code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
__lowerCAmelCase : Any = logging.get_logger(__name__)
class A ( UpperCAmelCase__ ):
def __init__( self : Dict , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> None:
warnings.warn(
'''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use LayoutLMv2ImageProcessor instead.''' , __lowerCAmelCase , )
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
| 710 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ):
"""simple docstring"""
__UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' )
__UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 654 | 0 |
'''simple docstring'''
class A :
def __init__( self : List[Any] ) -> Union[str, Any]:
__UpperCAmelCase = {} # Mapping from char to TrieNode
__UpperCAmelCase = False
def snake_case__ ( self : Optional[Any] , __a : Optional[Any] ) -> str:
for word in words:
self.insert(UpperCAmelCase_ )
def snake_case__ ( self : Optional[Any] , __a : Union[str, Any] ) -> Any:
__UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
__UpperCAmelCase = TrieNode()
__UpperCAmelCase = curr.nodes[char]
__UpperCAmelCase = True
def snake_case__ ( self : Union[str, Any] , __a : Any ) -> List[Any]:
__UpperCAmelCase = self
for char in word:
if char not in curr.nodes:
return False
__UpperCAmelCase = curr.nodes[char]
return curr.is_leaf
def snake_case__ ( self : str , __a : str ) -> int:
def _delete(__a : Optional[int] , __a : Optional[int] , __a : Dict ) -> bool:
if index == len(UpperCAmelCase_ ):
# If word does not exist
if not curr.is_leaf:
return False
__UpperCAmelCase = False
return len(curr.nodes ) == 0
__UpperCAmelCase = word[index]
__UpperCAmelCase = curr.nodes.get(UpperCAmelCase_ )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
__UpperCAmelCase = _delete(UpperCAmelCase_ , UpperCAmelCase_ , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , UpperCAmelCase_ , 0 )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple ):
"""simple docstring"""
if node.is_leaf:
print(_snake_case , end=''' ''' )
for key, value in node.nodes.items():
print_words(_snake_case , word + key )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split()
__UpperCAmelCase = TrieNode()
root.insert_many(_snake_case )
# print_words(root, "")
assert all(root.find(_snake_case ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
print(str(_snake_case ) , '''works!''' if passes else '''doesn\'t work :(''' )
def lowerCAmelCase ( ):
"""simple docstring"""
assert test_trie()
def lowerCAmelCase ( ):
"""simple docstring"""
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 711 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
__UpperCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i]
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__UpperCAmelCase = []
__UpperCAmelCase = -1
for i in range(UpperCamelCase__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__UpperCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__UpperCAmelCase = 0
__UpperCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
__lowerCAmelCase : List[Any] = 4
__lowerCAmelCase : List[Any] = [2, 5, 3, 7]
__lowerCAmelCase : Tuple = [0, 0, 0, 0]
__lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__lowerCAmelCase : Dict = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 654 | 0 |
'''simple docstring'''
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
__lowerCAmelCase : Optional[Any] = ['text', 'image', 'audio']
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) )
elif input_type == "audio":
inputs.append(torch.ones(3_0_0_0 ) )
elif isinstance(_lowercase , _lowercase ):
inputs.append(create_inputs(_lowercase ) )
else:
raise ValueError(f"""Invalid type requested: {input_type}""" )
return inputs
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = []
for output in outputs:
if isinstance(_lowercase , (str, AgentText) ):
output_types.append('''text''' )
elif isinstance(_lowercase , (Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(_lowercase , (torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(f"""Invalid output: {output}""" )
return output_types
@is_tool_test
class A :
def snake_case__ ( self : Union[str, Any] ) -> Any:
self.assertTrue(hasattr(self.tool , '''inputs''' ) )
self.assertTrue(hasattr(self.tool , '''outputs''' ) )
__UpperCAmelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input , UpperCamelCase__ ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
__UpperCAmelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def snake_case__ ( self : Any ) -> List[str]:
__UpperCAmelCase = create_inputs(self.tool.inputs )
__UpperCAmelCase = self.tool(*UpperCamelCase__ )
# There is a single output
if len(self.tool.outputs ) == 1:
__UpperCAmelCase = [outputs]
self.assertListEqual(output_types(UpperCamelCase__ ) , self.tool.outputs )
def snake_case__ ( self : Any ) -> int:
self.assertTrue(hasattr(self.tool , '''description''' ) )
self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) )
self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) )
def snake_case__ ( self : Any ) -> Optional[int]:
__UpperCAmelCase = create_inputs(self.tool.inputs )
__UpperCAmelCase = self.tool(*UpperCamelCase__ )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = [outputs]
self.assertEqual(len(UpperCamelCase__ ) , len(self.tool.outputs ) )
for output, output_type in zip(UpperCamelCase__ , self.tool.outputs ):
__UpperCAmelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) )
def snake_case__ ( self : str ) -> Tuple:
__UpperCAmelCase = create_inputs(self.tool.inputs )
__UpperCAmelCase = []
for _input, input_type in zip(UpperCamelCase__ , self.tool.inputs ):
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
__UpperCAmelCase = self.tool(*UpperCamelCase__ )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = [outputs]
self.assertEqual(len(UpperCamelCase__ ) , len(self.tool.outputs ) )
| 712 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : int , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict:
requires_backends(cls , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : Any ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Any , **__a : int ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase : str = {
"configuration_swiftformer": [
"SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SwiftFormerConfig",
"SwiftFormerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : int = [
"SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwiftFormerForImageClassification",
"SwiftFormerModel",
"SwiftFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 713 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 654 | 0 |
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 714 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : Optional[Any] = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase : Tuple = logging.get_logger(__name__)
__lowerCAmelCase : Optional[Any] = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class A ( lowercase__ ):
a_ = """roformer"""
def __init__( self : Optional[int] , __a : Union[str, Any]=5_0_0_0_0 , __a : Tuple=None , __a : Union[str, Any]=7_6_8 , __a : Union[str, Any]=1_2 , __a : Any=1_2 , __a : int=3_0_7_2 , __a : Tuple="gelu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Union[str, Any]=1_5_3_6 , __a : List[Any]=2 , __a : Optional[int]=0.0_2 , __a : List[Any]=1e-12 , __a : int=0 , __a : List[Any]=False , __a : Any=True , **__a : Dict , ) -> Optional[int]:
super().__init__(pad_token_id=__lowercase , **__lowercase )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size if embedding_size is None else embedding_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = rotary_value
__UpperCAmelCase = use_cache
class A ( lowercase__ ):
@property
def snake_case__ ( self : Dict ) -> List[Any]:
if self.task == "multiple-choice":
__UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
__UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 715 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ):
"""simple docstring"""
__UpperCAmelCase = {}
if train_file is not None:
__UpperCAmelCase = [train_file]
if eval_file is not None:
__UpperCAmelCase = [eval_file]
if test_file is not None:
__UpperCAmelCase = [test_file]
__UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ )
__UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() )
__UpperCAmelCase = features_name.pop(UpperCamelCase__ )
__UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) )
__UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )}
__UpperCAmelCase = tokenizer.model_input_names
__UpperCAmelCase = {}
if len(UpperCamelCase__ ) == 1:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , )
elif len(UpperCamelCase__ ) == 2:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A :
a_ = field(metadata={'''help''': '''Which column contains the label'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} )
a_ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
a_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase ( ):
"""simple docstring"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
__UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__UpperCAmelCase = TFTrainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 654 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( __snake_case , unittest.TestCase ):
a_ = KandinskyVaaControlnetPipeline
a_ = ['image_embeds', 'negative_image_embeds', 'hint']
a_ = ['image_embeds', 'negative_image_embeds', 'hint']
a_ = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
a_ = False
@property
def snake_case__ ( self : List[str] ) -> Dict:
return 3_2
@property
def snake_case__ ( self : Any ) -> Optional[Any]:
return 3_2
@property
def snake_case__ ( self : Tuple ) -> Any:
return self.time_input_dim
@property
def snake_case__ ( self : int ) -> Union[str, Any]:
return self.time_input_dim * 4
@property
def snake_case__ ( self : str ) -> Any:
return 1_0_0
@property
def snake_case__ ( self : List[Any] ) -> str:
torch.manual_seed(0 )
__UpperCAmelCase = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
__UpperCAmelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case__ ( self : int ) -> List[str]:
return {
"block_out_channels": [3_2, 3_2, 6_4, 6_4],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def snake_case__ ( self : Optional[int] ) -> str:
torch.manual_seed(0 )
__UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case__ ( self : Dict ) -> List[str]:
__UpperCAmelCase = self.dummy_unet
__UpperCAmelCase = self.dummy_movq
__UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=A_ , )
__UpperCAmelCase = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def snake_case__ ( self : int , __a : Optional[Any] , __a : Union[str, Any]=0 ) -> List[str]:
__UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ )
__UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
A_ )
# create hint
__UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(A_ )
else:
__UpperCAmelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCAmelCase = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 6_4,
"width": 6_4,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def snake_case__ ( self : Dict ) -> List[Any]:
__UpperCAmelCase = "cpu"
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**A_ )
__UpperCAmelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCAmelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCAmelCase = output.images
__UpperCAmelCase = pipe(
**self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
__UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase = np.array(
[0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def snake_case__ ( self : str ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' )
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/hint_image_cat.png''' )
__UpperCAmelCase = torch.from_numpy(np.array(A_ ) ).float() / 2_5_5.0
__UpperCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
__UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCAmelCase = KandinskyVaaControlnetPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa )
__UpperCAmelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCAmelCase = "A robot, 4k photo"
__UpperCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 )
__UpperCAmelCase = pipe_prior(
A_ , generator=A_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__UpperCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 )
__UpperCAmelCase = pipeline(
image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=1_0_0 , output_type='''np''' , )
__UpperCAmelCase = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(A_ , A_ )
| 716 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A :
def __init__( self : List[Any] , __a : Any , ) -> Dict:
__UpperCAmelCase = parent
__UpperCAmelCase = 1_3
__UpperCAmelCase = 7
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = 9_9
__UpperCAmelCase = 3_2
__UpperCAmelCase = 2
__UpperCAmelCase = 4
__UpperCAmelCase = 3_7
__UpperCAmelCase = '''gelu'''
__UpperCAmelCase = 0.1
__UpperCAmelCase = 0.1
__UpperCAmelCase = 5_1_2
__UpperCAmelCase = 1_6
__UpperCAmelCase = 2
__UpperCAmelCase = 0.0_2
__UpperCAmelCase = 3
__UpperCAmelCase = 4
__UpperCAmelCase = None
def snake_case__ ( self : Optional[int] ) -> Dict:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any:
__UpperCAmelCase = TFDistilBertModel(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
__UpperCAmelCase = [input_ids, input_mask]
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int:
__UpperCAmelCase = TFDistilBertForMaskedLM(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict:
__UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForSequenceClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str:
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = TFDistilBertForMultipleChoice(__a )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForTokenClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : str ) -> Any:
__UpperCAmelCase = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
a_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
a_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a_ = False
a_ = False
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = TFDistilBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ) -> str:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*__a )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*__a )
def snake_case__ ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*__a )
def snake_case__ ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a )
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*__a )
@slow
def snake_case__ ( self : Dict ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCAmelCase = TFDistilBertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
class A ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ) -> Dict:
__UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(__a )[0]
__UpperCAmelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , __a )
__UpperCAmelCase = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
| 654 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ):
"""simple docstring"""
if len(UpperCamelCase__ ) != 2 or len(a[0] ) != 2 or len(UpperCamelCase__ ) != 2 or len(b[0] ) != 2:
raise Exception('''Matrices are not 2x2''' )
__UpperCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ):
"""simple docstring"""
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(UpperCamelCase__ ) )
]
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ):
"""simple docstring"""
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(UpperCamelCase__ ) )
]
def lowerCAmelCase ( UpperCamelCase__ : list ):
"""simple docstring"""
if len(UpperCamelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('''Odd matrices are not supported!''' )
__UpperCAmelCase = len(UpperCamelCase__ )
__UpperCAmelCase = matrix_length // 2
__UpperCAmelCase = [[a[i][j] for j in range(UpperCamelCase__ , UpperCamelCase__ )] for i in range(UpperCamelCase__ )]
__UpperCAmelCase = [
[a[i][j] for j in range(UpperCamelCase__ , UpperCamelCase__ )] for i in range(UpperCamelCase__ , UpperCamelCase__ )
]
__UpperCAmelCase = [[a[i][j] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ )]
__UpperCAmelCase = [[a[i][j] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ , UpperCamelCase__ )]
return top_left, top_right, bot_left, bot_right
def lowerCAmelCase ( UpperCamelCase__ : list ):
"""simple docstring"""
return len(UpperCamelCase__ ), len(matrix[0] )
def lowerCAmelCase ( UpperCamelCase__ : list ):
"""simple docstring"""
