase__ ) assert parsed_imports == ["os"]
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : bool = True , UpperCamelCase__ : float = math.inf , UpperCamelCase__ : float = -math.inf , UpperCamelCase__ : float = math.inf , UpperCamelCase__ : float = -math.inf , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 1_0_0 , UpperCamelCase__ : float = 0.01 , UpperCamelCase__ : float = 1 , ): """simple docstring""" __UpperCAmelCase = False __UpperCAmelCase = search_prob __UpperCAmelCase = start_temperate __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = None while not search_end: __UpperCAmelCase = current_state.score() if best_state is None or current_score > best_state.score(): __UpperCAmelCase = current_state scores.append(UpperCamelCase__ ) iterations += 1 __UpperCAmelCase = None __UpperCAmelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __UpperCAmelCase = random.randint(0 , len(UpperCamelCase__ ) - 1 ) # picking a random neighbor __UpperCAmelCase = neighbors.pop(UpperCamelCase__ ) __UpperCAmelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __UpperCAmelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution __UpperCAmelCase = picked_neighbor else: __UpperCAmelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __UpperCAmelCase = picked_neighbor __UpperCAmelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __UpperCAmelCase = True else: __UpperCAmelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(UpperCamelCase__ ) , UpperCamelCase__ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowerCAmelCase : List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCAmelCase : List[str] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __lowerCAmelCase : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCAmelCase : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return (3 * x**2) - (6 * y) __lowerCAmelCase : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCAmelCase : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) __lowerCAmelCase : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCAmelCase : List[str] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' import os from math import logaa def lowerCAmelCase ( UpperCamelCase__ : str = "base_exp.txt" ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) ): __UpperCAmelCase , __UpperCAmelCase = list(map(UpperCamelCase__ , line.split(''',''' ) ) ) if x * logaa(UpperCamelCase__ ) > largest: __UpperCAmelCase = x * logaa(UpperCamelCase__ ) __UpperCAmelCase = i + 1 return result if __name__ == "__main__": print(solution())
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' import cva import numpy as np class A : def __init__( self : Union[str, Any] , __a : float , __a : int ) -> List[str]: if k in (0.0_4, 0.0_6): __UpperCAmelCase = k __UpperCAmelCase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : List[str] ) -> str: return str(self.k ) def snake_case__ ( self : List[str] , __a : str ) -> tuple[cva.Mat, list[list[int]]]: __UpperCAmelCase = cva.imread(__a , 0 ) __UpperCAmelCase , __UpperCAmelCase = img.shape __UpperCAmelCase = [] __UpperCAmelCase = img.copy() __UpperCAmelCase = cva.cvtColor(__a , cva.COLOR_GRAY2RGB ) __UpperCAmelCase , __UpperCAmelCase = np.gradient(__a ) __UpperCAmelCase = dx**2 __UpperCAmelCase = dy**2 __UpperCAmelCase = dx * dy __UpperCAmelCase = 0.0_4 __UpperCAmelCase = self.window_size // 2 for y in range(__a , h - offset ): for x in range(__a , w - offset ): __UpperCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = (wxx * wyy) - (wxy**2) __UpperCAmelCase = wxx + wyy __UpperCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": __lowerCAmelCase : List[str] = HarrisCorner(0.0_4, 3) __lowerCAmelCase , __lowerCAmelCase : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : int = 4 ): """simple docstring""" __UpperCAmelCase = abs(UpperCamelCase__ ) or 4 return [[1 + x + y * row_size for x in range(UpperCamelCase__ )] for y in range(UpperCamelCase__ )] def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" return reverse_row(transpose(UpperCamelCase__ ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(UpperCamelCase__ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" return reverse_column(transpose(UpperCamelCase__ ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" __UpperCAmelCase = [list(UpperCamelCase__ ) for x in zip(*UpperCamelCase__ )] return matrix def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" __UpperCAmelCase = matrix[::-1] return matrix def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" __UpperCAmelCase = [x[::-1] for x in matrix] return matrix def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" for i in matrix: print(*UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) __lowerCAmelCase : List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) __lowerCAmelCase : Tuple = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = '''''' for word_or_phrase in separated: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCAmelCase : Tuple = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCAmelCase : Optional[Any] = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = SavedModel() __UpperCAmelCase = [] with open(os.path.join(UpperCamelCase__ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __UpperCAmelCase = json.load(UpperCamelCase__ )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(UpperCamelCase__ )] ) with open(UpperCamelCase__ , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __UpperCAmelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __UpperCAmelCase = sorted(UpperCamelCase__ ) __UpperCAmelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(UpperCamelCase__ ) if strict and len(UpperCamelCase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(UpperCamelCase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*UpperCamelCase__ , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __lowerCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" def wrapper(*UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[Any] ): __UpperCAmelCase = timeit.default_timer() __UpperCAmelCase = func(*UpperCamelCase__ , **UpperCamelCase__ ) __UpperCAmelCase = timeit.default_timer() - starttime return delta __UpperCAmelCase = func.__name__ return wrapper def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : str=1_0_0 , UpperCamelCase__ : Union[str, Any]=None ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = seq_shapes or {} for i in range(UpperCamelCase__ ): __UpperCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): __UpperCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": __UpperCAmelCase = '''The small grey turtle was surprisingly fast when challenged.''' else: __UpperCAmelCase = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): __UpperCAmelCase = v.feature __UpperCAmelCase = seq_shapes[k] __UpperCAmelCase = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) __UpperCAmelCase = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=1_0_0 , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" __UpperCAmelCase = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: __UpperCAmelCase = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __UpperCAmelCase = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCAmelCase : Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class A ( unittest.TestCase ): a_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) __UpperCAmelCase = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}] ) __UpperCAmelCase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(__a ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] , ) __UpperCAmelCase = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) # Legacy behavior __UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=__a ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) __UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}]] ) __UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] , ) __UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [ {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, ] , ) @require_torch def snake_case__ ( self : Optional[Any] ) -> Tuple: import torch __UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @require_tf def snake_case__ ( self : int ) -> Tuple: __UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @slow @require_torch def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = pipeline('''text-classification''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) @slow @require_tf def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = pipeline('''text-classification''' , framework='''tf''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) def snake_case__ ( self : List[Any] , __a : List[Any] , __a : Optional[int] , __a : Any ) -> List[Any]: __UpperCAmelCase = TextClassificationPipeline(model=__a , tokenizer=__a ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case__ ( self : int , __a : List[str] , __a : str ) -> Dict: __UpperCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase = '''HuggingFace is in''' __UpperCAmelCase = text_classifier(__a ) self.assertEqual(nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) __UpperCAmelCase = ['''HuggingFace is in ''', '''Paris is in France'''] __UpperCAmelCase = text_classifier(__a ) self.assertEqual( nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}, {'''label''': ANY(__a ), '''score''': ANY(__a )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase = text_classifier(__a , top_k=__a ) __UpperCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__a ) , [[{'''label''': ANY(__a ), '''score''': ANY(__a )}] * N, [{'''label''': ANY(__a ), '''score''': ANY(__a )}] * N] , ) __UpperCAmelCase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} __UpperCAmelCase = text_classifier(__a ) self.assertEqual( nested_simplify(__a ) , {'''label''': ANY(__a ), '''score''': ANY(__a )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(__a ): text_classifier(__a ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' from itertools import count def lowerCAmelCase ( UpperCamelCase__ : int = 5_0 ): """simple docstring""" __UpperCAmelCase = [1] * min_block_length for n in count(UpperCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[int] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase : Union[str, Any] = { "Salesforce/codegen-350M-mono": 2_048, } class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ['''input_ids''', '''attention_mask'''] a_ = CodeGenTokenizer def __init__( self : int , __a : Optional[Any]=None , __a : Dict=None , __a : Optional[int]=None , __a : List[str]="<|endoftext|>" , __a : str="<|endoftext|>" , __a : List[Any]="<|endoftext|>" , __a : int=False , **__a : List[Any] , ) -> Tuple: super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , ) if kwargs.pop('''add_bos_token''' , __a ): __UpperCAmelCase = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __a ) != add_prefix_space: __UpperCAmelCase = getattr(__a , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**__a ) __UpperCAmelCase = add_prefix_space def snake_case__ ( self : Optional[int] , *__a : int , **__a : Dict ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , __a ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def snake_case__ ( self : Dict , *__a : Dict , **__a : str ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , __a ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def snake_case__ ( self : Dict , __a : str , __a : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def snake_case__ ( self : str , __a : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __a : bool = False , __a : bool = None , __a : Optional[List[str]] = None , **__a : List[str] , ) -> str: __UpperCAmelCase = super().decode( token_ids=__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , **__a , ) if truncate_before_pattern is not None and len(__a ) > 0: __UpperCAmelCase = self.truncate(__a , __a ) return decoded_text def snake_case__ ( self : Union[str, Any] , __a : Optional[int] , __a : Any ) -> Optional[Any]: def find_re(__a : int , __a : int , __a : str ): __UpperCAmelCase = pattern.search(__a , __a ) return m.start() if m else -1 __UpperCAmelCase = [re.compile(__a , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase = list(re.finditer('''^print''' , __a , re.MULTILINE ) ) if len(__a ) > 1: __UpperCAmelCase = completion[: prints[1].start()] __UpperCAmelCase = list(re.finditer('''^def''' , __a , re.MULTILINE ) ) if len(__a ) > 1: __UpperCAmelCase = completion[: defs[1].start()] __UpperCAmelCase = 0 __UpperCAmelCase = [ pos for pos in [find_re(__a , __a , __a ) for terminal in terminals] if pos != -1 ] if len(__a ) > 0: return completion[: min(__a )] else: return completion
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A ( unittest.TestCase ): def __init__( self : Optional[int] , __a : Tuple , __a : Optional[Any]=7 , __a : Tuple=3 , __a : Optional[Any]=1_8 , __a : int=3_0 , __a : List[Any]=4_0_0 , __a : Optional[int]=True , __a : List[str]=None , __a : Tuple=True , ) -> Dict: __UpperCAmelCase = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = apply_ocr def snake_case__ ( self : Any ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A ( UpperCAmelCase , unittest.TestCase ): a_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , '''do_resize''' ) ) self.assertTrue(hasattr(__a , '''size''' ) ) self.assertTrue(hasattr(__a , '''apply_ocr''' ) ) def snake_case__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def snake_case__ ( self : int ) -> Optional[Any]: pass def snake_case__ ( self : List[str] ) -> Tuple: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __a ) self.assertIsInstance(encoding.boxes , __a ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> int: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[str] ) -> str: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Union[str, Any] ) -> Any: # with apply_OCR = True __UpperCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCAmelCase = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCAmelCase = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __a ) self.assertListEqual(encoding.boxes , __a ) # with apply_OCR = False __UpperCAmelCase = LayoutLMvaImageProcessor(apply_ocr=__a ) __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