print('''\n'''.join(str(UpperCamelCase__ ) for line in matrix ) )
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ):
"""simple docstring"""
if matrix_dimensions(UpperCamelCase__ ) == (2, 2):
return default_matrix_multiplication(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = split_matrix(UpperCamelCase__ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = split_matrix(UpperCamelCase__ )
__UpperCAmelCase = actual_strassen(UpperCamelCase__ , matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = actual_strassen(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ )
__UpperCAmelCase = actual_strassen(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ )
__UpperCAmelCase = actual_strassen(UpperCamelCase__ , matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = actual_strassen(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = actual_strassen(matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) , matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = actual_strassen(matrix_subtraction(UpperCamelCase__ , UpperCamelCase__ ) , matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) , UpperCamelCase__ )
__UpperCAmelCase = matrix_addition(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = matrix_addition(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) , UpperCamelCase__ )
# construct the new matrix from our 4 quadrants
__UpperCAmelCase = []
for i in range(len(UpperCamelCase__ ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(UpperCamelCase__ ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list ):
"""simple docstring"""
if matrix_dimensions(UpperCamelCase__ )[1] != matrix_dimensions(UpperCamelCase__ )[0]:
__UpperCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
f"""Matrix A: {matrixa}\n"""
f"""Matrix B: {matrixa}"""
)
raise Exception(UpperCamelCase__ )
__UpperCAmelCase = matrix_dimensions(UpperCamelCase__ )
__UpperCAmelCase = matrix_dimensions(UpperCamelCase__ )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__UpperCAmelCase = max(*UpperCamelCase__ , *UpperCamelCase__ )
__UpperCAmelCase = int(math.pow(2 , math.ceil(math.loga(UpperCamelCase__ ) ) ) )
__UpperCAmelCase = matrixa
__UpperCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , UpperCamelCase__ ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , UpperCamelCase__ ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , UpperCamelCase__ ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
__UpperCAmelCase = actual_strassen(UpperCamelCase__ , UpperCamelCase__ )
# Removing the additional zeros
for i in range(0 , UpperCamelCase__ ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , UpperCamelCase__ ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
__lowerCAmelCase : Tuple = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
__lowerCAmelCase : Any = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 717 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__lowerCAmelCase : List[Any] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class A ( UpperCAmelCase__ , unittest.TestCase ):
a_ = ShapEImgaImgPipeline
a_ = ["image"]
a_ = ["image"]
a_ = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
a_ = False
@property
def snake_case__ ( self : Any ) -> List[str]:
return 3_2
@property
def snake_case__ ( self : str ) -> str:
return 3_2
@property
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
return self.time_input_dim * 4
@property
def snake_case__ ( self : Tuple ) -> Optional[int]:
return 8
@property
def snake_case__ ( self : Tuple ) -> Any:
torch.manual_seed(0 )
__UpperCAmelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__UpperCAmelCase = CLIPVisionModel(lowerCamelCase__ )
return model
@property
def snake_case__ ( self : Optional[Any] ) -> Tuple:
__UpperCAmelCase = CLIPImageProcessor(
crop_size=2_2_4 , do_center_crop=lowerCamelCase__ , do_normalize=lowerCamelCase__ , do_resize=lowerCamelCase__ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_2_4 , )
return image_processor
@property
def snake_case__ ( self : Optional[Any] ) -> List[str]:
torch.manual_seed(0 )
__UpperCAmelCase = {
"num_attention_heads": 2,
"attention_head_dim": 1_6,
"embedding_dim": self.time_input_dim,
"num_embeddings": 3_2,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
__UpperCAmelCase = PriorTransformer(**lowerCamelCase__ )
return model
@property
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__UpperCAmelCase = {
"param_shapes": (
(self.renderer_dim, 9_3),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 1_2,
"background": (
0.1,
0.1,
0.1,
),
}
__UpperCAmelCase = ShapERenderer(**lowerCamelCase__ )
return model
def snake_case__ ( self : int ) -> List[str]:
__UpperCAmelCase = self.dummy_prior
__UpperCAmelCase = self.dummy_image_encoder
__UpperCAmelCase = self.dummy_image_processor
__UpperCAmelCase = self.dummy_renderer
__UpperCAmelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=lowerCamelCase__ , clip_sample=lowerCamelCase__ , clip_sample_range=1.0 , )
__UpperCAmelCase = {
"prior": prior,
"image_encoder": image_encoder,
"image_processor": image_processor,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def snake_case__ ( self : List[str] , __a : Optional[Any] , __a : Optional[int]=0 ) -> Optional[Any]:
__UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
if str(lowerCamelCase__ ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(lowerCamelCase__ )
else:
__UpperCAmelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ )
__UpperCAmelCase = {
"image": input_image,
"generator": generator,
"num_inference_steps": 1,
"frame_size": 3_2,
"output_type": "np",
}
return inputs
def snake_case__ ( self : List[str] ) -> List[str]:
__UpperCAmelCase = "cpu"
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**lowerCamelCase__ )
__UpperCAmelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) )
__UpperCAmelCase = output.images[0]
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (2_0, 3_2, 3_2, 3)
__UpperCAmelCase = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__ ( self : Optional[Any] ) -> str:
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
__UpperCAmelCase = torch_device == "cpu"
__UpperCAmelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , )
def snake_case__ ( self : int ) -> List[Any]:
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = self.pipeline_class(**lowerCamelCase__ )
__UpperCAmelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__UpperCAmelCase = 1
__UpperCAmelCase = 2
__UpperCAmelCase = self.get_dummy_inputs(lowerCamelCase__ )
for key in inputs.keys():
if key in self.batch_params:
__UpperCAmelCase = batch_size * [inputs[key]]
__UpperCAmelCase = pipe(**lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__UpperCAmelCase = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__UpperCAmelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 )
__UpperCAmelCase = pipe(
lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0]
assert images.shape == (2_0, 6_4, 6_4, 3)
assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
| 718 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class A ( UpperCAmelCase ):
a_ = '''bert-generation'''
def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
| 654 | 0 |
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : int = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( __a , unittest.TestCase ):
a_ = XLNetTokenizer
a_ = XLNetTokenizerFast
a_ = True
a_ = True
def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase = XLNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : int ) -> List[str]:
__UpperCAmelCase = '''<s>'''
__UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<eod>''' )
self.assertEqual(len(lowerCAmelCase_ ) , 1_0_0_6 )
def snake_case__ ( self : Optional[Any] ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 )
def snake_case__ ( self : List[Any] ) -> List[str]:
__UpperCAmelCase = XLNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ )
__UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : str ) -> Optional[int]:
__UpperCAmelCase = XLNetTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + '''''',
'''i''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''se''',
'''.''',
] , )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] )
def snake_case__ ( self : int ) -> Dict:
__UpperCAmelCase = XLNetTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ )
__UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''se''',
'''.''',
] , )
@slow
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
__UpperCAmelCase = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' )
__UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_ )
__UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def snake_case__ ( self : Tuple ) -> Union[str, Any]:
__UpperCAmelCase = {'''input_ids''': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
| 719 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__lowerCAmelCase : str = 299_792_458
# Symbols
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z")
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 )
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return np.array(
[
[gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0],
[-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ):
"""simple docstring"""
# Ensure event is not empty
if event is None:
__UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(UpperCamelCase__ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__lowerCAmelCase : Dict = transform(29_979_245)
print("Example of four vector: ")
print(F"""ct' = {four_vector[0]}""")
print(F"""x' = {four_vector[1]}""")
print(F"""y' = {four_vector[2]}""")
print(F"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
__lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
__lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"""\n{numerical_vector}""")
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : bool = False ):
"""simple docstring"""
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable:
raise ValueError(
'''Warning: upper bound of deterministic test is exceeded. '''
'''Pass allow_probable=True to allow probabilistic test. '''
'''A return value of True indicates a probable prime.''' )
# array bounds provided by analysis
__UpperCAmelCase = [
2_0_4_7,
1_3_7_3_6_5_3,
2_5_3_2_6_0_0_1,
3_2_1_5_0_3_1_7_5_1,
2_1_5_2_3_0_2_8_9_8_7_4_7,
3_4_7_4_7_4_9_6_6_0_3_8_3,
3_4_1_5_5_0_0_7_1_7_2_8_3_2_1,
1,
3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1,
1,
1,
3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1,
3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1,
]
__UpperCAmelCase = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1]
for idx, _p in enumerate(UpperCamelCase__ , 1 ):
if n < _p:
# then we have our last prime to check
__UpperCAmelCase = primes[:idx]
break
__UpperCAmelCase = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
__UpperCAmelCase = False
for r in range(UpperCamelCase__ ):
__UpperCAmelCase = pow(UpperCamelCase__ , d * 2**r , UpperCamelCase__ )
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
__UpperCAmelCase = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def lowerCAmelCase ( ):
"""simple docstring"""
assert not miller_rabin(5_6_1 )
assert miller_rabin(5_6_3 )
# 2047
assert not miller_rabin(8_3_8_2_0_1 )
assert miller_rabin(8_3_8_2_0_7 )
# 1_373_653
assert not miller_rabin(1_7_3_1_6_0_0_1 )
assert miller_rabin(1_7_3_1_6_0_1_7 )
# 25_326_001
assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 )
assert miller_rabin(3_0_7_8_3_8_6_6_5_3 )
# 3_215_031_751
assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 )
assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 )
# 2_152_302_898_747
assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 )
assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 )
# 3_474_749_660_383
assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 )
assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 )
# 341_550_071_728_321
assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 )
assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 )
# 3_825_123_056_546_413_051
assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 )
assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 )
# 318_665_857_834_031_151_167_461
assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 )
assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 )
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| 720 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : Any = tuple[int, int]
class A :
def __init__( self : Optional[int] ) -> int:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Dict ) -> Optional[int]:
return len(self.elements ) == 0
def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__a )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : int , __a : Any ) -> int:
if item in self.set:
self.set.remove(__a )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : List[str] ) -> Dict:
return self.elements[0][1]
def snake_case__ ( self : Any ) -> List[str]:
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(__a )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# euclidean distance
__UpperCAmelCase = np.array(UpperCamelCase__ )
__UpperCAmelCase = np.array(UpperCamelCase__ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# integer division by time variable
return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = '''*'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(UpperCamelCase__ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(UpperCamelCase__ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ):
"""simple docstring"""
for itera in range(UpperCamelCase__ ):
open_list[itera].remove_element(UpperCamelCase__ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase__ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase__ ):
if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ):
open_list[j].put(
UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Dict = make_common_ground()
__lowerCAmelCase : int = blocks_blk
# hyper parameters
__lowerCAmelCase : Dict = 1
__lowerCAmelCase : List[str] = 1
__lowerCAmelCase : Union[str, Any] = 20
__lowerCAmelCase : Any = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[Any] = (0, 0)
__lowerCAmelCase : Any = (n - 1, n - 1)
__lowerCAmelCase : Optional[int] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(UpperCamelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , UpperCamelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_inad.append(UpperCamelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_anchor.append(UpperCamelCase__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 654 | 0 |
'''simple docstring'''
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('''socket.socket''' )
@patch('''builtins.open''' )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase = Mock()
__UpperCAmelCase = conn, Mock()
__UpperCAmelCase = iter([1, None] )
__UpperCAmelCase = lambda UpperCamelCase__ : next(_UpperCamelCase )
# ===== invoke =====
send_file(filename='''mytext.txt''' , testing=_UpperCamelCase )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 721 |
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
__lowerCAmelCase : List[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
__lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
__lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
__lowerCAmelCase : Optional[int] = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
]
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__UpperCAmelCase = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
__UpperCAmelCase = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = tf_models
__UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = flax_models
__UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = pt_models
__UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
__UpperCAmelCase = True
break
# Try again after removing the last word in the name
__UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] )
__UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__UpperCAmelCase = list(UpperCamelCase__ )
all_models.sort()
__UpperCAmelCase = {'''model_type''': all_models}
__UpperCAmelCase = [pt_models[t] for t in all_models]
__UpperCAmelCase = [tf_models[t] for t in all_models]
__UpperCAmelCase = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__UpperCAmelCase = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__UpperCAmelCase = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__UpperCAmelCase = '''AutoTokenizer'''
__UpperCAmelCase = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""]
__UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
__UpperCAmelCase = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = get_frameworks_table()
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