654
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Any = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class A ( UpperCAmelCase ): a_ = '''wavlm''' def __init__( self : int , __a : int=3_2 , __a : Dict=7_6_8 , __a : Union[str, Any]=1_2 , __a : Tuple=1_2 , __a : Tuple=3_0_7_2 , __a : str="gelu" , __a : Any=0.1 , __a : str=0.1 , __a : List[Any]=0.1 , __a : List[Any]=0.0 , __a : Dict=0.1 , __a : Tuple=0.1 , __a : Union[str, Any]=0.0_2 , __a : Union[str, Any]=1e-5 , __a : int="group" , __a : Dict="gelu" , __a : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , __a : List[str]=(1_0, 3, 3, 3, 3, 2, 2) , __a : Optional[Any]=False , __a : List[Any]=1_2_8 , __a : Any=1_6 , __a : Optional[int]=3_2_0 , __a : str=8_0_0 , __a : Optional[int]=False , __a : List[Any]=True , __a : Optional[Any]=0.0_5 , __a : Tuple=1_0 , __a : List[str]=2 , __a : Optional[int]=0.0 , __a : Optional[int]=1_0 , __a : Optional[Any]=3_2_0 , __a : Optional[Any]=2 , __a : Tuple=0.1 , __a : Optional[Any]=1_0_0 , __a : Union[str, Any]=2_5_6 , __a : Union[str, Any]=2_5_6 , __a : Optional[Any]=0.1 , __a : List[Any]="mean" , __a : Union[str, Any]=False , __a : int=False , __a : Any=2_5_6 , __a : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __a : List[Any]=(5, 3, 3, 1, 1) , __a : List[str]=(1, 2, 3, 1, 1) , __a : List[Any]=5_1_2 , __a : List[Any]=8_0 , __a : Dict=0 , __a : Union[str, Any]=1 , __a : Any=2 , __a : Optional[int]=False , __a : Optional[Any]=3 , __a : Union[str, Any]=2 , __a : str=3 , __a : List[Any]=None , **__a : Optional[Any] , ) -> List[str]: super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __UpperCAmelCase = hidden_size __UpperCAmelCase = feat_extract_norm __UpperCAmelCase = feat_extract_activation __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = conv_bias __UpperCAmelCase = num_buckets __UpperCAmelCase = max_bucket_distance __UpperCAmelCase = num_conv_pos_embeddings __UpperCAmelCase = num_conv_pos_embedding_groups __UpperCAmelCase = len(self.conv_dim ) __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = feat_proj_dropout __UpperCAmelCase = final_dropout __UpperCAmelCase = layerdrop __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = num_ctc_classes __UpperCAmelCase = vocab_size __UpperCAmelCase = do_stable_layer_norm __UpperCAmelCase = use_weighted_layer_sum __UpperCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase = apply_spec_augment __UpperCAmelCase = mask_time_prob __UpperCAmelCase = mask_time_length __UpperCAmelCase = mask_time_min_masks __UpperCAmelCase = mask_feature_prob __UpperCAmelCase = mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCAmelCase = num_codevectors_per_group __UpperCAmelCase = num_codevector_groups __UpperCAmelCase = contrastive_logits_temperature __UpperCAmelCase = num_negatives __UpperCAmelCase = codevector_dim __UpperCAmelCase = proj_codevector_dim __UpperCAmelCase = diversity_loss_weight # ctc loss __UpperCAmelCase = ctc_loss_reduction __UpperCAmelCase = ctc_zero_infinity # adapter __UpperCAmelCase = add_adapter __UpperCAmelCase = adapter_kernel_size __UpperCAmelCase = adapter_stride __UpperCAmelCase = num_adapter_layers __UpperCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = list(__a ) __UpperCAmelCase = xvector_output_dim @property def snake_case__ ( self : Any ) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1 )
654
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" # word like '180' or '身高' or '神' for char in word: __UpperCAmelCase = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = set() for token in tokens: __UpperCAmelCase = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) __UpperCAmelCase = list(UpperCamelCase__ ) return word_list def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens __UpperCAmelCase = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) __UpperCAmelCase = bert_tokens __UpperCAmelCase , __UpperCAmelCase = 0, len(UpperCamelCase__ ) while start < end: __UpperCAmelCase = True if is_chinese(bert_word[start] ): __UpperCAmelCase = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): __UpperCAmelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __UpperCAmelCase = '''##''' + bert_word[j] __UpperCAmelCase = start + i __UpperCAmelCase = False break if single_word: start += 1 return bert_word def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : LTP , UpperCamelCase__ : BertTokenizer ): """simple docstring""" __UpperCAmelCase = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): __UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws __UpperCAmelCase = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __UpperCAmelCase = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): __UpperCAmelCase = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) __UpperCAmelCase = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [] for id in input_ids: __UpperCAmelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) __UpperCAmelCase = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": __UpperCAmelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase = f.readlines() __UpperCAmelCase = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCAmelCase = LTP(args.ltp ) # faster in GPU device __UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) __UpperCAmelCase = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __UpperCAmelCase = [json.dumps(UpperCamelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __lowerCAmelCase : Optional[Any] = parser.parse_args() main(args)
654
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int = 1_0 , UpperCamelCase__ : int = 2_2 ): """simple docstring""" __UpperCAmelCase = range(1 , UpperCamelCase__ ) __UpperCAmelCase = range(1 , UpperCamelCase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCAmelCase : List[Any] = "bert-base-cased" __lowerCAmelCase : Dict = "fp16" __lowerCAmelCase : Optional[Any] = "bf16" __lowerCAmelCase : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class A ( UpperCAmelCase ): def snake_case__ ( self : List[Any] ) -> List[Any]: super().setUp() __UpperCAmelCase = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def snake_case__ ( self : str ) -> int: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = f"""{i + 1}""" __UpperCAmelCase = strategy with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def snake_case__ ( self : List[Any] ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = prefetch_policy with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def snake_case__ ( self : Optional[Any] ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = state_dict_type with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def snake_case__ ( self : int ) -> Optional[Any]: __UpperCAmelCase = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = policy if policy == "TRANSFORMER_BASED_WRAP": __UpperCAmelCase = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": __UpperCAmelCase = '''2000''' with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = '''TRANSFORMER_BASED_WRAP''' __UpperCAmelCase = '''T5Layer''' with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = '''SIZE_BASED_WRAP''' __UpperCAmelCase = '''0''' with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def snake_case__ ( self : List[str] ) -> Dict: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = mp_dtype with mockenv_context(**__a ): __UpperCAmelCase = Accelerator() if mp_dtype == "fp16": __UpperCAmelCase = torch.floataa elif mp_dtype == "bf16": __UpperCAmelCase = torch.bfloataa __UpperCAmelCase = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def snake_case__ ( self : List[str] ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __UpperCAmelCase = self.dist_env.copy() __UpperCAmelCase = str(__a ).lower() with mockenv_context(**__a ): __UpperCAmelCase = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class A ( UpperCAmelCase ): def snake_case__ ( self : Dict ) -> Optional[Any]: super().setUp() __UpperCAmelCase = 0.8_2 __UpperCAmelCase = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] __UpperCAmelCase = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __UpperCAmelCase = 1_6_0 __UpperCAmelCase = 1_6_0 __UpperCAmelCase = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def snake_case__ ( self : Tuple ) -> List[str]: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: __UpperCAmelCase = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) __UpperCAmelCase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__a ): __UpperCAmelCase = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue __UpperCAmelCase = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: __UpperCAmelCase = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) __UpperCAmelCase = cmd_config[:-1] __UpperCAmelCase = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def snake_case__ ( self : int ) -> List[Any]: __UpperCAmelCase = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) __UpperCAmelCase = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __UpperCAmelCase = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
654
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCAmelCase : Optional[int] = NewType("DataClass", Any) __lowerCAmelCase : Any = NewType("DataClassType", Any) def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" __UpperCAmelCase = {str(UpperCamelCase__ ): choice for choice in choices} return lambda UpperCamelCase__ : str_to_choice.get(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( *, UpperCamelCase__ : Union[str, List[str]] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : Any = dataclasses.MISSING , UpperCamelCase__ : Callable[[], Any] = dataclasses.MISSING , UpperCamelCase__ : dict = None , **UpperCamelCase__ : Optional[Any] , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __UpperCAmelCase = {} if aliases is not None: __UpperCAmelCase = aliases if help is not None: __UpperCAmelCase = help return dataclasses.field(metadata=UpperCamelCase__ , default=UpperCamelCase__ , default_factory=UpperCamelCase__ , **UpperCamelCase__ ) class A ( UpperCAmelCase ): a_ = 42 def __init__( self : Optional[int] , __a : Union[DataClassType, Iterable[DataClassType]] , **__a : Any ) -> Optional[int]: # To make the default appear when using --help if "formatter_class" not in kwargs: __UpperCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): __UpperCAmelCase = [dataclass_types] __UpperCAmelCase = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def snake_case__ ( __a : ArgumentParser , __a : dataclasses.Field ) -> Optional[Any]: __UpperCAmelCase = f"""--{field.name}""" __UpperCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __UpperCAmelCase = kwargs.pop('''aliases''' , [] ) if isinstance(__a , __a ): __UpperCAmelCase = [aliases] __UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__a , '''UnionType''' ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(__a ) not in field.type.__args__: # filter `str` in Union __UpperCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __UpperCAmelCase = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) __UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __UpperCAmelCase = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: __UpperCAmelCase = field.type.__args__ else: __UpperCAmelCase = [x.value for x in field.type] __UpperCAmelCase = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __UpperCAmelCase = field.default else: __UpperCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __UpperCAmelCase = copy(__a ) # Hack because type=bool in argparse does not behave as we want. __UpperCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __UpperCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __UpperCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name __UpperCAmelCase = '''?''' # This is the value that will get picked if we do --field_name (without value) __UpperCAmelCase = True elif isclass(__a ) and issubclass(__a , __a ): __UpperCAmelCase = field.type.__args__[0] __UpperCAmelCase = '''+''' if field.default_factory is not dataclasses.MISSING: __UpperCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: __UpperCAmelCase = True else: __UpperCAmelCase = field.type if field.default is not dataclasses.MISSING: __UpperCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: __UpperCAmelCase = field.default_factory() else: __UpperCAmelCase = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __UpperCAmelCase = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__a ) def snake_case__ ( self : Optional[int] , __a : DataClassType ) -> Optional[Any]: if hasattr(__a , '''_argument_group_name''' ): __UpperCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: __UpperCAmelCase = self try: __UpperCAmelCase = get_type_hints(__a ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__a ): __UpperCAmelCase = '''.'''.join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue __UpperCAmelCase = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def snake_case__ ( self : str , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=True , __a : int=None , __a : Optional[Any]=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __UpperCAmelCase = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __UpperCAmelCase = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __UpperCAmelCase , __UpperCAmelCase = args_file_parser.parse_known_args(args=__a ) __UpperCAmelCase = vars(__a ).get(args_file_flag.lstrip('''-''' ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) __UpperCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __UpperCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] __UpperCAmelCase , __UpperCAmelCase = self.parse_known_args(args=__a ) __UpperCAmelCase = [] for dtype in self.dataclass_types: __UpperCAmelCase = {f.name for f in dataclasses.fields(__a ) if f.init} __UpperCAmelCase = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) __UpperCAmelCase = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def snake_case__ ( self : Optional[int] , __a : Dict[str, Any] , __a : bool = False ) -> Tuple[DataClass, ...]: __UpperCAmelCase = set(args.keys() ) __UpperCAmelCase = [] for dtype in self.dataclass_types: __UpperCAmelCase = {f.name for f in dataclasses.fields(__a ) if f.init} __UpperCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __UpperCAmelCase = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__a )}""" ) return tuple(__a ) def snake_case__ ( self : Optional[int] , __a : str , __a : bool = False ) -> Tuple[DataClass, ...]: with open(Path(__a ) , encoding='''utf-8''' ) as open_json_file: __UpperCAmelCase = json.loads(open_json_file.read() ) __UpperCAmelCase = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def snake_case__ ( self : Optional[int] , __a : str , __a : bool = False ) -> Tuple[DataClass, ...]: __UpperCAmelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