__UpperCAmelCase = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ )
__UpperCAmelCase = Dataset.from_json(UpperCamelCase__ )
__UpperCAmelCase = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(UpperCamelCase__ ) )
}
__UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__UpperCAmelCase = sorted(table.keys() )
__UpperCAmelCase = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) )
if commit_sha is not None:
__UpperCAmelCase = (
f"""Update with commit {commit_sha}\n\nSee: """
f"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
__UpperCAmelCase = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS
__UpperCAmelCase = []
for key in pipeline_tasks:
if key not in in_table:
__UpperCAmelCase = pipeline_tasks[key]['''pt''']
if isinstance(UpperCamelCase__ , (list, tuple) ):
__UpperCAmelCase = model[0]
__UpperCAmelCase = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ''', '''.join(UpperCamelCase__ )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
f"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
__lowerCAmelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 654 | 0 |
from __future__ import annotations
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[list[str]] , UpperCamelCase__ : int , ):
"""simple docstring"""
__UpperCAmelCase = len(UpperCamelCase__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(UpperCamelCase__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase__ , UpperCamelCase__ , )
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = []
depth_first_search([] , [] , [] , UpperCamelCase__ , UpperCamelCase__ )
# Print all the boards
for board in boards:
for column in board:
print(UpperCamelCase__ )
print('''''' )
print(len(UpperCamelCase__ ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 700 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__lowerCAmelCase : Optional[int] = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class A ( unittest.TestCase ):
def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple:
__UpperCAmelCase = None
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
__UpperCAmelCase = os.path.abspath('''examples''' )
for item in os.listdir(__a ):
if item not in EXCLUDE_EXAMPLES:
__UpperCAmelCase = os.path.join(__a , __a )
if os.path.isfile(__a ) and ".py" in item_path:
with self.subTest(
tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ):
__UpperCAmelCase = compare_against_test(
os.path.join(__a , __a ) , __a , __a , __a )
__UpperCAmelCase = '''\n'''.join(__a )
if special_strings is not None:
for string in special_strings:
__UpperCAmelCase = diff.replace(__a , '''''' )
self.assertEqual(__a , '''''' )
def snake_case__ ( self : Optional[Any] ) -> str:
self.one_complete_example('''complete_nlp_example.py''' , __a )
self.one_complete_example('''complete_nlp_example.py''' , __a )
def snake_case__ ( self : List[str] ) -> Tuple:
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
__UpperCAmelCase = [
''' ''' * 1_6 + '''{\n\n''',
''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 2_0 + '''"epoch": epoch,\n\n''',
''' ''' * 1_6 + '''},\n\n''',
''' ''' * 1_6 + '''step=epoch,\n''',
''' ''' * 1_2,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class A ( UpperCAmelCase ):
a_ = False
@classmethod
def snake_case__ ( cls : Tuple ) -> str:
super().setUpClass()
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
__UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Dict ) -> int:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
def snake_case__ ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
if torch.cuda.is_available():
__UpperCAmelCase = torch.cuda.device_count()
else:
__UpperCAmelCase = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
else:
self.assertIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
@slow
def snake_case__ ( self : Any ) -> Optional[Any]:
__UpperCAmelCase = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
__UpperCAmelCase = re.findall('''({.+})''' , __a )
__UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1]
__UpperCAmelCase = ast.literal_eval(__a )
self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 )
def snake_case__ ( self : Dict ) -> int:
__UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdir:
__UpperCAmelCase = f"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
__UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
__UpperCAmelCase = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 654 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase )
class A ( UpperCAmelCase ):
a_ = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
a_ = Features({'''image''': Image()} )
a_ = Features({'''labels''': ClassLabel} )
a_ = "image"
a_ = "labels"
def snake_case__ ( self : str , __a : Optional[int] ) -> str:
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , __a ):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" )
__UpperCAmelCase = copy.deepcopy(self )
__UpperCAmelCase = self.label_schema.copy()
__UpperCAmelCase = features[self.label_column]
__UpperCAmelCase = label_schema
return task_template
@property
def snake_case__ ( self : Tuple ) -> Dict[str, str]:
return {
self.image_column: "image",
self.label_column: "labels",
}
| 701 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__lowerCAmelCase : Any = ""
__lowerCAmelCase : int = ""
__lowerCAmelCase : Union[str, Any] = ""
__lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal)
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ )
print('''Processing...''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for index, image in enumerate(UpperCamelCase__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCAmelCase = random_chars(3_2 )
__UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" )
__UpperCAmelCase = []
for anno in new_annos[index]:
__UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(UpperCamelCase__ )
with open(f"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ):
__UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(UpperCamelCase__ ) as in_file:
__UpperCAmelCase = in_file.readlines()
__UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" )
__UpperCAmelCase = []
for obj_list in obj_lists:
__UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(UpperCamelCase__ )
labels.append(UpperCamelCase__ )
return img_paths, labels
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = []
for idx in range(len(UpperCamelCase__ ) ):
__UpperCAmelCase = []
__UpperCAmelCase = img_list[idx]
path_list.append(UpperCamelCase__ )
__UpperCAmelCase = anno_list[idx]
__UpperCAmelCase = cva.imread(UpperCamelCase__ )
if flip_type == 1:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(UpperCamelCase__ )
new_imgs_list.append(UpperCamelCase__ )
return new_imgs_list, new_annos_lists, path_list
def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 654 | 0 |
'''simple docstring'''
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ):
"""simple docstring"""
__UpperCAmelCase = multiprocessing.Manager()
__UpperCAmelCase = manager.list()
__UpperCAmelCase = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append('''timed out''' )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
__UpperCAmelCase = shutil.rmtree
__UpperCAmelCase = os.rmdir
__UpperCAmelCase = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
__UpperCAmelCase = {}
with swallow_io():
with time_limit(lowercase__ ):
exec(lowercase__ , lowercase__ )
result.append('''passed''' )
except TimeoutException:
result.append('''timed out''' )
except BaseException as e:
result.append(f"""failed: {e}""" )
# Needed for cleaning up.
__UpperCAmelCase = rmtree
__UpperCAmelCase = rmdir
__UpperCAmelCase = chdir
@contextlib.contextmanager
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
def signal_handler(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ):
raise TimeoutException('''Timed out!''' )
signal.setitimer(signal.ITIMER_REAL , lowercase__ )
signal.signal(signal.SIGALRM , lowercase__ )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = WriteOnlyStringIO()
with contextlib.redirect_stdout(lowercase__ ):
with contextlib.redirect_stderr(lowercase__ ):
with redirect_stdin(lowercase__ ):
yield
@contextlib.contextmanager
def lowerCAmelCase ( ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as dirname:
with chdir(lowercase__ ):
yield dirname
class A ( __snake_case ):
pass
class A ( io.StringIO ):
def snake_case__ ( self : Union[str, Any] , *__a : str , **__a : Optional[int] ) -> Dict:
raise OSError
def snake_case__ ( self : Optional[int] , *__a : Optional[int] , **__a : int ) -> Dict:
raise OSError
def snake_case__ ( self : Optional[Any] , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]:
raise OSError
def snake_case__ ( self : Dict , *__a : List[Any] , **__a : Any ) -> Optional[Any]:
return False
class A ( contextlib._RedirectStream ): # type: ignore
a_ = '''stdin'''
@contextlib.contextmanager
def lowerCAmelCase ( UpperCamelCase__ : List[Any] ):
"""simple docstring"""
if root == ".":
yield
return
__UpperCAmelCase = os.getcwd()
os.chdir(lowercase__ )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(lowercase__ )
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any]=None ):
"""simple docstring"""
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
__UpperCAmelCase = None
__UpperCAmelCase = None
import os
__UpperCAmelCase = '''1'''
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
import shutil
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
import subprocess
__UpperCAmelCase = None # type: ignore
__UpperCAmelCase = None
import sys
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
| 702 |
'''simple docstring'''
from pathlib import Path
import fire
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = Path(UpperCamelCase__ )
__UpperCAmelCase = Path(UpperCamelCase__ )
dest_dir.mkdir(exist_ok=UpperCamelCase__ )
for path in src_dir.iterdir():
__UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
__UpperCAmelCase = dest_dir.joinpath(path.name )
print(UpperCamelCase__ )
dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__lowerCAmelCase : Optional[Any] = {
'config': [
'EXTERNAL_DATA_FORMAT_SIZE_LIMIT',
'OnnxConfig',
'OnnxConfigWithPast',
'OnnxSeq2SeqConfigWithPast',
'PatchingSpec',
],
'convert': ['export', 'validate_model_outputs'],
'features': ['FeaturesManager'],
'utils': ['ParameterFormat', 'compute_serialized_parameters_size'],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 703 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = f"""Input value of [number={number}] must be an integer"""
raise TypeError(UpperCamelCase__ )
if number < 1:
__UpperCAmelCase = f"""Input value of [number={number}] must be > 0"""
raise ValueError(UpperCamelCase__ )
__UpperCAmelCase = 1
for i in range(1 , UpperCamelCase__ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : str = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[str] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Tuple = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 704 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowerCAmelCase ( ):
"""simple docstring"""
raise RuntimeError('''CUDA out of memory.''' )
class A ( nn.Module ):
def __init__( self : Optional[Any] ) -> int:
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]:
return self.lineara(self.batchnorm(self.lineara(__a ) ) )
class A ( unittest.TestCase ):
def snake_case__ ( self : Optional[int] ) -> Any:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : Union[str, Any] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def snake_case__ ( self : Any ) -> int:
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(__a : Optional[int] ):
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : Any ) -> List[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Dict ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : List[Any] ) -> List[str]:
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(__a ) as cm:
mock_training_loop_function(1_2_8 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Tuple ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def snake_case__ ( self : Any ) -> List[Any]:
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , __a )
__UpperCAmelCase = release_memory(__a )
self.assertEqual(torch.cuda.memory_allocated() , __a )
| 654 | 0 |
'''simple docstring'''
from __future__ import annotations
class A :
def __init__( self : Union[str, Any] , __a : List[str]=None ) -> Tuple:
__UpperCAmelCase = data
__UpperCAmelCase = None
def __repr__( self : int ) -> Any:
__UpperCAmelCase = []
__UpperCAmelCase = self
while temp:
string_rep.append(f"""{temp.data}""" )
__UpperCAmelCase = temp.next
return "->".join(__snake_case )
def lowerCAmelCase ( UpperCamelCase__ : list ):
"""simple docstring"""
if not elements_list:
raise Exception('''The Elements List is empty''' )
__UpperCAmelCase = Node(elements_list[0] )
for i in range(1 , len(a_ ) ):
__UpperCAmelCase = Node(elements_list[i] )
__UpperCAmelCase = current.next
return head
def lowerCAmelCase ( UpperCamelCase__ : Node ):
"""simple docstring"""
if head_node is not None and isinstance(a_ , a_ ):
print_reverse(head_node.next )
print(head_node.data )
def lowerCAmelCase ( ):
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCAmelCase = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] )
print('''Linked List:''' )
print(a_ )
print('''Elements in Reverse:''' )
print_reverse(a_ )
if __name__ == "__main__":
main()
| 705 |
'''simple docstring'''
from __future__ import annotations
import math
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = u
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = temp * (u - i)
return temp
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = int(input('''enter the numbers of values: ''' ) )
__UpperCAmelCase = []
for _ in range(UpperCamelCase__ ):
y.append([] )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
y[i].append(UpperCamelCase__ )
__UpperCAmelCase = 0
print('''enter the values of parameters in a list: ''' )
__UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = float(input() )
__UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) )
__UpperCAmelCase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCamelCase__ ):
for j in range(n - i ):
__UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1]
__UpperCAmelCase = y[0][0]
for i in range(1 , UpperCamelCase__ ):
summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ )
print(f"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 654 | 0 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( UpperCAmelCase , unittest.TestCase ):
a_ = RobertaTokenizer
a_ = RobertaTokenizerFast
a_ = True
a_ = {"cls_token": "<s>"}
def snake_case__ ( self : int ) -> Optional[int]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) )
__UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__UpperCAmelCase = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__a ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__a ) )
def snake_case__ ( self : Tuple , **__a : Optional[Any] ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a )
def snake_case__ ( self : Union[str, Any] , **__a : List[Any] ) -> List[str]:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__a )
def snake_case__ ( self : str , __a : Union[str, Any] ) -> List[str]:
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = '''lower newer'''
return input_text, output_text
def snake_case__ ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__UpperCAmelCase = '''lower newer'''
__UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__UpperCAmelCase = tokenizer.tokenize(__a ) # , add_prefix_space=True)
self.assertListEqual(__a , __a )
__UpperCAmelCase = tokens + [tokenizer.unk_token]
__UpperCAmelCase = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
def snake_case__ ( self : Tuple ) -> str:
__UpperCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__a ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__a ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
__UpperCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' )
__UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a )
__UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__a , add_prefix_space=__a )
__UpperCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__a , add_prefix_space=__a )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a )
__UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def snake_case__ ( self : Union[str, Any] ) -> Tuple:
__UpperCAmelCase = self.get_tokenizer()
__UpperCAmelCase = '''Encode this sequence.'''
__UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__a , __a )
__UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__a , __a )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__a , __a )
# Testing spaces after special tokens
__UpperCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space
__UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a )
__UpperCAmelCase = '''Encode <mask> sequence'''
__UpperCAmelCase = '''Encode <mask>sequence'''
__UpperCAmelCase = tokenizer.encode(__a )
__UpperCAmelCase = encoded.index(__a )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__a , __a )
__UpperCAmelCase = tokenizer.encode(__a )
__UpperCAmelCase = encoded.index(__a )
__UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__a , __a )
def snake_case__ ( self : List[Any] ) -> int:
pass
def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a )
__UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a )
__UpperCAmelCase = '''A, <mask> AllenNLP sentence.'''
__UpperCAmelCase = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a )
__UpperCAmelCase = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
__a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def snake_case__ ( self : Dict ) -> Dict:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __a )
self.assertEqual(post_processor_state['''add_prefix_space'''] , __a )
self.assertEqual(post_processor_state['''trim_offsets'''] , __a )
def snake_case__ ( self : Dict ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__UpperCAmelCase = f"""{text_of_1_token} {text_of_1_token}"""
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , )
__UpperCAmelCase = f""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
__UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
__UpperCAmelCase = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
| 706 |
'''simple docstring'''
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : Dict = logging.get_logger(__name__)
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''),
('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''),
('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''),
('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''),
('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''),
('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''),
] )
return rename_keys
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
__UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" )
__UpperCAmelCase = in_proj_weight[
: encoder_config.hidden_size, :
]
__UpperCAmelCase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
__UpperCAmelCase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = dct.pop(UpperCamelCase__ )
__UpperCAmelCase = val
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
if "handwritten" in checkpoint_url:
__UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'''
__UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' )
return im
@torch.no_grad()
def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ )
__UpperCAmelCase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
__UpperCAmelCase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = 4_0_9_6
__UpperCAmelCase = 2_4
__UpperCAmelCase = 1_6
__UpperCAmelCase = 1_0_2_4
else:
raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = False
__UpperCAmelCase = '''relu'''
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
# load HuggingFace model
__UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ )
__UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ )
__UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
# load state_dict of original model, rename some keys
__UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model''']
__UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
__UpperCAmelCase = state_dict.pop(UpperCamelCase__ )
if key.startswith('''decoder''' ) and "output_projection" not in key:
__UpperCAmelCase = val
else:
__UpperCAmelCase = val
# load state dict
model.load_state_dict(UpperCamelCase__ )
# Check outputs on an image
__UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size )
__UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' )
__UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values
# verify logits
__UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
__UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ )
__UpperCAmelCase = outputs.logits
__UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] )
elif "trocr-large-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] )
elif "trocr-base-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] )
elif "trocr-large-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected"
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 654 | 0 |
'''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
__lowerCAmelCase : List[str] = HfApi()
__lowerCAmelCase : Union[str, Any] = {}
# fmt: off
__lowerCAmelCase : int = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
__lowerCAmelCase : List[Any] = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
__lowerCAmelCase : List[str] = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
__lowerCAmelCase : Tuple = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
__lowerCAmelCase : Tuple = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
__lowerCAmelCase : Optional[Any] = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
__lowerCAmelCase : Optional[int] = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
__lowerCAmelCase : Dict = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
__lowerCAmelCase : int = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
__lowerCAmelCase : Optional[Any] = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
__lowerCAmelCase : List[str] = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
__lowerCAmelCase : Union[str, Any] = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
__lowerCAmelCase : List[Any] = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
__lowerCAmelCase : Dict = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
__lowerCAmelCase : Union[str, Any] = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
__lowerCAmelCase : List[Any] = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
__lowerCAmelCase : Any = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(F"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith("CompVis"):
__lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
__lowerCAmelCase : Tuple = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
__lowerCAmelCase : Union[str, Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
__lowerCAmelCase : List[Any] = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
__lowerCAmelCase : str = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3
)
print(F"""{mod.modelId} has passed successfully!!!""")
| 707 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class A ( unittest.TestCase ):
def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]:
return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy"""
def snake_case__ ( self : Dict ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return image
def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = '''bf16''' if fpaa else None
__UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained(
__a , subfolder='''unet''' , dtype=__a , revision=__a )
return model, params
def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return hidden_states
@parameterized.expand(
[
# fmt: off
[8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]],
[1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]],
[8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]],
[3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]],
# fmt: on
] )
def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]],
[1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]],
[8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]],
[3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]],
# fmt: on
] )
def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
| 654 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class A ( unittest.TestCase ):
def __init__( self : Union[str, Any] , __a : List[str] , __a : List[str]=7 , __a : Dict=3 , __a : List[str]=3_0 , __a : Dict=4_0_0 , __a : List[str]=True , __a : int=None , __a : Optional[Any]=True , __a : Tuple=[0.5, 0.5, 0.5] , __a : List[Any]=[0.5, 0.5, 0.5] , __a : Any=True , __a : Optional[int]=1 / 2_5_5 , __a : Any=True , ) -> Dict:
__UpperCAmelCase = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3}
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = min_resolution
__UpperCAmelCase = max_resolution
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = do_normalize
__UpperCAmelCase = image_mean
__UpperCAmelCase = image_std
__UpperCAmelCase = do_rescale
__UpperCAmelCase = rescale_factor
__UpperCAmelCase = do_pad
def snake_case__ ( self : str ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , __a : Tuple , __a : str=False ) -> List[str]:
if not batched:
__UpperCAmelCase = image_inputs[0]
if isinstance(_snake_case , Image.Image ):
__UpperCAmelCase , __UpperCAmelCase = image.size
else:
__UpperCAmelCase , __UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
__UpperCAmelCase = int(self.size['''shortest_edge'''] * h / w )
__UpperCAmelCase = self.size['''shortest_edge''']
elif w > h:
__UpperCAmelCase = self.size['''shortest_edge''']
__UpperCAmelCase = int(self.size['''shortest_edge'''] * w / h )
else:
__UpperCAmelCase = self.size['''shortest_edge''']
__UpperCAmelCase = self.size['''shortest_edge''']
else:
__UpperCAmelCase = []
for image in image_inputs:
__UpperCAmelCase , __UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCAmelCase = max(_snake_case , key=lambda __a : item[0] )[0]
__UpperCAmelCase = max(_snake_case , key=lambda __a : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A ( UpperCAmelCase_ , unittest.TestCase ):
a_ = YolosImageProcessor if is_vision_available() else None
def snake_case__ ( self : List[Any] ) -> Optional[int]:
__UpperCAmelCase = YolosImageProcessingTester(self )
@property
def snake_case__ ( self : int ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : str ) -> str:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_snake_case , '''image_mean''' ) )
self.assertTrue(hasattr(_snake_case , '''image_std''' ) )
self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) )
self.assertTrue(hasattr(_snake_case , '''do_resize''' ) )
self.assertTrue(hasattr(_snake_case , '''size''' ) )
def snake_case__ ( self : str ) -> Optional[Any]:
__UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} )
self.assertEqual(image_processor.do_pad , _snake_case )
__UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_snake_case )
self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} )
self.assertEqual(image_processor.do_pad , _snake_case )
def snake_case__ ( self : List[str] ) -> int:
pass
def snake_case__ ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , Image.Image )
# Test not batched input
__UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case )
__UpperCAmelCase = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Tuple ) -> List[Any]:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , np.ndarray )
# Test not batched input
__UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values
__UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test not batched input
__UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values
__UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(_snake_case , batched=_snake_case )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Any ) -> Tuple:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
__UpperCAmelCase = self.image_processing_class(do_resize=_snake_case , do_normalize=_snake_case , do_rescale=_snake_case )
# create random PyTorch tensors
__UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
__UpperCAmelCase = image_processing_a.pad(_snake_case , return_tensors='''pt''' )
__UpperCAmelCase = image_processing_a(_snake_case , return_tensors='''pt''' )
self.assertTrue(
torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) )
@slow
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
__UpperCAmelCase = json.loads(f.read() )
__UpperCAmelCase = {'''image_id''': 3_9_7_6_9, '''annotations''': target}
# encode them
__UpperCAmelCase = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' )
__UpperCAmelCase = image_processing(images=_snake_case , annotations=_snake_case , return_tensors='''pt''' )
# verify pixel values
__UpperCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding['''pixel_values'''].shape , _snake_case )
__UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _snake_case , atol=1e-4 ) )
# verify area
__UpperCAmelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _snake_case ) )
# verify boxes
__UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _snake_case )
__UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _snake_case , atol=1e-3 ) )
# verify image_id
__UpperCAmelCase = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _snake_case ) )
# verify is_crowd
__UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _snake_case ) )
# verify class_labels
__UpperCAmelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _snake_case ) )
# verify orig_size
__UpperCAmelCase = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _snake_case ) )
# verify size
__UpperCAmelCase = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _snake_case ) )
@slow
def snake_case__ ( self : List[str] ) -> Any:
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
__UpperCAmelCase = json.loads(f.read() )
__UpperCAmelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target}
__UpperCAmelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
__UpperCAmelCase = YolosImageProcessor(format='''coco_panoptic''' )
__UpperCAmelCase = image_processing(images=_snake_case , annotations=_snake_case , masks_path=_snake_case , return_tensors='''pt''' )
# verify pixel values
__UpperCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding['''pixel_values'''].shape , _snake_case )
__UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _snake_case , atol=1e-4 ) )
# verify area
__UpperCAmelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _snake_case ) )
# verify boxes
__UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _snake_case )
__UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _snake_case , atol=1e-3 ) )
# verify image_id
__UpperCAmelCase = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _snake_case ) )
# verify is_crowd
__UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _snake_case ) )
# verify class_labels
__UpperCAmelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _snake_case ) )
# verify masks
__UpperCAmelCase = 8_2_2_8_7_3
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _snake_case )
# verify orig_size
__UpperCAmelCase = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _snake_case ) )
# verify size
__UpperCAmelCase = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _snake_case ) )
| 708 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
__lowerCAmelCase : Optional[int] = "examples/"
__lowerCAmelCase : Dict = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
__lowerCAmelCase : List[str] = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
__lowerCAmelCase : int = "README.md"
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ):
"""simple docstring"""
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern]
__UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ )
__UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
for folder, directories, fnames in os.walk(UpperCamelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' )
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if not patch:
update_version_in_examples(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = '''🤗 Transformers currently provides the following architectures'''
__UpperCAmelCase = '''1. Want to contribute a new model?'''
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.readlines()
# Find the start of the list.
__UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
__UpperCAmelCase = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0]
return packaging.version.parse(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Any=False ):
"""simple docstring"""
__UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
__UpperCAmelCase = default_version.base_version
elif patch:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = default_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = get_version()
__UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
__UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
__lowerCAmelCase : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = ''''''
for i in table:
res += inp[i - 1]
return res
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
return data[1:] + data[0]
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase = ''''''
for i in range(len(UpperCamelCase__ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = int('''0b''' + data[0] + data[-1] , 2 )
__UpperCAmelCase = int('''0b''' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = message[:4]
__UpperCAmelCase = message[4:]
__UpperCAmelCase = apply_table(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = xor(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = apply_sbox(UpperCamelCase__ , temp[:4] ) # noqa: E741
__UpperCAmelCase = apply_sbox(UpperCamelCase__ , temp[4:] )
__UpperCAmelCase = '''0''' * (2 - len(UpperCamelCase__ )) + l # noqa: E741
__UpperCAmelCase = '''0''' * (2 - len(UpperCamelCase__ )) + r
__UpperCAmelCase = apply_table(l + r , UpperCamelCase__ )
__UpperCAmelCase = xor(UpperCamelCase__ , UpperCamelCase__ )
return temp + right
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = input("Enter 10 bit key: ")
__lowerCAmelCase : str = input("Enter 8 bit message: ")
__lowerCAmelCase : List[str] = [6, 3, 7, 4, 8, 5, 10, 9]
__lowerCAmelCase : Tuple = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
__lowerCAmelCase : Optional[Any] = [2, 4, 3, 1]
__lowerCAmelCase : int = [2, 6, 3, 1, 4, 8, 5, 7]
__lowerCAmelCase : int = [4, 1, 3, 5, 7, 2, 8, 6]
__lowerCAmelCase : Dict = [4, 1, 2, 3, 2, 3, 4, 1]
__lowerCAmelCase : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
__lowerCAmelCase : str = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
__lowerCAmelCase : Dict = apply_table(key, paa_table)
__lowerCAmelCase : str = temp[:5]
__lowerCAmelCase : str = temp[5:]
__lowerCAmelCase : Tuple = left_shift(left)
__lowerCAmelCase : Union[str, Any] = left_shift(right)
__lowerCAmelCase : Union[str, Any] = apply_table(left + right, pa_table)
__lowerCAmelCase : Union[str, Any] = left_shift(left)
__lowerCAmelCase : int = left_shift(right)
__lowerCAmelCase : Any = left_shift(left)
__lowerCAmelCase : List[str] = left_shift(right)
__lowerCAmelCase : Optional[Any] = apply_table(left + right, pa_table)
# encryption
__lowerCAmelCase : int = apply_table(message, IP)
__lowerCAmelCase : Dict = function(expansion, sa, sa, keya, temp)
__lowerCAmelCase : Dict = temp[4:] + temp[:4]
__lowerCAmelCase : Dict = function(expansion, sa, sa, keya, temp)
__lowerCAmelCase : Union[str, Any] = apply_table(temp, IP_inv)
print("Cipher text is:", CT)
# decryption
__lowerCAmelCase : Optional[Any] = apply_table(CT, IP)
__lowerCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp)
__lowerCAmelCase : str = temp[4:] + temp[:4]
__lowerCAmelCase : Tuple = function(expansion, sa, sa, keya, temp)
__lowerCAmelCase : Tuple = apply_table(temp, IP_inv)
print("Plain text after decypting is:", PT)
| 709 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(UpperCamelCase__ )
__UpperCAmelCase = max(UpperCamelCase__ )
__UpperCAmelCase = min(UpperCamelCase__ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , UpperCamelCase__ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
__lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip()
__lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| 654 | 0 |
'''simple docstring'''
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
a_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self : List[str] , __a : Tuple , __a : List[str] , __a : List[Any] ) -> Optional[Any]:
__UpperCAmelCase = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
__UpperCAmelCase = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 )
__UpperCAmelCase = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def snake_case__ ( self : int , __a : Any , __a : Optional[Any] ) -> str:
for example in examples:
__UpperCAmelCase = video_classifier(_a )
self.assertEqual(
_a , [
{'''score''': ANY(_a ), '''label''': ANY(_a )},
{'''score''': ANY(_a ), '''label''': ANY(_a )},
] , )
@require_torch
def snake_case__ ( self : str ) -> Dict:
__UpperCAmelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
__UpperCAmelCase = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 1_0} , crop_size={'''height''': 1_0, '''width''': 1_0} )
__UpperCAmelCase = pipeline(
'''video-classification''' , model=_a , feature_extractor=_a , frame_sampling_rate=4 )
__UpperCAmelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
__UpperCAmelCase = video_classifier(_a , top_k=2 )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , )
__UpperCAmelCase = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
[{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}],
[{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def snake_case__ ( self : Union[str, Any] ) -> Dict:
pass
| 710 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ):
"""simple docstring"""
__UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' )
__UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 654 | 0 |
'''simple docstring'''
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
a_ = 1
@register_to_config
def __init__( self : List[str] , __a : str=2_0_0_0 , __a : List[Any]=0.1 , __a : Any=2_0 , __a : str=1e-3 ) -> Optional[int]:
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
def snake_case__ ( self : int , __a : int , __a : Dict = None ) -> Optional[int]:
__UpperCAmelCase = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase__ , device=UpperCamelCase__ )
def snake_case__ ( self : Any , __a : Tuple , __a : Union[str, Any] , __a : Any , __a : List[Any]=None ) -> str:
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__UpperCAmelCase = (
-0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__UpperCAmelCase = std.flatten()
while len(std.shape ) < len(score.shape ):
__UpperCAmelCase = std.unsqueeze(-1 )
__UpperCAmelCase = -score / std
# compute
__UpperCAmelCase = -1.0 / len(self.timesteps )
__UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__UpperCAmelCase = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__UpperCAmelCase = beta_t.unsqueeze(-1 )
__UpperCAmelCase = -0.5 * beta_t * x
__UpperCAmelCase = torch.sqrt(UpperCamelCase__ )
__UpperCAmelCase = drift - diffusion**2 * score
__UpperCAmelCase = x + drift * dt
# add noise
__UpperCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase__ , device=x.device , dtype=x.dtype )
__UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self : Dict ) -> str:
return self.config.num_train_timesteps
| 711 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
__UpperCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i]
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__UpperCAmelCase = []
__UpperCAmelCase = -1
for i in range(UpperCamelCase__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__UpperCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__UpperCAmelCase = 0
__UpperCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
__lowerCAmelCase : List[Any] = 4
__lowerCAmelCase : List[Any] = [2, 5, 3, 7]
__lowerCAmelCase : Tuple = [0, 0, 0, 0]
__lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__lowerCAmelCase : Dict = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 654 | 0 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = int(number**0.5 )
return number == sq * sq
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
__UpperCAmelCase = x_den * y_den * z_den
__UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
top //= hcf
bottom //= hcf
return top, bottom
def lowerCAmelCase ( UpperCamelCase__ : int = 3_5 ):
"""simple docstring"""
__UpperCAmelCase = set()
__UpperCAmelCase = 4_2
__UpperCAmelCase = Fraction(0 )
__UpperCAmelCase = 4_2
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
__UpperCAmelCase = x_num * y_den + x_den * y_num
__UpperCAmelCase = x_den * y_den
__UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=2
__UpperCAmelCase = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
__UpperCAmelCase = x_den * x_den * y_den * y_den
if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ):
__UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
__UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
__UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=-1
__UpperCAmelCase = x_num * y_num
__UpperCAmelCase = x_den * y_num + x_num * y_den
__UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
# n=2
__UpperCAmelCase = x_num * x_num * y_num * y_num
__UpperCAmelCase = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ):
__UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
__UpperCAmelCase = int(sqrt(lowerCamelCase_ ) )
__UpperCAmelCase = gcd(lowerCamelCase_ , lowerCamelCase_ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__UpperCAmelCase = add_three(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
unique_s.add(lowerCamelCase_ )
for num, den in unique_s:
total += Fraction(lowerCamelCase_ , lowerCamelCase_ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F"""{solution() = }""")
| 712 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : int , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict:
requires_backends(cls , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : Any ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Any , **__a : int ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : List[str] = {
"configuration_xlm_roberta_xl": [
"XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XLMRobertaXLConfig",
"XLMRobertaXLOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : int = [
"XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMRobertaXLForCausalLM",
"XLMRobertaXLForMaskedLM",
"XLMRobertaXLForMultipleChoice",
"XLMRobertaXLForQuestionAnswering",
"XLMRobertaXLForSequenceClassification",
"XLMRobertaXLForTokenClassification",
"XLMRobertaXLModel",
"XLMRobertaXLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 713 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 654 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
return (data["data"], data["target"])
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=4_2 )
xgb.fit(a__ , a__ )
# Predict target for test data
__UpperCAmelCase = xgb.predict(a__ )
__UpperCAmelCase = predictions.reshape(len(a__ ) , 1 )
return predictions
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = fetch_california_housing()
__UpperCAmelCase , __UpperCAmelCase = data_handling(a__ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(
a__ , a__ , test_size=0.25 , random_state=1 )
__UpperCAmelCase = xgboost(a__ , a__ , a__ )
# Error printing
print(f"""Mean Absolute Error : {mean_absolute_error(a__ , a__ )}""" )
print(f"""Mean Square Error : {mean_squared_error(a__ , a__ )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 714 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : Optional[Any] = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0, 0, 0
__UpperCAmelCase = ugly_nums[ia] * 2
__UpperCAmelCase = ugly_nums[ia] * 3
__UpperCAmelCase = ugly_nums[ia] * 5
for _ in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
ugly_nums.append(UpperCamelCase__ )
if next_num == next_a:
ia += 1
__UpperCAmelCase = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
__UpperCAmelCase = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
__UpperCAmelCase = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F"""{ugly_numbers(200) = }""")
| 715 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ):
"""simple docstring"""
__UpperCAmelCase = {}
if train_file is not None:
__UpperCAmelCase = [train_file]
if eval_file is not None:
__UpperCAmelCase = [eval_file]
if test_file is not None:
__UpperCAmelCase = [test_file]
__UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ )
__UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() )
__UpperCAmelCase = features_name.pop(UpperCamelCase__ )
__UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) )
__UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )}
__UpperCAmelCase = tokenizer.model_input_names
__UpperCAmelCase = {}
if len(UpperCamelCase__ ) == 1:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , )
elif len(UpperCamelCase__ ) == 2:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A :
a_ = field(metadata={'''help''': '''Which column contains the label'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} )
a_ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
a_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase ( ):
"""simple docstring"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
__UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__UpperCAmelCase = TFTrainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 654 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCAmelCase : int = {
'''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : int = [
'''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ResNetForImageClassification''',
'''ResNetModel''',
'''ResNetPreTrainedModel''',
'''ResNetBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[str] = [
'''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFResNetForImageClassification''',
'''TFResNetModel''',
'''TFResNetPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[str] = [
'''FlaxResNetForImageClassification''',
'''FlaxResNetModel''',
'''FlaxResNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 716 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A :
def __init__( self : List[Any] , __a : Any , ) -> Dict:
__UpperCAmelCase = parent
__UpperCAmelCase = 1_3
__UpperCAmelCase = 7
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = 9_9
__UpperCAmelCase = 3_2
__UpperCAmelCase = 2
__UpperCAmelCase = 4
__UpperCAmelCase = 3_7
__UpperCAmelCase = '''gelu'''
__UpperCAmelCase = 0.1
__UpperCAmelCase = 0.1
__UpperCAmelCase = 5_1_2
__UpperCAmelCase = 1_6
__UpperCAmelCase = 2
__UpperCAmelCase = 0.0_2
__UpperCAmelCase = 3
__UpperCAmelCase = 4
__UpperCAmelCase = None
def snake_case__ ( self : Optional[int] ) -> Dict:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any:
__UpperCAmelCase = TFDistilBertModel(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
__UpperCAmelCase = [input_ids, input_mask]
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int:
__UpperCAmelCase = TFDistilBertForMaskedLM(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict:
__UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForSequenceClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str:
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = TFDistilBertForMultipleChoice(__a )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForTokenClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : str ) -> Any:
__UpperCAmelCase = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
a_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
a_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a_ = False
a_ = False
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = TFDistilBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ) -> str:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*__a )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*__a )
def snake_case__ ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*__a )
def snake_case__ ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a )
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*__a )
@slow
def snake_case__ ( self : Dict ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCAmelCase = TFDistilBertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