654
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
1
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __lowerCAmelCase : Optional[Any] = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) __lowerCAmelCase : Dict = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = list(s_dict.keys() ) for key in keys: __UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCAmelCase = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) print(f"""{key} -> {new_key}""" ) __UpperCAmelCase = s_dict.pop(UpperCamelCase__ ) return s_dict def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __UpperCAmelCase = emb.weight.data return lin_layer def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __UpperCAmelCase = os.path.basename(UpperCamelCase__ ) __UpperCAmelCase = url.split('''/''' )[-2] __UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not os.path.isfile(UpperCamelCase__ ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(UpperCamelCase__ ): __UpperCAmelCase = open(UpperCamelCase__ , '''rb''' ).read() if hashlib.shaaaa(UpperCamelCase__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(UpperCamelCase__ ) as source, open(UpperCamelCase__ , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=UpperCamelCase__ , unit_divisor=1_0_2_4 ) as loop: while True: __UpperCAmelCase = source.read(8_1_9_2 ) if not buffer: break output.write(UpperCamelCase__ ) loop.update(len(UpperCamelCase__ ) ) __UpperCAmelCase = open(UpperCamelCase__ , '''rb''' ).read() if hashlib.shaaaa(UpperCamelCase__ ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ): """simple docstring""" if ".pt" not in checkpoint_path: __UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' ) __UpperCAmelCase = original_checkpoint['''dims'''] __UpperCAmelCase = original_checkpoint['''model_state_dict'''] __UpperCAmelCase = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(UpperCamelCase__ ) rename_keys(UpperCamelCase__ ) __UpperCAmelCase = True __UpperCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __UpperCAmelCase = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=UpperCamelCase__ , decoder_ffn_dim=UpperCamelCase__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) __UpperCAmelCase = WhisperForConditionalGeneration(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0 and not set(UpperCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: __UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCAmelCase = proj_out_weights model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __lowerCAmelCase : Optional[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
654
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : Tuple = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = [False] * len(UpperCamelCase__ ) __UpperCAmelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ): __UpperCAmelCase = True __UpperCAmelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __lowerCAmelCase : Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : List[str] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __lowerCAmelCase : List[Any] = {"allegro/herbert-base-cased": 514} __lowerCAmelCase : int = {} class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = HerbertTokenizer def __init__( self : int , __a : Any=None , __a : int=None , __a : Union[str, Any]=None , __a : List[str]="<s>" , __a : Tuple="<unk>" , __a : Any="<pad>" , __a : int="<mask>" , __a : List[str]="</s>" , **__a : Any , ) -> Optional[int]: super().__init__( __a , __a , tokenizer_file=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , sep_token=__a , **__a , ) def snake_case__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def snake_case__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class A ( UpperCAmelCase ): a_ = '''beit''' def __init__( self : Any , __a : int=8_1_9_2 , __a : Optional[Any]=7_6_8 , __a : Optional[Any]=1_2 , __a : Any=1_2 , __a : List[str]=3_0_7_2 , __a : str="gelu" , __a : Union[str, Any]=0.0 , __a : Tuple=0.0 , __a : Optional[int]=0.0_2 , __a : Union[str, Any]=1e-12 , __a : str=2_2_4 , __a : Tuple=1_6 , __a : Union[str, Any]=3 , __a : Union[str, Any]=False , __a : List[str]=False , __a : int=False , __a : Union[str, Any]=False , __a : Any=0.1 , __a : Any=0.1 , __a : List[Any]=True , __a : Optional[int]=[3, 5, 7, 1_1] , __a : Any=[1, 2, 3, 6] , __a : str=True , __a : Optional[int]=0.4 , __a : List[Any]=2_5_6 , __a : List[Any]=1 , __a : str=False , __a : Any=2_5_5 , **__a : Optional[Any] , ) -> Union[str, Any]: super().__init__(**__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = use_mask_token __UpperCAmelCase = use_absolute_position_embeddings __UpperCAmelCase = use_relative_position_bias __UpperCAmelCase = use_shared_relative_position_bias __UpperCAmelCase = layer_scale_init_value __UpperCAmelCase = drop_path_rate __UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __UpperCAmelCase = out_indices __UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __UpperCAmelCase = use_auxiliary_head __UpperCAmelCase = auxiliary_loss_weight __UpperCAmelCase = auxiliary_channels __UpperCAmelCase = auxiliary_num_convs __UpperCAmelCase = auxiliary_concat_input __UpperCAmelCase = semantic_loss_ignore_index class A ( UpperCAmelCase ): a_ = version.parse('''1.11''' ) @property def snake_case__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self : str ) -> float: return 1e-4
654
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
1
'''simple docstring''' class A : def __init__( self : Optional[int] , __a : int ) -> None: __UpperCAmelCase = size __UpperCAmelCase = [0] * size __UpperCAmelCase = [0] * size @staticmethod def snake_case__ ( __a : int ) -> int: return index | (index + 1) @staticmethod def snake_case__ ( __a : int ) -> int: return (index & (index + 1)) - 1 def snake_case__ ( self : Any , __a : int , __a : int ) -> None: __UpperCAmelCase = value while index < self.size: __UpperCAmelCase = self.get_prev(__a ) + 1 if current_left_border == index: __UpperCAmelCase = value else: __UpperCAmelCase = max(__a , __a , __a ) __UpperCAmelCase = self.get_next(__a ) def snake_case__ ( self : Any , __a : int , __a : int ) -> int: right -= 1 # Because of right is exclusive __UpperCAmelCase = 0 while left <= right: __UpperCAmelCase = self.get_prev(__a ) if left <= current_left: __UpperCAmelCase = max(__a , self.tree[right] ) __UpperCAmelCase = current_left else: __UpperCAmelCase = max(__a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , ): """simple docstring""" __UpperCAmelCase = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } __UpperCAmelCase , __UpperCAmelCase = input_paths_and_base_extractors[compression_format] if input_path is None: __UpperCAmelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) __UpperCAmelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __UpperCAmelCase = file_path.read_text(encoding='''utf-8''' ) else: __UpperCAmelCase = output_path.read_text(encoding='''utf-8''' ) __UpperCAmelCase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , ): """simple docstring""" __UpperCAmelCase = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } __UpperCAmelCase = input_paths[compression_format] if input_path is None: __UpperCAmelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) __UpperCAmelCase = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None __UpperCAmelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __UpperCAmelCase = file_path.read_text(encoding='''utf-8''' ) else: __UpperCAmelCase = output_path.read_text(encoding='''utf-8''' ) __UpperCAmelCase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" import tarfile __UpperCAmelCase = tmp_path / '''data_dot_dot''' directory.mkdir() __UpperCAmelCase = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(UpperCamelCase__ , '''w''' ) as f: f.add(UpperCamelCase__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" import tarfile __UpperCAmelCase = tmp_path / '''data_sym_link''' directory.mkdir() __UpperCAmelCase = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } __UpperCAmelCase = insecure_tar_files[insecure_tar_file] __UpperCAmelCase = tmp_path / '''extracted''' TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __UpperCAmelCase = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 __UpperCAmelCase = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
654
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Tuple = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __lowerCAmelCase : str = logging.get_logger(__name__) class A ( UpperCAmelCase ): def __init__( self : Any , *__a : Union[str, Any] , **__a : Optional[int] ) -> None: warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
654
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence __UpperCAmelCase = gray_code_sequence_string(UpperCamelCase__ ) # # convert them to integers for i in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(UpperCamelCase__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(UpperCamelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger("transformers.models.speecht5") __lowerCAmelCase : Union[str, Any] = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __lowerCAmelCase : Optional[int] = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __lowerCAmelCase : Tuple = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __lowerCAmelCase : Any = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __lowerCAmelCase : List[str] = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __lowerCAmelCase : int = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __lowerCAmelCase : List[str] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __lowerCAmelCase : Optional[int] = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCAmelCase : List[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase : List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase : Dict = [] __lowerCAmelCase : List[str] = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __lowerCAmelCase : List[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __lowerCAmelCase : Any = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __lowerCAmelCase : int = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): __UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCAmelCase = value elif weight_type == "weight_g": __UpperCAmelCase = value elif weight_type == "weight_v": __UpperCAmelCase = value elif weight_type == "bias": __UpperCAmelCase = value elif weight_type == "running_mean": __UpperCAmelCase = value elif weight_type == "running_var": __UpperCAmelCase = value elif weight_type == "num_batches_tracked": __UpperCAmelCase = value else: __UpperCAmelCase = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCAmelCase , __UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = [] if task == "s2t": __UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder __UpperCAmelCase = MAPPING_S2T __UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": __UpperCAmelCase = None __UpperCAmelCase = MAPPING_T2S __UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": __UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder __UpperCAmelCase = MAPPING_S2S __UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(f"""{name} was ignored""" ) continue __UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __UpperCAmelCase , __UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: __UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __UpperCAmelCase = True if "*" in mapped_key: __UpperCAmelCase = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] __UpperCAmelCase = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: __UpperCAmelCase = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase = '''weight_v''' elif "bias" in name: __UpperCAmelCase = '''bias''' elif "weight" in name: __UpperCAmelCase = '''weight''' elif "running_mean" in name: __UpperCAmelCase = '''running_mean''' elif "running_var" in name: __UpperCAmelCase = '''running_var''' elif "num_batches_tracked" in name: __UpperCAmelCase = '''num_batches_tracked''' else: __UpperCAmelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase = name.split('''.''' ) __UpperCAmelCase = int(items[0] ) __UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __UpperCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple=None , ): """simple docstring""" if config_path is not None: __UpperCAmelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __UpperCAmelCase = SpeechTaConfig() if task == "s2t": __UpperCAmelCase = config.max_text_positions __UpperCAmelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __UpperCAmelCase = 1_8_7_6 __UpperCAmelCase = 6_0_0 __UpperCAmelCase = config.max_speech_positions __UpperCAmelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __UpperCAmelCase = 1_8_7_6 __UpperCAmelCase = config.max_speech_positions __UpperCAmelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: __UpperCAmelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken('''<mask>''' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __UpperCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __UpperCAmelCase = SpeechTaFeatureExtractor() __UpperCAmelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __UpperCAmelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __lowerCAmelCase : Optional[Any] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