class A ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ) -> Dict:
__UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(__a )[0]
__UpperCAmelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , __a )
__UpperCAmelCase = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
| 654 | 0 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Union[str, Any] = {
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json",
"Salesforce/blip-vqa-capfit-large": (
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-base": (
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-large": (
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"
),
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json",
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json",
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json",
"Salesforce/blip-itm-large-flikr": (
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"
),
}
class A ( UpperCamelCase_ ):
'''simple docstring'''
a_ = '''blip_text_model'''
def __init__( self : str , __a : Optional[int]=3_0_5_2_4 , __a : List[str]=7_6_8 , __a : List[str]=7_6_8 , __a : Union[str, Any]=3_0_7_2 , __a : Dict=7_6_8 , __a : str=1_2 , __a : str=8 , __a : List[str]=5_1_2 , __a : int="gelu" , __a : List[Any]=1e-12 , __a : Optional[int]=0.0 , __a : Tuple=0.0 , __a : Any=0.0_2 , __a : Tuple=3_0_5_2_2 , __a : Optional[int]=2 , __a : Any=0 , __a : Dict=1_0_2 , __a : Tuple=True , __a : Tuple=True , **__a : int , ) -> Tuple:
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = encoder_hidden_size
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = projection_dim
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = hidden_act
__UpperCAmelCase = initializer_range
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = is_decoder
__UpperCAmelCase = use_cache
@classmethod
def snake_case__ ( cls : Any , __a : List[str] , **__a : Optional[Any] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__a )
__UpperCAmelCase = cls.get_config_dict(__a , **__a )
# get the text config dict if we are loading from BlipConfig
if config_dict.get('''model_type''' ) == "blip":
__UpperCAmelCase = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__a , **__a )
class A ( UpperCamelCase_ ):
'''simple docstring'''
a_ = '''blip_vision_model'''
def __init__( self : Optional[Any] , __a : Tuple=7_6_8 , __a : Dict=3_0_7_2 , __a : int=5_1_2 , __a : Any=1_2 , __a : Union[str, Any]=1_2 , __a : List[str]=3_8_4 , __a : Dict=1_6 , __a : Dict="gelu" , __a : Optional[int]=1e-5 , __a : str=0.0 , __a : Optional[Any]=1e-10 , **__a : Any , ) -> int:
super().__init__(**__a )
__UpperCAmelCase = hidden_size
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = projection_dim
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = patch_size
__UpperCAmelCase = image_size
__UpperCAmelCase = initializer_range
__UpperCAmelCase = attention_dropout
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = hidden_act
@classmethod
def snake_case__ ( cls : Optional[int] , __a : int , **__a : int ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__a )
__UpperCAmelCase = cls.get_config_dict(__a , **__a )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get('''model_type''' ) == "blip":
__UpperCAmelCase = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__a , **__a )
class A ( UpperCamelCase_ ):
'''simple docstring'''
a_ = '''blip'''
a_ = True
def __init__( self : Optional[int] , __a : Tuple=None , __a : Optional[Any]=None , __a : Union[str, Any]=5_1_2 , __a : str=2.6_5_9_2 , __a : Tuple=2_5_6 , **__a : Union[str, Any] , ) -> List[str]:
super().__init__(**__a )
if text_config is None:
__UpperCAmelCase = {}
logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' )
if vision_config is None:
__UpperCAmelCase = {}
logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' )
__UpperCAmelCase = BlipTextConfig(**__a )
__UpperCAmelCase = BlipVisionConfig(**__a )
__UpperCAmelCase = self.vision_config.hidden_size
__UpperCAmelCase = projection_dim
__UpperCAmelCase = logit_scale_init_value
__UpperCAmelCase = 1.0
__UpperCAmelCase = 0.0_2
__UpperCAmelCase = image_text_hidden_size
@classmethod
def snake_case__ ( cls : Union[str, Any] , __a : Dict , __a : str , **__a : Optional[int] ) -> Any:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a )
def snake_case__ ( self : int ) -> Any:
__UpperCAmelCase = copy.deepcopy(self.__dict__ )
__UpperCAmelCase = self.text_config.to_dict()
__UpperCAmelCase = self.vision_config.to_dict()
__UpperCAmelCase = self.__class__.model_type
return output
| 717 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__lowerCAmelCase : List[Any] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
from __future__ import annotations
def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): # noqa: E741
"""simple docstring"""
while r - l > 1:
__UpperCAmelCase = (l + r) // 2
if v[m] >= key:
__UpperCAmelCase = m
else:
__UpperCAmelCase = m # noqa: E741
return r
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
if len(_lowercase ) == 0:
return 0
__UpperCAmelCase = [0] * len(_lowercase )
__UpperCAmelCase = 1
__UpperCAmelCase = v[0]
for i in range(1 , len(_lowercase ) ):
if v[i] < tail[0]:
__UpperCAmelCase = v[i]
elif v[i] > tail[length - 1]:
__UpperCAmelCase = v[i]
length += 1
else:
__UpperCAmelCase = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 718 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class A ( UpperCAmelCase ):
a_ = '''bert-generation'''
def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
| 654 | 0 |
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
__UpperCAmelCase = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(_lowerCamelCase )
DownloadCommand.register_subcommand(_lowerCamelCase )
EnvironmentCommand.register_subcommand(_lowerCamelCase )
RunCommand.register_subcommand(_lowerCamelCase )
ServeCommand.register_subcommand(_lowerCamelCase )
UserCommands.register_subcommand(_lowerCamelCase )
AddNewModelCommand.register_subcommand(_lowerCamelCase )
AddNewModelLikeCommand.register_subcommand(_lowerCamelCase )
LfsCommands.register_subcommand(_lowerCamelCase )
PTtoTFCommand.register_subcommand(_lowerCamelCase )
# Let's go
__UpperCAmelCase = parser.parse_args()
if not hasattr(_lowerCamelCase , '''func''' ):
parser.print_help()
exit(1 )
# Run
__UpperCAmelCase = args.func(_lowerCamelCase )
service.run()
if __name__ == "__main__":
main()
| 719 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__lowerCAmelCase : str = 299_792_458
# Symbols
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z")
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 )
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return np.array(
[
[gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0],
[-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ):
"""simple docstring"""
# Ensure event is not empty
if event is None:
__UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(UpperCamelCase__ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__lowerCAmelCase : Dict = transform(29_979_245)
print("Example of four vector: ")
print(F"""ct' = {four_vector[0]}""")
print(F"""x' = {four_vector[1]}""")
print(F"""y' = {four_vector[2]}""")
print(F"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
__lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
__lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"""\n{numerical_vector}""")
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = len(lowercase_ )
__UpperCAmelCase = len(lowercase_ )
__UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__UpperCAmelCase = True
for i in range(lowercase_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__UpperCAmelCase = True
if a[i].islower():
__UpperCAmelCase = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : Any = tuple[int, int]
class A :
def __init__( self : Optional[int] ) -> int:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Dict ) -> Optional[int]:
return len(self.elements ) == 0
def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__a )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : int , __a : Any ) -> int:
if item in self.set:
self.set.remove(__a )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : List[str] ) -> Dict:
return self.elements[0][1]
def snake_case__ ( self : Any ) -> List[str]:
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(__a )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# euclidean distance
__UpperCAmelCase = np.array(UpperCamelCase__ )
__UpperCAmelCase = np.array(UpperCamelCase__ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# integer division by time variable
return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = '''*'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(UpperCamelCase__ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(UpperCamelCase__ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ):
"""simple docstring"""
for itera in range(UpperCamelCase__ ):
open_list[itera].remove_element(UpperCamelCase__ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase__ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase__ ):
if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ):
open_list[j].put(
UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Dict = make_common_ground()
__lowerCAmelCase : int = blocks_blk
# hyper parameters
__lowerCAmelCase : Dict = 1
__lowerCAmelCase : List[str] = 1
__lowerCAmelCase : Union[str, Any] = 20
__lowerCAmelCase : Any = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[Any] = (0, 0)
__lowerCAmelCase : Any = (n - 1, n - 1)
__lowerCAmelCase : Optional[int] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(UpperCamelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , UpperCamelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_inad.append(UpperCamelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_anchor.append(UpperCamelCase__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 654 | 0 |
'''simple docstring'''
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase ( UpperCamelCase__ : Tuple ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase ( ):
"""simple docstring"""
with parallel_backend('''spark''' ):
assert ParallelBackendConfig.backend_name == "spark"
__UpperCAmelCase = [1, 2, 3]
with pytest.raises(lowerCAmelCase__ ):
with parallel_backend('''unsupported backend''' ):
map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=2 )
with pytest.raises(lowerCAmelCase__ ):
with parallel_backend('''unsupported backend''' ):
map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('''num_proc''' , [2, -1] )
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase = [1, 2]
__UpperCAmelCase = {'''a''': 1, '''b''': 2}
__UpperCAmelCase = {'''a''': [1, 2], '''b''': [3, 4]}
__UpperCAmelCase = {'''a''': {'''1''': 1}, '''b''': 2}
__UpperCAmelCase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
__UpperCAmelCase = [2, 3]
__UpperCAmelCase = {'''a''': 2, '''b''': 3}
__UpperCAmelCase = {'''a''': [2, 3], '''b''': [4, 5]}
__UpperCAmelCase = {'''a''': {'''1''': 2}, '''b''': 3}
__UpperCAmelCase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
with parallel_backend('''spark''' ):
assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa
assert map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) == expected_map_nested_sa
| 721 |
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
__lowerCAmelCase : List[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
__lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
__lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
__lowerCAmelCase : Optional[int] = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
]
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__UpperCAmelCase = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
__UpperCAmelCase = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = tf_models
__UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = flax_models
__UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = pt_models
__UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
__UpperCAmelCase = True
break
# Try again after removing the last word in the name
__UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] )
__UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__UpperCAmelCase = list(UpperCamelCase__ )
all_models.sort()
__UpperCAmelCase = {'''model_type''': all_models}
__UpperCAmelCase = [pt_models[t] for t in all_models]
__UpperCAmelCase = [tf_models[t] for t in all_models]
__UpperCAmelCase = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__UpperCAmelCase = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__UpperCAmelCase = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__UpperCAmelCase = '''AutoTokenizer'''
__UpperCAmelCase = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""]
__UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
__UpperCAmelCase = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = get_frameworks_table()
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
__UpperCAmelCase = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ )
__UpperCAmelCase = Dataset.from_json(UpperCamelCase__ )
__UpperCAmelCase = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(UpperCamelCase__ ) )
}
__UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__UpperCAmelCase = sorted(table.keys() )
__UpperCAmelCase = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) )
if commit_sha is not None:
__UpperCAmelCase = (
f"""Update with commit {commit_sha}\n\nSee: """
f"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
__UpperCAmelCase = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS
__UpperCAmelCase = []
for key in pipeline_tasks:
if key not in in_table:
__UpperCAmelCase = pipeline_tasks[key]['''pt''']
if isinstance(UpperCamelCase__ , (list, tuple) ):
__UpperCAmelCase = model[0]
__UpperCAmelCase = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ''', '''.join(UpperCamelCase__ )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
f"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
__lowerCAmelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 654 | 0 |
from typing import Any
def lowerCAmelCase ( UpperCamelCase__ : list ):
"""simple docstring"""
if not input_list:
return []
__UpperCAmelCase = [input_list.count(_lowerCamelCase ) for value in input_list]
__UpperCAmelCase = max(_lowerCamelCase ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(_lowerCamelCase ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__lowerCAmelCase : Optional[int] = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class A ( unittest.TestCase ):
def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple:
__UpperCAmelCase = None
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
__UpperCAmelCase = os.path.abspath('''examples''' )
for item in os.listdir(__a ):
if item not in EXCLUDE_EXAMPLES:
__UpperCAmelCase = os.path.join(__a , __a )
if os.path.isfile(__a ) and ".py" in item_path:
with self.subTest(
tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ):
__UpperCAmelCase = compare_against_test(
os.path.join(__a , __a ) , __a , __a , __a )
__UpperCAmelCase = '''\n'''.join(__a )
if special_strings is not None:
for string in special_strings:
__UpperCAmelCase = diff.replace(__a , '''''' )
self.assertEqual(__a , '''''' )
def snake_case__ ( self : Optional[Any] ) -> str:
self.one_complete_example('''complete_nlp_example.py''' , __a )
self.one_complete_example('''complete_nlp_example.py''' , __a )
def snake_case__ ( self : List[str] ) -> Tuple:
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
__UpperCAmelCase = [
''' ''' * 1_6 + '''{\n\n''',
''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 2_0 + '''"epoch": epoch,\n\n''',
''' ''' * 1_6 + '''},\n\n''',
''' ''' * 1_6 + '''step=epoch,\n''',
''' ''' * 1_2,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class A ( UpperCAmelCase ):
a_ = False
@classmethod
def snake_case__ ( cls : Tuple ) -> str:
super().setUpClass()