654
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
1
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __lowerCAmelCase : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __lowerCAmelCase : Union[str, Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("\n".join(upper_files) + "\n") __lowerCAmelCase : str = [file for file in filepaths if " " in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("\n".join(space_files) + "\n") __lowerCAmelCase : Optional[Any] = [file for file in filepaths if "-" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("\n".join(hyphen_files) + "\n") __lowerCAmelCase : Tuple = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("\n".join(nodir_files) + "\n") __lowerCAmelCase : str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count += 1 __UpperCAmelCase = '''_''' if count > 1: return False else: return "".join(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = [] while True: __UpperCAmelCase = ['''$'''] * len(UpperCamelCase__ ) __UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): __UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: __UpperCAmelCase = '''*''' __UpperCAmelCase = '''*''' temp.append('''X''' ) for i in range(len(UpperCamelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase__ ) == 0: return pi __UpperCAmelCase = list(set(UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Sequence[float] ): """simple docstring""" __UpperCAmelCase = [] for minterm in minterms: __UpperCAmelCase = '''''' for _ in range(UpperCamelCase__ ): __UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase__ ) return temp def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [0] * len(UpperCamelCase__ ) for i in range(len(chart[0] ) ): __UpperCAmelCase = 0 __UpperCAmelCase = -1 for j in range(len(UpperCamelCase__ ) ): if chart[j][i] == 1: count += 1 __UpperCAmelCase = j if count == 1: __UpperCAmelCase = 1 for i in range(len(UpperCamelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: __UpperCAmelCase = 0 __UpperCAmelCase = -1 __UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: __UpperCAmelCase = count_n __UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = 0 def lowerCAmelCase ( UpperCamelCase__ : list[str] , UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = [[0 for x in range(len(UpperCamelCase__ ) )] for x in range(len(UpperCamelCase__ ) )] for i in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = prime_implicants[i].count('''_''' ) for j in range(len(UpperCamelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase__ ): __UpperCAmelCase = 1 return chart def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''Enter the no. of variables\n''' ) ) __UpperCAmelCase = [ float(UpperCamelCase__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] __UpperCAmelCase = decimal_to_binary(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = check(UpperCamelCase__ ) print('''Prime Implicants are:''' ) print(UpperCamelCase__ ) __UpperCAmelCase = prime_implicant_chart(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = selection(UpperCamelCase__ , UpperCamelCase__ ) print('''Essential Prime Implicants are:''' ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( UpperCAmelCase ): a_ = (DEISMultistepScheduler,) a_ = (('''num_inference_steps''', 2_5),) def snake_case__ ( self : int , **__a : Union[str, Any] ) -> int: __UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**__a ) return config def snake_case__ ( self : Optional[Any] , __a : Dict=0 , **__a : int ) -> List[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**__a ) __UpperCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __UpperCAmelCase = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase , __UpperCAmelCase = sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Union[str, Any] ) -> Dict: pass def snake_case__ ( self : str , __a : Dict=0 , **__a : List[Any] ) -> str: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __UpperCAmelCase = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : List[Any] , __a : List[str]=None , **__a : List[str] ) -> Optional[int]: if scheduler is None: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**__a ) __UpperCAmelCase = scheduler_class(**__a ) __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**__a ) __UpperCAmelCase = scheduler_class(**__a ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(__a , __a ) __UpperCAmelCase = scheduler.step(__a , __a , __a ).prev_sample return sample def snake_case__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__a ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__a , '''set_timesteps''' ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self : Union[str, Any] ) -> str: # make sure that iterating over schedulers with same config names gives same results # for defaults __UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) __UpperCAmelCase = self.full_loop(scheduler=__a ) __UpperCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 __UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) __UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) __UpperCAmelCase = self.full_loop(scheduler=__a ) __UpperCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case__ ( self : List[Any] ) -> Optional[int]: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__a ) def snake_case__ ( self : Dict ) -> List[str]: self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type='''deis''' , solver_order=__a , solver_type=__a , ) def snake_case__ ( self : List[str] ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case__ ( self : Optional[Any] ) -> int: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) __UpperCAmelCase = self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def snake_case__ ( self : List[str] ) -> Dict: self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def snake_case__ ( self : str ) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def snake_case__ ( self : int ) -> List[Any]: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case__ ( self : Tuple ) -> int: __UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) __UpperCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def snake_case__ ( self : int ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) __UpperCAmelCase = scheduler_class(**__a ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(__a , __a ) __UpperCAmelCase = scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ): """simple docstring""" if len(UpperCamelCase__ ) != 2 or len(a[0] ) != 2 or len(UpperCamelCase__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) __UpperCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(UpperCamelCase__ ) ) ] def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(UpperCamelCase__ ) ) ] def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" if len(UpperCamelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = matrix_length // 2 __UpperCAmelCase = [[a[i][j] for j in range(UpperCamelCase__ , UpperCamelCase__ )] for i in range(UpperCamelCase__ )] __UpperCAmelCase = [ [a[i][j] for j in range(UpperCamelCase__ , UpperCamelCase__ )] for i in range(UpperCamelCase__ , UpperCamelCase__ ) ] __UpperCAmelCase = [[a[i][j] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ )] __UpperCAmelCase = [[a[i][j] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ , UpperCamelCase__ )] return top_left, top_right, bot_left, bot_right def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" return len(UpperCamelCase__ ), len(matrix[0] ) def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" print('''\n'''.join(str(UpperCamelCase__ ) for line in matrix ) ) def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ): """simple docstring""" if matrix_dimensions(UpperCamelCase__ ) == (2, 2): return default_matrix_multiplication(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = split_matrix(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = split_matrix(UpperCamelCase__ ) __UpperCAmelCase = actual_strassen(UpperCamelCase__ , matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = actual_strassen(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) __UpperCAmelCase = actual_strassen(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) __UpperCAmelCase = actual_strassen(UpperCamelCase__ , matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = actual_strassen(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = actual_strassen(matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) , matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = actual_strassen(matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) , matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) , UpperCamelCase__ ) __UpperCAmelCase = matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) , UpperCamelCase__ ) # construct the new matrix from our 4 quadrants __UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(UpperCamelCase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ): """simple docstring""" if matrix_dimensions(UpperCamelCase__ )[1] != matrix_dimensions(UpperCamelCase__ )[0]: __UpperCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(UpperCamelCase__ ) __UpperCAmelCase = matrix_dimensions(UpperCamelCase__ ) __UpperCAmelCase = matrix_dimensions(UpperCamelCase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __UpperCAmelCase = max(*UpperCamelCase__ , *UpperCamelCase__ ) __UpperCAmelCase = int(math.pow(2 , math.ceil(math.loga(UpperCamelCase__ ) ) ) ) __UpperCAmelCase = matrixa __UpperCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , UpperCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , UpperCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , UpperCamelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __UpperCAmelCase = actual_strassen(UpperCamelCase__ , UpperCamelCase__ ) # Removing the additional zeros for i in range(0 , UpperCamelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , UpperCamelCase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __lowerCAmelCase : int = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __lowerCAmelCase : Any = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
654
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=None ): """simple docstring""" __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() __UpperCAmelCase = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = requests.get(url + f"""&page={i + 2}""" , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=None ): """simple docstring""" __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() __UpperCAmelCase = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = requests.get(url + f"""&page={i + 2}""" , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = result.headers['''Location'''] __UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , f"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fp: fp.write(response.content ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=None ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: __UpperCAmelCase = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCAmelCase = line[: line.index(''': ''' )] __UpperCAmelCase = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __UpperCAmelCase = line[len('''FAILED ''' ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": __UpperCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` """ f"""and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) __UpperCAmelCase = None if job_name and job_links: __UpperCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) __UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=None ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None ): """simple docstring""" __UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) __UpperCAmelCase = counter.most_common() __UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCAmelCase = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCAmelCase = dict(sorted(r.items() , key=lambda UpperCamelCase__ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __UpperCAmelCase = test.split('''/''' )[2] else: __UpperCAmelCase = None return test def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Any=None ): """simple docstring""" __UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCAmelCase = [x for x in logs if x[2] is not None] __UpperCAmelCase = {x[2] for x in logs} __UpperCAmelCase = {} for test in tests: __UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCAmelCase = counter.most_common() __UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: __UpperCAmelCase = {'''count''': n_errors, '''errors''': error_counts} __UpperCAmelCase = dict(sorted(r.items() , key=lambda UpperCamelCase__ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = '''| no. | error | status |''' __UpperCAmelCase = '''|-:|:-|:-|''' __UpperCAmelCase = [header, sep] for error in reduced_by_error: __UpperCAmelCase = reduced_by_error[error]['''count'''] __UpperCAmelCase = f"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = '''| model | no. of errors | major error | count |''' __UpperCAmelCase = '''|-:|-:|-:|-:|''' __UpperCAmelCase = [header, sep] for model in reduced_by_model: __UpperCAmelCase = reduced_by_model[model]['''count'''] __UpperCAmelCase , __UpperCAmelCase = list(reduced_by_model[model]['''errors'''].items() )[0] __UpperCAmelCase = f"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") __lowerCAmelCase : str = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __lowerCAmelCase : List[Any] = get_job_links(args.workflow_run_id, token=args.token) __lowerCAmelCase : List[str] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __lowerCAmelCase : Dict = k.find(" / ") __lowerCAmelCase : Optional[Any] = k[index + len(" / ") :] __lowerCAmelCase : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __lowerCAmelCase : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __lowerCAmelCase : List[str] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __lowerCAmelCase : str = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __lowerCAmelCase : List[str] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __lowerCAmelCase : Optional[Any] = reduce_by_error(errors) __lowerCAmelCase : Optional[int] = reduce_by_model(errors) __lowerCAmelCase : Optional[int] = make_github_table(reduced_by_error) __lowerCAmelCase : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
700
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : str = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __UpperCAmelCase = i + 1 else: __UpperCAmelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowerCAmelCase : int = random.Random() def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=1.0 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" if rng is None: __UpperCAmelCase = global_rng __UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A ( unittest.TestCase ): def __init__( self : Union[str, Any] , __a : Optional[int] , __a : str=7 , __a : Any=4_0_0 , __a : Tuple=2_0_0_0 , __a : str=2_4 , __a : Tuple=2_4 , __a : Any=0.0 , __a : Optional[Any]=1_6_0_0_0 , __a : Tuple=True , __a : Union[str, Any]=True , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = min_seq_length __UpperCAmelCase = max_seq_length __UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase = feature_size __UpperCAmelCase = num_mel_bins __UpperCAmelCase = padding_value __UpperCAmelCase = sampling_rate __UpperCAmelCase = return_attention_mask __UpperCAmelCase = do_normalize def snake_case__ ( self : Tuple ) -> Optional[Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self : str , __a : str=False , __a : Optional[Any]=False ) -> Optional[int]: def _flatten(__a : List[Any] ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): a_ = SpeechaTextFeatureExtractor if is_speech_available() else None def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = SpeechaTextFeatureExtractionTester(self ) def snake_case__ ( self : int , __a : List[Any] ) -> Optional[Any]: self.assertTrue(np.all(np.mean(A_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ , axis=0 ) - 1 ) < 1e-3 ) ) def snake_case__ ( self : Optional[int] ) -> Tuple: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase = feature_extractor(A_ , padding=A_ , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched __UpperCAmelCase = feature_extractor(A_ , return_tensors='''np''' ).input_features __UpperCAmelCase = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCAmelCase = np.asarray(A_ ) __UpperCAmelCase = feature_extractor(A_ , return_tensors='''np''' ).input_features __UpperCAmelCase = feature_extractor(A_ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] __UpperCAmelCase = [None, 1_6, None] for max_length, padding in zip(A_ , A_ ): __UpperCAmelCase = feature_extractor( A_ , padding=A_ , max_length=A_ , return_attention_mask=A_ ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = [np.sum(A_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] __UpperCAmelCase = [None, 1_6, None] for max_length, padding in zip(A_ , A_ ): __UpperCAmelCase = feature_extractor( A_ , max_length=A_ , padding=A_ , return_tensors='''np''' , return_attention_mask=A_ ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = [np.sum(A_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = feature_extractor( A_ , padding='''max_length''' , max_length=4 , truncation=A_ , return_tensors='''np''' , return_attention_mask=A_ , ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = feature_extractor( A_ , padding='''longest''' , max_length=4 , truncation=A_ , return_tensors='''np''' , return_attention_mask=A_ , ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) __UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCAmelCase = feature_extractor( A_ , padding='''longest''' , max_length=1_6 , truncation=A_ , return_tensors='''np''' , return_attention_mask=A_ , ) __UpperCAmelCase = inputs.input_features __UpperCAmelCase = inputs.attention_mask __UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def snake_case__ ( self : Dict ) -> Dict: import torch __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) __UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCAmelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case__ ( self : int , __a : Tuple ) -> Optional[Any]: from datasets import load_dataset __UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __UpperCAmelCase = ds.sort('''id''' ).select(range(A_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case__ ( self : Optional[int] ) -> int: __UpperCAmelCase = np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ] ) # fmt: on __UpperCAmelCase = self._load_datasamples(1 ) __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase = feature_extractor(A_ , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , A_ , atol=1e-4 ) )
703
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
0
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCAmelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class A ( UpperCAmelCase ): def __init__( self : Any , *__a : List[Any] , **__a : Tuple ) -> Optional[int]: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , '''decord''' ) self.check_model_type(UpperCamelCase_ ) def snake_case__ ( self : Any , __a : List[Any]=None , __a : str=None , __a : List[Any]=None ) -> Optional[Any]: __UpperCAmelCase = {} if frame_sampling_rate is not None: __UpperCAmelCase = frame_sampling_rate if num_frames is not None: __UpperCAmelCase = num_frames __UpperCAmelCase = {} if top_k is not None: __UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , __a : Union[str, List[str]] , **__a : str ) -> int: return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def snake_case__ ( self : int , __a : List[str] , __a : int=None , __a : Tuple=1 ) -> Dict: if num_frames is None: __UpperCAmelCase = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): __UpperCAmelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __UpperCAmelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __UpperCAmelCase = 0 __UpperCAmelCase = num_frames * frame_sampling_rate - 1 __UpperCAmelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __UpperCAmelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __UpperCAmelCase = list(UpperCamelCase_ ) __UpperCAmelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def snake_case__ ( self : Optional[Any] , __a : List[str] ) -> Union[str, Any]: __UpperCAmelCase = self.model(**UpperCamelCase_ ) return model_outputs def snake_case__ ( self : List[str] , __a : Any , __a : Optional[int]=5 ) -> Optional[Any]: if top_k > self.model.config.num_labels: __UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] __UpperCAmelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __UpperCAmelCase = scores.tolist() __UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Tuple = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants __lowerCAmelCase : Optional[Any] = 300 # TEMPERATURE (unit = K) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : int , ): """simple docstring""" if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class A ( UpperCAmelCase_ ): a_ = 'vit' def __init__( self : Union[str, Any] , __a : Any=7_6_8 , __a : Union[str, Any]=1_2 , __a : Optional[Any]=1_2 , __a : Any=3_0_7_2 , __a : Any="gelu" , __a : int=0.0 , __a : Dict=0.0 , __a : Any=0.0_2 , __a : Any=1e-12 , __a : Union[str, Any]=2_2_4 , __a : Tuple=1_6 , __a : Union[str, Any]=3 , __a : List[str]=True , __a : Optional[int]=1_6 , **__a : Any , ) -> List[str]: super().__init__(**_lowercase ) __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = qkv_bias __UpperCAmelCase = encoder_stride class A ( UpperCAmelCase_ ): a_ = version.parse('''1.11''' ) @property def snake_case__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self : str ) -> float: return 1e-4
707
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : int = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class A ( __A ): a_ = '''lxmert''' a_ = {} def __init__( self : Optional[Any] , __a : Dict=3_0_5_2_2 , __a : int=7_6_8 , __a : Optional[Any]=1_2 , __a : Tuple=9_5_0_0 , __a : List[str]=1_6_0_0 , __a : Union[str, Any]=4_0_0 , __a : Optional[int]=3_0_7_2 , __a : List[str]="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Tuple=5_1_2 , __a : Union[str, Any]=2 , __a : Optional[Any]=0.0_2 , __a : int=1e-12 , __a : int=9 , __a : Dict=5 , __a : Optional[Any]=5 , __a : int=2_0_4_8 , __a : Dict=4 , __a : int=6.6_7 , __a : List[Any]=True , __a : Dict=True , __a : Optional[Any]=True , __a : List[str]=True , __a : str=True , __a : List[Any]=True , __a : Optional[Any]=True , **__a : Tuple , ) -> List[str]: __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = num_qa_labels __UpperCAmelCase = num_object_labels __UpperCAmelCase = num_attr_labels __UpperCAmelCase = l_layers __UpperCAmelCase = x_layers __UpperCAmelCase = r_layers __UpperCAmelCase = visual_feat_dim __UpperCAmelCase = visual_pos_dim __UpperCAmelCase = visual_loss_normalizer __UpperCAmelCase = task_matched __UpperCAmelCase = task_mask_lm __UpperCAmelCase = task_obj_predict __UpperCAmelCase = task_qa __UpperCAmelCase = visual_obj_loss __UpperCAmelCase = visual_attr_loss __UpperCAmelCase = visual_feat_loss __UpperCAmelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__a )
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCAmelCase : List[Any] = 256_047 __lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase , unittest.TestCase ): a_ = NllbTokenizer a_ = NllbTokenizerFast a_ = True a_ = True a_ = {} def snake_case__ ( self : Any ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Optional[int]: __UpperCAmelCase = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : str ) -> Union[str, Any]: __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) @require_torch def snake_case__ ( self : Any ) -> int: if not self.test_seqaseq: return __UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. __UpperCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] __UpperCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: __UpperCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , max_target_length=1_0 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 1_0 ) # max_target_length will default to max_length if not specified __UpperCAmelCase = tokenizer.prepare_seqaseq_batch( _lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __UpperCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , max_length=3 , max_target_length=1_0 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , _lowerCAmelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def snake_case__ ( self : Optional[int] ) -> Any: pass def snake_case__ ( self : int ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = [AddedToken('''<special>''' , lstrip=_lowerCAmelCase )] __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase = tokenizer_r.encode('''Hey this is a <special> token''' ) __UpperCAmelCase = tokenizer_r.encode('''<special>''' , add_special_tokens=_lowerCAmelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) __UpperCAmelCase = self.tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.encode('''Hey this is a <special> token''' ) __UpperCAmelCase = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): a_ = '''facebook/nllb-200-distilled-600M''' a_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] a_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] a_ = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def snake_case__ ( cls : Tuple ) -> List[str]: __UpperCAmelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) __UpperCAmelCase = 1 return cls def snake_case__ ( self : Any ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 2_5_6_0_5_7 ) def snake_case__ ( self : str ) -> Optional[int]: __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) def snake_case__ ( self : int ) -> str: self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) # fmt: off __UpperCAmelCase = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on __UpperCAmelCase = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def snake_case__ ( self : Tuple ) -> Any: __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , _lowerCAmelCase ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case__ ( self : Tuple ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_6_2_0_3, 3] ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCAmelCase ) __UpperCAmelCase = NllbTokenizer.from_pretrained(_lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase ) @require_torch def snake_case__ ( self : Tuple ) -> Any: __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 1_5) , batch.input_ids.shape ) self.assertEqual((2, 1_5) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_0 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right( _lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def snake_case__ ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { # A, test, EOS, en_XX '''input_ids''': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_6_0_5_7, } , ) @require_torch def snake_case__ ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) __UpperCAmelCase = False __UpperCAmelCase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Optional[int] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : def __init__( self : Dict , __a : Any , __a : str=1_3 , __a : Optional[int]=7 , __a : Tuple=True , __a : Optional[Any]=True , __a : Any=False , __a : List[Any]=True , __a : int=9_9 , __a : List[str]=3_2 , __a : Tuple=5 , __a : Optional[Any]=4 , __a : str=3_7 , __a : Optional[Any]="gelu" , __a : List[str]=0.1 , __a : List[Any]=0.1 , __a : str=5_1_2 , __a : Optional[int]=1_6 , __a : Dict=2 , __a : Union[str, Any]=0.0_2 , __a : Any=3 , __a : Dict=4 , __a : Any=None , ) -> List[str]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : int ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , use_stable_embedding=__A , ) def snake_case__ ( self : str , __a : Tuple , __a : str , __a : Union[str, Any] , __a : List[Any] , __a : List[str] , __a : Optional[int] , __a : str ) -> Any: __UpperCAmelCase = OpenLlamaModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A ) __UpperCAmelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any] , __a : Dict , __a : int , __a : Union[str, Any] , __a : Any , __a : List[Any] , __a : str , __a : Union[str, Any] , __a : Tuple , __a : List[str] , ) -> List[str]: __UpperCAmelCase = True __UpperCAmelCase = OpenLlamaModel(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) __UpperCAmelCase = model( __A , attention_mask=__A , encoder_hidden_states=__A , ) __UpperCAmelCase = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : str , __a : Tuple , __a : List[str] , __a : int , __a : Dict , __a : List[str] , __a : Optional[int] , __a : int , ) -> List[Any]: __UpperCAmelCase = OpenLlamaForCausalLM(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Any , __a : List[str] , __a : int , __a : int , __a : int , __a : Dict , __a : Optional[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : List[str] , ) -> str: __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = OpenLlamaForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass __UpperCAmelCase = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , use_cache=__A , ) __UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , output_hidden_states=__A , )["hidden_states"][0] __UpperCAmelCase = model( __A , attention_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["hidden_states"][0] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) ) def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = self.prepare_config_and_inputs() ( __UpperCAmelCase ) = config_and_inputs __UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) a_ = (OpenLlamaForCausalLM,) if is_torch_available() else () a_ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def snake_case__ ( self : int ) -> Optional[int]: __UpperCAmelCase = OpenLlamaModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def snake_case__ ( self : Union[str, Any] ) -> int: self.config_tester.run_common_tests() def snake_case__ ( self : str ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase = type self.model_tester.create_and_check_model(*__A ) def snake_case__ ( self : List[Any] ) -> Tuple: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = input_dict["input_ids"] __UpperCAmelCase = input_ids.ne(1 ).to(__A ) __UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase = OpenLlamaForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = "single_label_classification" __UpperCAmelCase = input_dict["input_ids"] __UpperCAmelCase = input_ids.ne(1 ).to(__A ) __UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase = OpenLlamaForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = "multi_label_classification" __UpperCAmelCase = input_dict["input_ids"] __UpperCAmelCase = input_ids.ne(1 ).to(__A ) __UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase = OpenLlamaForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , labels=__A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def snake_case__ ( self : List[Any] ) -> List[Any]: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def snake_case__ ( self : Any , __a : Optional[int] ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ids_tensor([1, 1_0] , config.vocab_size ) __UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase = OpenLlamaModel(__A ) original_model.to(__A ) original_model.eval() __UpperCAmelCase = original_model(__A ).last_hidden_state __UpperCAmelCase = original_model(__A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase = {"type": scaling_type, "factor": 1_0.0} __UpperCAmelCase = OpenLlamaModel(__A ) scaled_model.to(__A ) scaled_model.eval() __UpperCAmelCase = scaled_model(__A ).last_hidden_state __UpperCAmelCase = scaled_model(__A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__A , __A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__A , __A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__A , __A , atol=1e-5 ) )
711
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
0
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / """cache""" __UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / """cache""" __UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_sql_dataset(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" with contextlib.closing(sqlitea.connect(__lowerCAmelCase ) ) as con: __UpperCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / """cache""" __UpperCAmelCase = os.path.join(__lowerCAmelCase , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() __UpperCAmelCase = iter_sql_file(__lowerCAmelCase ) __UpperCAmelCase = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / """cache""" __UpperCAmelCase = os.path.join(__lowerCAmelCase , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCAmelCase ).read() SqlDatasetWriter(__lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() __UpperCAmelCase = iter_sql_file(__lowerCAmelCase ) __UpperCAmelCase = iter_sql_file(__lowerCAmelCase ) for rowa, rowa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / """cache""" __UpperCAmelCase = os.path.join(__lowerCAmelCase , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCAmelCase ).read() with pytest.raises(__lowerCAmelCase ): SqlDatasetWriter(__lowerCAmelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
0
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class A : def __init__( self : int , __a : str = None , __a : uuid.UUID = None , __a : Optional[int]=None , __a : Union[str, Any]=None ) -> Union[str, Any]: if not conversation_id: __UpperCAmelCase = uuid.uuida() if past_user_inputs is None: __UpperCAmelCase = [] if generated_responses is None: __UpperCAmelCase = [] __UpperCAmelCase = conversation_id __UpperCAmelCase = past_user_inputs __UpperCAmelCase = generated_responses __UpperCAmelCase = text def __eq__( self : str , __a : Tuple ) -> List[str]: if not isinstance(__a , __a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def snake_case__ ( self : Tuple , __a : str , __a : bool = False ) -> str: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) __UpperCAmelCase = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __UpperCAmelCase = text def snake_case__ ( self : int ) -> Optional[Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __UpperCAmelCase = None def snake_case__ ( self : Optional[int] , __a : str ) -> Tuple: self.generated_responses.append(__a ) def snake_case__ ( self : int ) -> Dict: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Any ) -> List[Any]: __UpperCAmelCase = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __UpperCAmelCase = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( _snake_case , R'''\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ''' , ) class A ( _snake_case ): def __init__( self : str , *__a : Tuple , **__a : str ) -> Any: super().__init__(*__a , **__a ) if self.tokenizer.pad_token_id is None: __UpperCAmelCase = self.tokenizer.eos_token def snake_case__ ( self : List[str] , __a : Union[str, Any]=None , __a : Tuple=None , __a : Union[str, Any]=None , **__a : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = {} __UpperCAmelCase = {} __UpperCAmelCase = {} if min_length_for_response is not None: __UpperCAmelCase = min_length_for_response if minimum_tokens is not None: __UpperCAmelCase = minimum_tokens if "max_length" in generate_kwargs: __UpperCAmelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __UpperCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__a ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] , __a : Union[Conversation, List[Conversation]] , __a : Tuple=0 , **__a : List[Any] ) -> Dict: __UpperCAmelCase = super().__call__(__a , num_workers=__a , **__a ) if isinstance(__a , __a ) and len(__a ) == 1: return outputs[0] return outputs def snake_case__ ( self : Union[str, Any] , __a : Conversation , __a : Optional[int]=3_2 ) -> Tuple: if not isinstance(__a , __a ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __UpperCAmelCase = self.tokenizer._build_conversation_input_ids(__a ) else: # If the tokenizer cannot handle conversations, we default to only the old version __UpperCAmelCase = self._legacy_parse_and_tokenize(__a ) if self.framework == "pt": __UpperCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __UpperCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def snake_case__ ( self : int , __a : List[str] , __a : Tuple=1_0 , **__a : List[str] ) -> Optional[Any]: __UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __UpperCAmelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __UpperCAmelCase = max_length - minimum_tokens __UpperCAmelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __UpperCAmelCase = model_inputs['''attention_mask'''][:, -trim:] __UpperCAmelCase = model_inputs.pop('''conversation''' ) __UpperCAmelCase = max_length __UpperCAmelCase = self.model.generate(**__a , **__a ) if self.model.config.is_encoder_decoder: __UpperCAmelCase = 1 else: __UpperCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def snake_case__ ( self : Optional[Any] , __a : str , __a : Union[str, Any]=True ) -> Union[str, Any]: __UpperCAmelCase = model_outputs['''output_ids'''] __UpperCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , ) __UpperCAmelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__a ) return conversation def snake_case__ ( self : Dict , __a : Conversation ) -> Tuple: __UpperCAmelCase = self.tokenizer.eos_token_id __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__a , add_special_tokens=__a ) ) if len(__a ) > self.tokenizer.model_max_length: __UpperCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
713
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Dict = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A ( __lowerCAmelCase ): a_ = '''data2vec-audio''' def __init__( self : Optional[int] , __a : Union[str, Any]=3_2 , __a : Optional[Any]=7_6_8 , __a : List[str]=1_2 , __a : Optional[int]=1_2 , __a : List[Any]=3_0_7_2 , __a : Union[str, Any]="gelu" , __a : str=0.1 , __a : Dict=0.1 , __a : Optional[int]=0.1 , __a : List[str]=0.0 , __a : Optional[int]=0.1 , __a : List[str]=0.1 , __a : str=0.0_2 , __a : int=1e-5 , __a : str="gelu" , __a : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __a : Any=(5, 2, 2, 2, 2, 2, 2) , __a : Dict=(1_0, 3, 3, 3, 3, 2, 2) , __a : List[Any]=False , __a : Optional[int]=1_6 , __a : List[str]=1_9 , __a : List[Any]=5 , __a : str=0.0_5 , __a : Union[str, Any]=1_0 , __a : Dict=2 , __a : Union[str, Any]=0.0 , __a : str=1_0 , __a : Any=0 , __a : Any="sum" , __a : str=False , __a : List[Any]=False , __a : List[Any]=2_5_6 , __a : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __a : Optional[Any]=(5, 3, 3, 1, 1) , __a : Optional[int]=(1, 2, 3, 1, 1) , __a : List[str]=5_1_2 , __a : Tuple=0 , __a : int=1 , __a : Optional[int]=2 , __a : str=False , __a : Optional[Any]=3 , __a : List[Any]=2 , __a : int=3 , __a : str=None , **__a : List[Any] , ) -> str: super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) __UpperCAmelCase = hidden_size __UpperCAmelCase = feat_extract_activation __UpperCAmelCase = list(_UpperCamelCase ) __UpperCAmelCase = list(_UpperCamelCase ) __UpperCAmelCase = list(_UpperCamelCase ) __UpperCAmelCase = conv_bias __UpperCAmelCase = num_conv_pos_embeddings __UpperCAmelCase = num_conv_pos_embedding_groups __UpperCAmelCase = conv_pos_kernel_size __UpperCAmelCase = len(self.conv_dim ) __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = feat_proj_dropout __UpperCAmelCase = final_dropout __UpperCAmelCase = layerdrop __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = vocab_size __UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase = mask_time_prob __UpperCAmelCase = mask_time_length __UpperCAmelCase = mask_time_min_masks __UpperCAmelCase = mask_feature_prob __UpperCAmelCase = mask_feature_length __UpperCAmelCase = mask_feature_min_masks # ctc loss __UpperCAmelCase = ctc_loss_reduction __UpperCAmelCase = ctc_zero_infinity # adapter __UpperCAmelCase = add_adapter __UpperCAmelCase = adapter_kernel_size __UpperCAmelCase = adapter_stride __UpperCAmelCase = num_adapter_layers __UpperCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase = list(_UpperCamelCase ) __UpperCAmelCase = list(_UpperCamelCase ) __UpperCAmelCase = list(_UpperCamelCase ) __UpperCAmelCase = xvector_output_dim @property def snake_case__ ( self : str ) -> Tuple: return math.prod(self.conv_stride )
715
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( a__ ): a_ = (UniPCMultistepScheduler,) a_ = (('''num_inference_steps''', 2_5),) def snake_case__ ( self : List[Any] , **__a : int ) -> str: __UpperCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def snake_case__ ( self : Optional[Any] , __a : int=0 , **__a : Tuple ) -> List[str]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , _A ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**_A ) __UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __UpperCAmelCase = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase = sample, sample for t in range(_A , time_step + scheduler.config.solver_order + 1 ): __UpperCAmelCase = scheduler.step(_A , _A , _A , **_A ).prev_sample __UpperCAmelCase = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Any , __a : Tuple=0 , **__a : str ) -> List[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , _A ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __UpperCAmelCase = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase = scheduler.step(_A , _A , _A , **_A ).prev_sample __UpperCAmelCase = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self : Dict , __a : List[Any]=None , **__a : str ) -> List[Any]: if scheduler is None: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**_A ) __UpperCAmelCase = scheduler_class(**_A ) __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**_A ) __UpperCAmelCase = scheduler_class(**_A ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(_A , _A ) __UpperCAmelCase = scheduler.step(_A , _A , _A ).prev_sample return sample def snake_case__ ( self : List[str] ) -> Dict: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , _A ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_A ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_A , '''set_timesteps''' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(_A , _A , _A , **_A ).prev_sample __UpperCAmelCase = scheduler.step(_A , _A , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self : Optional[int] ) -> int: __UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) __UpperCAmelCase = self.full_loop(scheduler=_A ) __UpperCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 __UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) __UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) __UpperCAmelCase = self.full_loop(scheduler=_A ) __UpperCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def snake_case__ ( self : int ) -> str: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_A ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , solver_order=_A , solver_type=_A , ) def snake_case__ ( self : Any ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def snake_case__ ( self : str ) -> Optional[Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A , solver_type=_A , prediction_type=_A , ) __UpperCAmelCase = self.full_loop( solver_order=_A , solver_type=_A , prediction_type=_A , ) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def snake_case__ ( self : List[Any] ) -> List[Any]: self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=_A , time_step=0 ) def snake_case__ ( self : Optional[Any] ) -> int: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def snake_case__ ( self : List[str] ) -> Optional[int]: __UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) __UpperCAmelCase = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(thresholding=_A , dynamic_thresholding_ratio=0 ) __UpperCAmelCase = scheduler_class(**_A ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(_A , _A ) __UpperCAmelCase = scheduler.step(_A , _A , _A ).prev_sample assert sample.dtype == torch.floataa def snake_case__ ( self : Optional[int] , **__a : List[str] ) -> Any: for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**_A ) __UpperCAmelCase = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : Dict = get_tests_dir("fixtures/dummy-config.json") class A ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase = 0 def snake_case__ ( self : int ) -> Any: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def snake_case__ ( self : List[str] ) -> Dict: __UpperCAmelCase = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( self : Dict ) -> Dict: __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( self : Any ) -> Optional[int]: __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( self : Optional[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCAmelCase = os.path.join(__lowerCamelCase , '''fake-roberta''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) def snake_case__ ( self : Optional[Any] ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCamelCase ): AutoConfig.register('''model''' , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoConfig.register('''bert''' , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def snake_case__ ( self : Optional[int] ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): __UpperCAmelCase = AutoConfig.from_pretrained('''bert-base''' ) def snake_case__ ( self : Dict ) -> Any: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def snake_case__ ( self : Optional[int] ) -> str: with self.assertRaisesRegex( __lowerCamelCase , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def snake_case__ ( self : Dict ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) __UpperCAmelCase = AutoConfig.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: class A ( _A ): '''simple docstring''' a_ = '''new-model''' try: AutoConfig.register('''new-model''' , __lowerCamelCase ) # If remote code is not set, the default is to use local __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __UpperCAmelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class A ( _UpperCAmelCase ): def __init__( self : List[str] , *__a : Any , **__a : Union[str, Any] ) -> None: warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A : def __init__( self : Any , __a : int , __a : List[str]=1_3 , __a : str=7 , __a : List[Any]=True , __a : Optional[Any]=True , __a : Optional[Any]=True , __a : Optional[int]=True , __a : Any=9_9 , __a : List[str]=3_2 , __a : Union[str, Any]=2 , __a : Any=4 , __a : Dict=3_7 , __a : Optional[Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Optional[int]=0.1 , __a : List[str]=5_1_2 , __a : List[Any]=1_6 , __a : str=2 , __a : Optional[int]=0.0_2 , __a : List[Any]=3 , __a : List[Any]=4 , __a : str=None , ) -> List[Any]: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[Any] ) -> str: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[Any] , __a : Any , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] , __a : Dict ) -> List[str]: __UpperCAmelCase = TFRoFormerModel(config=__UpperCamelCase ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__UpperCamelCase ) __UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Union[str, Any] , __a : Any , __a : Optional[int] , __a : Any , __a : Tuple ) -> List[Any]: __UpperCAmelCase = True __UpperCAmelCase = TFRoFormerForCausalLM(config=__UpperCamelCase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(__UpperCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def snake_case__ ( self : Optional[Any] , __a : Optional[Any] , __a : Dict , __a : Dict , __a : int , __a : Any , __a : List[str] , __a : Union[str, Any] ) -> List[str]: __UpperCAmelCase = TFRoFormerForMaskedLM(config=__UpperCamelCase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : List[Any] , __a : Optional[Any] , __a : Dict , __a : str , __a : str , __a : Any , __a : Tuple , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFRoFormerForSequenceClassification(config=__UpperCamelCase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : int , __a : List[Any] , __a : int , __a : Union[str, Any] , __a : Any , __a : List[str] , __a : Tuple , __a : Union[str, Any] ) -> int: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFRoFormerForMultipleChoice(config=__UpperCamelCase ) __UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : str , __a : Optional[int] , __a : Any , __a : Dict , __a : List[Any] , __a : Optional[int] , __a : str , __a : Tuple ) -> str: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFRoFormerForTokenClassification(config=__UpperCamelCase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Dict , __a : Optional[Any] , __a : Optional[int] , __a : Any , __a : Optional[Any] , __a : int , __a : Any , __a : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = TFRoFormerForQuestionAnswering(config=__UpperCamelCase ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : int ) -> Optional[Any]: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) a_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : List[str] , __a : Any , __a : Optional[int] , __a : int , __a : Any , __a : Union[str, Any] ) -> List[str]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFRoFormerModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def snake_case__ ( self : str ) -> Dict: self.config_tester.run_common_tests() def snake_case__ ( self : str ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__UpperCamelCase ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def snake_case__ ( self : str ) -> Optional[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def snake_case__ ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def snake_case__ ( self : List[str] ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def snake_case__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__UpperCamelCase )[0] # TODO Replace vocab size __UpperCAmelCase = 5_0_0_0_0 __UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , __UpperCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCAmelCase = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) @require_tf class A ( unittest.TestCase ): a_ = 1e-4 def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = tf.constant([[4, 1_0]] ) __UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCAmelCase = emba(input_ids.shape ) __UpperCAmelCase = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) def snake_case__ ( self : Tuple ) -> int: __UpperCAmelCase = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) __UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) __UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) @require_tf class A ( unittest.TestCase ): a_ = 1e-4 def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __UpperCAmelCase = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) __UpperCAmelCase = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] __UpperCAmelCase , __UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCAmelCase = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) __UpperCAmelCase = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance )
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class A ( unittest.TestCase ): def __init__( self : Tuple , __a : Any , __a : int=7 , __a : int=3 , __a : int=1_8 , __a : int=3_0 , __a : str=4_0_0 , __a : Tuple=True , __a : int=3_2 , __a : str=True , ) -> List[str]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size_divisor __UpperCAmelCase = do_rescale def snake_case__ ( self : Optional[Any] ) -> List[str]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class A ( _a , unittest.TestCase ): a_ = GLPNImageProcessor if is_vision_available() else None def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = GLPNImageProcessingTester(self ) @property def snake_case__ ( self : List[Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> str: __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case_ , '''size_divisor''' ) ) self.assertTrue(hasattr(snake_case_ , '''resample''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_rescale''' ) ) def snake_case__ ( self : Any ) -> List[str]: pass def snake_case__ ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case__ ( self : Dict ) -> List[str]: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case__ ( self : Dict ) -> str: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
720
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Any = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class A ( SCREAMING_SNAKE_CASE__ ): a_ = '''mra''' def __init__( self : int , __a : Any=5_0_2_6_5 , __a : str=7_6_8 , __a : Optional[Any]=1_2 , __a : Optional[int]=1_2 , __a : Any=3_0_7_2 , __a : Any="gelu" , __a : List[Any]=0.1 , __a : int=0.1 , __a : Optional[Any]=5_1_2 , __a : List[Any]=1 , __a : str=0.0_2 , __a : Union[str, Any]=1e-5 , __a : Optional[int]="absolute" , __a : str=4 , __a : Optional[Any]="full" , __a : Union[str, Any]=0 , __a : str=0 , __a : Optional[Any]=1 , __a : Any=0 , __a : List[str]=2 , **__a : Tuple , ) -> int: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = type_vocab_size __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = block_per_row __UpperCAmelCase = approx_mode __UpperCAmelCase = initial_prior_first_n_blocks __UpperCAmelCase = initial_prior_diagonal_n_blocks
721
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
0
def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [int(snake_case__ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(snake_case__ ) == 4 and all(0 <= int(snake_case__ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": __lowerCAmelCase : Dict = input().strip() __lowerCAmelCase : Tuple = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
700
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
0
import heapq as hq import math from collections.abc import Iterator class A : def __init__( self : Dict , __a : int ) -> Any: __UpperCAmelCase = str(id_ ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = [] __UpperCAmelCase = {} # {vertex:distance} def __lt__( self : Tuple , __a : Any ) -> Any: return self.key < other.key def __repr__( self : Optional[int] ) -> int: return self.id def snake_case__ ( self : int , __a : Any ) -> Tuple: self.neighbors.append(__a ) def snake_case__ ( self : int , __a : Any , __a : str ) -> Dict: __UpperCAmelCase = weight def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = [] for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = graph[:] while q: __UpperCAmelCase = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" for u in graph: __UpperCAmelCase = math.inf __UpperCAmelCase = None __UpperCAmelCase = 0 __UpperCAmelCase = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: __UpperCAmelCase = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase = u __UpperCAmelCase = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase ( ): """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
0
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self : int , __a : Optional[Any] = None ) -> List[str]: __UpperCAmelCase = value __UpperCAmelCase = random() __UpperCAmelCase = None __UpperCAmelCase = None def __repr__( self : List[str] ) -> str: from pprint import pformat if self.left is None and self.right is None: return f"""\'{self.value}: {self.prior:.5}\'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : str ) -> str: __UpperCAmelCase = str(self.value ) + ''' ''' __UpperCAmelCase = str(self.left or '''''' ) __UpperCAmelCase = str(self.right or '''''' ) return value + left + right def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __UpperCAmelCase , __UpperCAmelCase = split(root.left , UpperCamelCase__ ) return left, root else: __UpperCAmelCase , __UpperCAmelCase = split(root.right , UpperCamelCase__ ) return root, right def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : Node | None ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __UpperCAmelCase = merge(left.right , UpperCamelCase__ ) return left else: __UpperCAmelCase = merge(UpperCamelCase__ , right.left ) return right def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Node(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = split(UpperCamelCase__ , UpperCamelCase__ ) return merge(merge(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = split(UpperCamelCase__ , value - 1 ) __UpperCAmelCase , __UpperCAmelCase = split(UpperCamelCase__ , UpperCamelCase__ ) return merge(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Node | None ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase ( UpperCamelCase__ : Node | None , UpperCamelCase__ : str ): """simple docstring""" for arg in args.split(): if arg[0] == "+": __UpperCAmelCase = insert(UpperCamelCase__ , int(arg[1:] ) ) elif arg[0] == "-": __UpperCAmelCase = erase(UpperCamelCase__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __UpperCAmelCase = input() while args != "q": __UpperCAmelCase = interact_treap(UpperCamelCase__ , UpperCamelCase__ ) print(UpperCamelCase__ ) __UpperCAmelCase = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCAmelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __lowerCAmelCase : List[str] = spec.loader.load_module() __lowerCAmelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCAmelCase : Dict = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __lowerCAmelCase : Optional[int] = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): __UpperCAmelCase = False # source code of `config_class` __UpperCAmelCase = inspect.getsource(snake_case_ ) __UpperCAmelCase = _re_checkpoint.findall(snake_case_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link __UpperCAmelCase = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __UpperCAmelCase = True break __UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case_ ) if len(snake_case_ ) > 0: __UpperCAmelCase = "\n".join(sorted(snake_case_ ) ) raise ValueError(f"""The following configurations don\'t contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
703
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCAmelCase : Any = logging.get_logger(__name__) class A ( lowercase__ ): def __init__( self : int , *__a : List[Any] , **__a : Optional[int] ) -> None: warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __lowerCAmelCase : List[str] = "http://www.mocksite.com/file1.txt" __lowerCAmelCase : Optional[Any] = "\"text\": [\"foo\", \"foo\"]" __lowerCAmelCase : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class A : a_ = 2_0_0 a_ = {'''Content-Length''': '''100'''} a_ = {} def snake_case__ ( self : List[str] , **__a : Dict ) -> Optional[Any]: return [bytes(_a , '''utf-8''' )] def lowerCAmelCase ( *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Any ): """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict ): """simple docstring""" import requests monkeypatch.setattr(UpperCamelCase__ , '''request''' , UpperCamelCase__ ) __UpperCAmelCase = URL if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = url elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [url] elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = {"""train""": url} __UpperCAmelCase = """dummy""" __UpperCAmelCase = """downloads""" __UpperCAmelCase = tmp_path __UpperCAmelCase = DownloadConfig( cache_dir=os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , use_etag=UpperCamelCase__ , ) __UpperCAmelCase = DownloadManager(dataset_name=UpperCamelCase__ , download_config=UpperCamelCase__ ) __UpperCAmelCase = dl_manager.download(UpperCamelCase__ ) __UpperCAmelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [downloaded_paths] __UpperCAmelCase = [urls] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): assert "train" in downloaded_paths.keys() __UpperCAmelCase = downloaded_paths.values() __UpperCAmelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(UpperCamelCase__ , UpperCamelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __UpperCAmelCase = downloaded_path.read_text() assert content == CONTENT __UpperCAmelCase = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() __UpperCAmelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = str(UpperCamelCase__ ) if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = filename elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [filename] elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = {"""train""": filename} __UpperCAmelCase = """dummy""" __UpperCAmelCase = xz_file.parent __UpperCAmelCase = """extracted""" __UpperCAmelCase = DownloadConfig( cache_dir=UpperCamelCase__ , use_etag=UpperCamelCase__ , ) __UpperCAmelCase = DownloadManager(dataset_name=UpperCamelCase__ , download_config=UpperCamelCase__ ) __UpperCAmelCase = dl_manager.extract(UpperCamelCase__ ) __UpperCAmelCase = paths for extracted_paths in [extracted_paths]: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [extracted_paths] __UpperCAmelCase = [paths] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): assert "train" in extracted_paths.keys() __UpperCAmelCase = extracted_paths.values() __UpperCAmelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(UpperCamelCase__ , UpperCamelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(UpperCamelCase__ , etag=UpperCamelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __UpperCAmelCase = extracted_path.read_text() __UpperCAmelCase = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(UpperCamelCase__ , start=1 ): __UpperCAmelCase = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = request.getfixturevalue(UpperCamelCase__ ) __UpperCAmelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase__ ) , start=1 ): _test_jsonl(UpperCamelCase__ , UpperCamelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = request.getfixturevalue(UpperCamelCase__ ) __UpperCAmelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(UpperCamelCase__ ) , start=1 ): _test_jsonl(UpperCamelCase__ , UpperCamelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(UpperCamelCase__ ) , start=1 ): assert os.path.basename(UpperCamelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
0
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class A ( nn.Module ): def __init__( self : str ) -> Tuple: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : Dict , __a : int ) -> List[str]: return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] ) -> int: __UpperCAmelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , model.state_dict() ) __UpperCAmelCase = os.path.join(a_ , '''index.json''' ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __UpperCAmelCase = os.path.join(a_ , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(a_ ) ) # TODO: add tests on the fact weights are properly loaded def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __UpperCAmelCase = torch.randn(2 , 3 , dtype=a_ ) with TemporaryDirectory() as tmp_dir: __UpperCAmelCase = offload_weight(a_ , '''weight''' , a_ , {} ) __UpperCAmelCase = os.path.join(a_ , '''weight.dat''' ) self.assertTrue(os.path.isfile(a_ ) ) self.assertDictEqual(a_ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(a_ ).split('''.''' )[1]}} ) __UpperCAmelCase = load_offloaded_weight(a_ , index['''weight'''] ) self.assertTrue(torch.equal(a_ , a_ ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ModelForTest() __UpperCAmelCase = model.state_dict() __UpperCAmelCase = {k: v for k, v in state_dict.items() if """linear2""" not in k} __UpperCAmelCase = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) __UpperCAmelCase = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) __UpperCAmelCase = {k: v for k, v in state_dict.items() if """weight""" in k} __UpperCAmelCase = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) __UpperCAmelCase = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a_ , a_ ) # Duplicates are removed __UpperCAmelCase = OffloadedWeightsLoader(state_dict=a_ , save_folder=a_ ) # Every key is there with the right value self.assertEqual(sorted(a_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a_ , weight_map[key] ) ) def snake_case__ ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} __UpperCAmelCase = extract_submodules_state_dict(a_ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(a_ , {'''a.1''': 0, '''a.2''': 2} ) __UpperCAmelCase = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} __UpperCAmelCase = extract_submodules_state_dict(a_ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(a_ , {'''a.1.a''': 0, '''a.2.a''': 2} )
706
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __UpperCAmelCase = grid[0] for row_n in range(1 , len(__snake_case ) ): __UpperCAmelCase = grid[row_n] __UpperCAmelCase = fill_row(__snake_case , __snake_case ) __UpperCAmelCase = grid[row_n] return grid[-1][-1] def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __lowerCAmelCase : Dict = True except ImportError: __lowerCAmelCase : Any = False __lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase ( UpperCamelCase__ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class A ( _UpperCAmelCase ): @staticmethod def snake_case__ ( __a : ArgumentParser ) -> Optional[Any]: __UpperCAmelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowercase_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowercase_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : Optional[int] , __a : bool , __a : str , __a : Union[str, Any]=None , *__a : Dict ) -> Dict: __UpperCAmelCase = testing __UpperCAmelCase = testing_file __UpperCAmelCase = path def snake_case__ ( self : Any ) -> Any: warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __UpperCAmelCase = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:2_2]] if len(lowercase_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) __UpperCAmelCase = ( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __UpperCAmelCase = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: __UpperCAmelCase = json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) __UpperCAmelCase = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:2_2]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: __UpperCAmelCase = json.load(lowercase_ ) __UpperCAmelCase = configuration["""lowercase_modelname"""] __UpperCAmelCase = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f"""{directory}/configuration.json""" ) __UpperCAmelCase = """PyTorch""" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase = """TensorFlow""" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase = """Flax""" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__a : int ): with open(lowercase_ , '''r''' ) as f: __UpperCAmelCase = f.readlines() with open(lowercase_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__a : str , __a : str , __a : List[str] ): # Create temp file __UpperCAmelCase = mkstemp() __UpperCAmelCase = False with fdopen(lowercase_ , '''w''' ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: __UpperCAmelCase = True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(__a : str ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__a : int ): with open(lowercase_ ) as datafile: __UpperCAmelCase = [] __UpperCAmelCase = False __UpperCAmelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: __UpperCAmelCase = line.split('''\"''' )[1] __UpperCAmelCase = skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: __UpperCAmelCase = line.split('''\"''' )[1] __UpperCAmelCase = skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase = [] elif "# Replace with" in line and "##" not in line: __UpperCAmelCase = [] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowercase_ )
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = [1] for i in range(2 , _lowercase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase = [] __UpperCAmelCase = list(range(_lowercase ) ) # Find permutation while factorials: __UpperCAmelCase = factorials.pop() __UpperCAmelCase = divmod(_lowercase , _lowercase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0