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
__UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Dict ) -> int:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
def snake_case__ ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
if torch.cuda.is_available():
__UpperCAmelCase = torch.cuda.device_count()
else:
__UpperCAmelCase = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
else:
self.assertIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
@slow
def snake_case__ ( self : Any ) -> Optional[Any]:
__UpperCAmelCase = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
__UpperCAmelCase = re.findall('''({.+})''' , __a )
__UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1]
__UpperCAmelCase = ast.literal_eval(__a )
self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 )
def snake_case__ ( self : Dict ) -> int:
__UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdir:
__UpperCAmelCase = f"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
__UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
__UpperCAmelCase = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 654 | 0 |
__lowerCAmelCase : str = {
"""Pillow""": """Pillow""",
"""accelerate""": """accelerate>=0.11.0""",
"""compel""": """compel==0.1.8""",
"""black""": """black~=23.1""",
"""datasets""": """datasets""",
"""filelock""": """filelock""",
"""flax""": """flax>=0.4.1""",
"""hf-doc-builder""": """hf-doc-builder>=0.3.0""",
"""huggingface-hub""": """huggingface-hub>=0.13.2""",
"""requests-mock""": """requests-mock==1.10.0""",
"""importlib_metadata""": """importlib_metadata""",
"""invisible-watermark""": """invisible-watermark""",
"""isort""": """isort>=5.5.4""",
"""jax""": """jax>=0.2.8,!=0.3.2""",
"""jaxlib""": """jaxlib>=0.1.65""",
"""Jinja2""": """Jinja2""",
"""k-diffusion""": """k-diffusion>=0.0.12""",
"""torchsde""": """torchsde""",
"""note_seq""": """note_seq""",
"""librosa""": """librosa""",
"""numpy""": """numpy""",
"""omegaconf""": """omegaconf""",
"""parameterized""": """parameterized""",
"""protobuf""": """protobuf>=3.20.3,<4""",
"""pytest""": """pytest""",
"""pytest-timeout""": """pytest-timeout""",
"""pytest-xdist""": """pytest-xdist""",
"""ruff""": """ruff>=0.0.241""",
"""safetensors""": """safetensors""",
"""sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""",
"""scipy""": """scipy""",
"""onnx""": """onnx""",
"""regex""": """regex!=2019.12.17""",
"""requests""": """requests""",
"""tensorboard""": """tensorboard""",
"""torch""": """torch>=1.4""",
"""torchvision""": """torchvision""",
"""transformers""": """transformers>=4.25.1""",
"""urllib3""": """urllib3<=2.0.0""",
}
| 701 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__lowerCAmelCase : Any = ""
__lowerCAmelCase : int = ""
__lowerCAmelCase : Union[str, Any] = ""
__lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal)
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ )
print('''Processing...''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for index, image in enumerate(UpperCamelCase__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCAmelCase = random_chars(3_2 )
__UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" )
__UpperCAmelCase = []
for anno in new_annos[index]:
__UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(UpperCamelCase__ )
with open(f"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ):
__UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(UpperCamelCase__ ) as in_file:
__UpperCAmelCase = in_file.readlines()
__UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" )
__UpperCAmelCase = []
for obj_list in obj_lists:
__UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(UpperCamelCase__ )
labels.append(UpperCamelCase__ )
return img_paths, labels
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = []
for idx in range(len(UpperCamelCase__ ) ):
__UpperCAmelCase = []
__UpperCAmelCase = img_list[idx]
path_list.append(UpperCamelCase__ )
__UpperCAmelCase = anno_list[idx]
__UpperCAmelCase = cva.imread(UpperCamelCase__ )
if flip_type == 1:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(UpperCamelCase__ )
new_imgs_list.append(UpperCamelCase__ )
return new_imgs_list, new_annos_lists, path_list
def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCAmelCase : Tuple = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[int] = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
__lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 702 |
'''simple docstring'''
from pathlib import Path
import fire
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = Path(UpperCamelCase__ )
__UpperCAmelCase = Path(UpperCamelCase__ )
dest_dir.mkdir(exist_ok=UpperCamelCase__ )
for path in src_dir.iterdir():
__UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
__UpperCAmelCase = dest_dir.joinpath(path.name )
print(UpperCamelCase__ )
dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 654 | 0 |
'''simple docstring'''
import cmath
import math
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase = math.radians(SCREAMING_SNAKE_CASE_ )
__UpperCAmelCase = math.radians(SCREAMING_SNAKE_CASE_ )
# Convert voltage and current to rectangular form
__UpperCAmelCase = cmath.rect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCAmelCase = cmath.rect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = f"""Input value of [number={number}] must be an integer"""
raise TypeError(UpperCamelCase__ )
if number < 1:
__UpperCAmelCase = f"""Input value of [number={number}] must be > 0"""
raise ValueError(UpperCamelCase__ )
__UpperCAmelCase = 1
for i in range(1 , UpperCamelCase__ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 654 | 0 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def lowerCAmelCase ( UpperCamelCase__ : List[Any] ):
"""simple docstring"""
return x + 2
class A ( unittest.TestCase ):
def snake_case__ ( self : List[Any] ) -> int:
__UpperCAmelCase = 'x = 3'
__UpperCAmelCase = {}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
assert result == 3
self.assertDictEqual(__a , {'''x''': 3} )
__UpperCAmelCase = 'x = y'
__UpperCAmelCase = {'y': 5}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__a , {'''x''': 5, '''y''': 5} )
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase = 'y = add_two(x)'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {'''add_two''': add_two} , state=__a )
assert result == 5
self.assertDictEqual(__a , {'''x''': 3, '''y''': 5} )
# Won't work without the tool
with CaptureStdout() as out:
__UpperCAmelCase = evaluate(__a , {} , state=__a )
assert result is None
assert "tried to execute add_two" in out.out
def snake_case__ ( self : Any ) -> Optional[int]:
__UpperCAmelCase = 'x = 3'
__UpperCAmelCase = {}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
assert result == 3
self.assertDictEqual(__a , {'''x''': 3} )
def snake_case__ ( self : List[str] ) -> Optional[Any]:
__UpperCAmelCase = 'test_dict = {\'x\': x, \'y\': add_two(x)}'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {'''add_two''': add_two} , state=__a )
self.assertDictEqual(__a , {'''x''': 3, '''y''': 5} )
self.assertDictEqual(__a , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} )
def snake_case__ ( self : Optional[Any] ) -> int:
__UpperCAmelCase = 'x = 3\ny = 5'
__UpperCAmelCase = {}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__a , {'''x''': 3, '''y''': 5} )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
__UpperCAmelCase = 'text = f\'This is x: {x}.\''
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(__a , {'''x''': 3, '''text''': '''This is x: 3.'''} )
def snake_case__ ( self : Dict ) -> Any:
__UpperCAmelCase = 'if x <= 3:\n y = 2\nelse:\n y = 5'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(__a , {'''x''': 3, '''y''': 2} )
__UpperCAmelCase = {'x': 8}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__a , {'''x''': 8, '''y''': 5} )
def snake_case__ ( self : int ) -> Any:
__UpperCAmelCase = 'test_list = [x, add_two(x)]'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {'''add_two''': add_two} , state=__a )
self.assertListEqual(__a , [3, 5] )
self.assertDictEqual(__a , {'''x''': 3, '''test_list''': [3, 5]} )
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = 'y = x'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {} , state=__a )
assert result == 3
self.assertDictEqual(__a , {'''x''': 3, '''y''': 3} )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
__UpperCAmelCase = 'test_list = [x, add_two(x)]\ntest_list[1]'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {'''add_two''': add_two} , state=__a )
assert result == 5
self.assertDictEqual(__a , {'''x''': 3, '''test_list''': [3, 5]} )
__UpperCAmelCase = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
__UpperCAmelCase = {'x': 3}
__UpperCAmelCase = evaluate(__a , {'''add_two''': add_two} , state=__a )
assert result == 5
self.assertDictEqual(__a , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
__UpperCAmelCase = 'x = 0\nfor i in range(3):\n x = i'
__UpperCAmelCase = {}
__UpperCAmelCase = evaluate(__a , {'''range''': range} , state=__a )
assert result == 2
self.assertDictEqual(__a , {'''x''': 2, '''i''': 2} )
| 704 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowerCAmelCase ( ):
"""simple docstring"""
raise RuntimeError('''CUDA out of memory.''' )
class A ( nn.Module ):
def __init__( self : Optional[Any] ) -> int:
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]:
return self.lineara(self.batchnorm(self.lineara(__a ) ) )
class A ( unittest.TestCase ):
def snake_case__ ( self : Optional[int] ) -> Any:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : Union[str, Any] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def snake_case__ ( self : Any ) -> int:
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(__a : Optional[int] ):
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : Any ) -> List[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Dict ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : List[Any] ) -> List[str]:
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(__a ) as cm:
mock_training_loop_function(1_2_8 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Tuple ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def snake_case__ ( self : Any ) -> List[Any]:
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , __a )
__UpperCAmelCase = release_memory(__a )
self.assertEqual(torch.cuda.memory_allocated() , __a )
| 654 | 0 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class A ( __lowercase , unittest.TestCase ):
a_ = VideoToVideoSDPipeline
a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''}
a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''}
a_ = PipelineTesterMixin.required_optional_params - {'''latents'''}
a_ = False
# No `output_type`.
a_ = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=3_2 , attention_head_dim=4 , )
__UpperCAmelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , )
__UpperCAmelCase = CLIPTextModel(_A )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def snake_case__ ( self : List[str] , __a : Any , __a : str=0 ) -> Optional[Any]:
# 3 frames
__UpperCAmelCase = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(_A ) ).to(_A )
if str(_A ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_A )
else:
__UpperCAmelCase = torch.Generator(device=_A ).manual_seed(_A )
__UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''video''': video,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def snake_case__ ( self : List[Any] ) -> str:
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = VideoToVideoSDPipeline(**_A )
__UpperCAmelCase = sd_pipe.to(_A )
sd_pipe.set_progress_bar_config(disable=_A )
__UpperCAmelCase = self.get_dummy_inputs(_A )
__UpperCAmelCase = '''np'''
__UpperCAmelCase = sd_pipe(**_A ).frames
__UpperCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (3_2, 3_2, 3)
__UpperCAmelCase = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=5e-3 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def snake_case__ ( self : List[Any] ) -> Tuple:
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def snake_case__ ( self : int ) -> str:
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def snake_case__ ( self : List[str] ) -> str:
pass
def snake_case__ ( self : List[str] ) -> List[Any]:
return super().test_progress_bar()
@slow
@skip_mps
class A ( unittest.TestCase ):
def snake_case__ ( self : List[str] ) -> str:
__UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__UpperCAmelCase = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=_A )
__UpperCAmelCase = video.to('''cuda''' )
__UpperCAmelCase = '''Spiderman is surfing'''
__UpperCAmelCase = pipe(_A , video=_A , generator=_A , num_inference_steps=3 , output_type='''pt''' ).frames
__UpperCAmelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 705 |
'''simple docstring'''
from __future__ import annotations
import math
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = u
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = temp * (u - i)
return temp
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = int(input('''enter the numbers of values: ''' ) )
__UpperCAmelCase = []
for _ in range(UpperCamelCase__ ):
y.append([] )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
y[i].append(UpperCamelCase__ )
__UpperCAmelCase = 0
print('''enter the values of parameters in a list: ''' )
__UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = float(input() )
__UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) )
__UpperCAmelCase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCamelCase__ ):
for j in range(n - i ):
__UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1]
__UpperCAmelCase = y[0][0]
for i in range(1 , UpperCamelCase__ ):
summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ )
print(f"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] = 0 ):
"""simple docstring"""
__UpperCAmelCase = length or len(lowerCAmelCase__ )
__UpperCAmelCase = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
__UpperCAmelCase , __UpperCAmelCase = list_data[i + 1], list_data[i]
__UpperCAmelCase = True
return list_data if not swapped else bubble_sort(lowerCAmelCase__ , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706 |
'''simple docstring'''
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : Dict = logging.get_logger(__name__)
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''),
('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''),
('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''),
('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''),
('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''),
('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''),
] )
return rename_keys
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
__UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" )
__UpperCAmelCase = in_proj_weight[
: encoder_config.hidden_size, :
]
__UpperCAmelCase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
__UpperCAmelCase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = dct.pop(UpperCamelCase__ )
__UpperCAmelCase = val
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
if "handwritten" in checkpoint_url:
__UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'''
__UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' )
return im
@torch.no_grad()
def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ )
__UpperCAmelCase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
__UpperCAmelCase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = 4_0_9_6
__UpperCAmelCase = 2_4
__UpperCAmelCase = 1_6
__UpperCAmelCase = 1_0_2_4
else:
raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = False
__UpperCAmelCase = '''relu'''
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
# load HuggingFace model
__UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ )
__UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ )
__UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
# load state_dict of original model, rename some keys
__UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model''']
__UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
__UpperCAmelCase = state_dict.pop(UpperCamelCase__ )
if key.startswith('''decoder''' ) and "output_projection" not in key:
__UpperCAmelCase = val
else:
__UpperCAmelCase = val
# load state dict
model.load_state_dict(UpperCamelCase__ )
# Check outputs on an image
__UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size )
__UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' )
__UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values
# verify logits
__UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
__UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ )
__UpperCAmelCase = outputs.logits
__UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] )
elif "trocr-large-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] )
elif "trocr-base-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] )
elif "trocr-large-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected"
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 654 | 0 |
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
__lowerCAmelCase : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
__lowerCAmelCase : Optional[Any] = "CompVis/stable-diffusion-v1-2"
__lowerCAmelCase : Tuple = "CompVis/stable-diffusion-v1-3"
__lowerCAmelCase : List[Any] = "CompVis/stable-diffusion-v1-4"
class A ( __lowerCamelCase ):
def __init__( self : Optional[int] , __a : List[Any] , __a : int , __a : Any , __a : str , __a : int , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] = True , ) -> Dict:
super()._init_()
__UpperCAmelCase = StableDiffusionPipeline.from_pretrained(a_ )
__UpperCAmelCase = StableDiffusionPipeline.from_pretrained(a_ )
__UpperCAmelCase = StableDiffusionPipeline.from_pretrained(a_ )
__UpperCAmelCase = StableDiffusionPipeline(
vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=a_ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def snake_case__ ( self : Union[str, Any] ) -> Tuple:
return {k: getattr(self , a_ ) for k in self.config.keys() if not k.startswith('''_''' )}
def snake_case__ ( self : Optional[int] , __a : List[Any] = "auto" ) -> Dict:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__UpperCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(a_ )
def snake_case__ ( self : int ) -> List[Any]:
self.enable_attention_slicing(a_ )
@torch.no_grad()
def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Optional[Any] = 5_1_2 , __a : Dict = 5_1_2 , __a : int = 5_0 , __a : Tuple = 7.5 , __a : Optional[int] = None , __a : Dict = 1 , __a : Dict = 0.0 , __a : Optional[Any] = None , __a : Any = None , __a : Union[str, Any] = "pil" , __a : Union[str, Any] = True , __a : Tuple = None , __a : str = 1 , **__a : List[Any] , ) -> List[Any]:
return self.pipea(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
@torch.no_grad()
def snake_case__ ( self : Union[str, Any] , __a : Optional[Any] , __a : Any = 5_1_2 , __a : List[Any] = 5_1_2 , __a : int = 5_0 , __a : Optional[Any] = 7.5 , __a : str = None , __a : Optional[int] = 1 , __a : Optional[Any] = 0.0 , __a : int = None , __a : List[str] = None , __a : str = "pil" , __a : List[str] = True , __a : Optional[Any] = None , __a : List[str] = 1 , **__a : int , ) -> Tuple:
return self.pipea(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
@torch.no_grad()
def snake_case__ ( self : Tuple , __a : Optional[int] , __a : int = 5_1_2 , __a : Optional[Any] = 5_1_2 , __a : Any = 5_0 , __a : Tuple = 7.5 , __a : Tuple = None , __a : List[Any] = 1 , __a : Tuple = 0.0 , __a : Tuple = None , __a : int = None , __a : Dict = "pil" , __a : Union[str, Any] = True , __a : Union[str, Any] = None , __a : Tuple = 1 , **__a : Optional[int] , ) -> Dict:
return self.pipea(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
@torch.no_grad()
def snake_case__ ( self : Union[str, Any] , __a : List[Any] , __a : Optional[int] = 5_1_2 , __a : int = 5_1_2 , __a : Optional[int] = 5_0 , __a : Optional[Any] = 7.5 , __a : Optional[Any] = None , __a : List[str] = 1 , __a : Optional[Any] = 0.0 , __a : List[str] = None , __a : Union[str, Any] = None , __a : Tuple = "pil" , __a : Any = True , __a : Union[str, Any] = None , __a : Optional[Any] = 1 , **__a : Union[str, Any] , ) -> Optional[int]:
return self.pipea(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
@torch.no_grad()
def snake_case__ ( self : List[Any] , __a : Any , __a : Optional[int] = 5_1_2 , __a : int = 5_1_2 , __a : Optional[Any] = 5_0 , __a : str = 7.5 , __a : Any = None , __a : Union[str, Any] = 1 , __a : List[str] = 0.0 , __a : Union[str, Any] = None , __a : str = None , __a : Dict = "pil" , __a : str = True , __a : int = None , __a : int = 1 , **__a : Tuple , ) -> Optional[int]:
__UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu"
self.to(a_ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
__UpperCAmelCase = self.textaimg_sda_a(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
# Get first result from Stable Diffusion Checkpoint v1.2
__UpperCAmelCase = self.textaimg_sda_a(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
# Get first result from Stable Diffusion Checkpoint v1.3
__UpperCAmelCase = self.textaimg_sda_a(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
# Get first result from Stable Diffusion Checkpoint v1.4
__UpperCAmelCase = self.textaimg_sda_a(
prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 707 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class A ( unittest.TestCase ):
def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]:
return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy"""
def snake_case__ ( self : Dict ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return image
def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = '''bf16''' if fpaa else None
__UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained(
__a , subfolder='''unet''' , dtype=__a , revision=__a )
return model, params
def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return hidden_states
@parameterized.expand(
[
# fmt: off
[8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]],
[1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]],
[8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]],
[3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]],
# fmt: on
] )
def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]],
[1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]],
[8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]],
[3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]],
# fmt: on
] )
def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
| 654 | 0 |
'''simple docstring'''
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
__lowerCAmelCase : Dict = datasets.utils.logging.get_logger(__name__)
class A ( folder_based_builder.FolderBasedBuilderConfig ):
a_ = None
a_ = None
class A ( folder_based_builder.FolderBasedBuilder ):
a_ = datasets.Audio()
a_ = '''audio'''
a_ = AudioFolderConfig
a_ = 4_2 # definition at the bottom of the script
a_ = AudioClassification(audio_column='''audio''' , label_column='''label''' )
__lowerCAmelCase : int = [
".aiff",
".au",
".avr",
".caf",
".flac",
".htk",
".svx",
".mat4",
".mat5",
".mpc2k",
".ogg",
".paf",
".pvf",
".raw",
".rf64",
".sd2",
".sds",
".ircam",
".voc",
".w64",
".wav",
".nist",
".wavex",
".wve",
".xi",
".mp3",
".opus",
]
__lowerCAmelCase : str = AUDIO_EXTENSIONS
| 708 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
__lowerCAmelCase : Optional[int] = "examples/"
__lowerCAmelCase : Dict = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
__lowerCAmelCase : List[str] = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
__lowerCAmelCase : int = "README.md"
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ):
"""simple docstring"""
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern]
__UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ )
__UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
for folder, directories, fnames in os.walk(UpperCamelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' )
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if not patch:
update_version_in_examples(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = '''🤗 Transformers currently provides the following architectures'''
__UpperCAmelCase = '''1. Want to contribute a new model?'''
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.readlines()
# Find the start of the list.
__UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
__UpperCAmelCase = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0]
return packaging.version.parse(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Any=False ):
"""simple docstring"""
__UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
__UpperCAmelCase = default_version.base_version
elif patch:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = default_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = get_version()
__UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
__UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
__lowerCAmelCase : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 654 | 0 |
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__lowerCAmelCase : int = logging.getLogger(__name__)
__lowerCAmelCase : Union[str, Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
__lowerCAmelCase : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class SCREAMING_SNAKE_CASE_ :
a_ = field(
default=lowerCAmelCase__ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Leave None if you want to train a model from'''
''' scratch.'''
)
} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCAmelCase__ )} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class SCREAMING_SNAKE_CASE_ :
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} )
a_ = field(
default=lowerCAmelCase__ , metadata={
'''help''': (
'''The input training data files (multiple files in glob format). '''
'''Very often splitting large files to smaller files can prevent tokenizer going out of memory'''
)
} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} )
a_ = field(default=lowerCAmelCase__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} )
a_ = field(
default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
a_ = field(
default=1 / 6 , metadata={
'''help''': (
'''Ratio of length of a span of masked tokens to surrounding context length for permutation language'''
''' modeling.'''
)
} , )
a_ = field(
default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} )
a_ = field(
default=-1 , metadata={
'''help''': (
'''Optional input sequence length after tokenization.'''
'''The training dataset will be truncated in block of this size for training.'''
'''Default to the model max input length for single sentence inputs (take into account special tokens).'''
)
} , )
a_ = field(
default=lowerCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def lowerCAmelCase ( UpperCamelCase__ : DataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , ):
"""simple docstring"""
def _dataset(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' )
return LineByLineWithRefDataset(
tokenizer=_A , file_path=_A , block_size=args.block_size , ref_path=_A , )
return LineByLineTextDataset(tokenizer=_A , file_path=_A , block_size=args.block_size )
else:
return TextDataset(
tokenizer=_A , file_path=_A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_A , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(_A ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '''
'''or remove the --do_eval argument.''' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _A )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
__UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
__UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.tokenizer_name:
__UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'''
''' script, save it,and load it from here, using --tokenizer_name''' )
if model_args.model_name_or_path:
__UpperCAmelCase = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , )
else:
logger.info('''Training new model from scratch''' )
__UpperCAmelCase = AutoModelWithLMHead.from_config(_A )
model.resize_token_embeddings(len(_A ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'''
'''--mlm flag (masked language modeling).''' )
if data_args.block_size <= 0:
__UpperCAmelCase = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
__UpperCAmelCase = min(data_args.block_size , tokenizer.max_len )
# Get datasets
__UpperCAmelCase = (
get_dataset(_A , tokenizer=_A , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
__UpperCAmelCase = (
get_dataset(_A , tokenizer=_A , evaluate=_A , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
__UpperCAmelCase = DataCollatorForPermutationLanguageModeling(
tokenizer=_A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
__UpperCAmelCase = DataCollatorForWholeWordMask(
tokenizer=_A , mlm_probability=data_args.mlm_probability )
else:
__UpperCAmelCase = DataCollatorForLanguageModeling(
tokenizer=_A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__UpperCAmelCase = Trainer(
model=_A , args=_A , data_collator=_A , train_dataset=_A , eval_dataset=_A , prediction_loss_only=_A , )
# Training
if training_args.do_train:
__UpperCAmelCase = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=_A )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = math.exp(eval_output['''eval_loss'''] )
__UpperCAmelCase = {'''perplexity''': perplexity}
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' )
if trainer.is_world_master():
with open(_A , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key in sorted(result.keys() ):
logger.info(''' %s = %s''' , _A , str(result[key] ) )
writer.write('''%s = %s\n''' % (key, str(result[key] )) )
results.update(_A )
return results
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 709 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(UpperCamelCase__ )
__UpperCAmelCase = max(UpperCamelCase__ )
__UpperCAmelCase = min(UpperCamelCase__ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , UpperCamelCase__ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
__lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip()
__lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| 654 | 0 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
__lowerCAmelCase : List[str] = TypeVar("KEY")
__lowerCAmelCase : str = TypeVar("VAL")
@dataclass(frozen=_A , slots=_A )
class A ( Generic[KEY, VAL] ):
a_ = 4_2
a_ = 4_2
class A ( _Item ):
def __init__( self : List[str] ) -> None:
super().__init__(UpperCamelCase__ , UpperCamelCase__ )
def __bool__( self : Union[str, Any] ) -> bool:
return False
__lowerCAmelCase : str = _DeletedItem()
class A ( MutableMapping[KEY, VAL] ):
def __init__( self : List[Any] , __a : int = 8 , __a : float = 0.7_5 ) -> None:
__UpperCAmelCase = initial_block_size
__UpperCAmelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__UpperCAmelCase = capacity_factor
__UpperCAmelCase = 0
def snake_case__ ( self : List[str] , __a : KEY ) -> int:
return hash(UpperCamelCase__ ) % len(self._buckets )
def snake_case__ ( self : int , __a : int ) -> int:
return (ind + 1) % len(self._buckets )
def snake_case__ ( self : Union[str, Any] , __a : int , __a : KEY , __a : VAL ) -> bool:
__UpperCAmelCase = self._buckets[ind]
if not stored:
__UpperCAmelCase = _Item(UpperCamelCase__ , UpperCamelCase__ )
self._len += 1
return True
elif stored.key == key:
__UpperCAmelCase = _Item(UpperCamelCase__ , UpperCamelCase__ )
return True
else:
return False
def snake_case__ ( self : Union[str, Any] ) -> bool:
__UpperCAmelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(UpperCamelCase__ )
def snake_case__ ( self : int ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__UpperCAmelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def snake_case__ ( self : int , __a : int ) -> None:
__UpperCAmelCase = self._buckets
__UpperCAmelCase = [None] * new_size
__UpperCAmelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def snake_case__ ( self : Dict ) -> None:
self._resize(len(self._buckets ) * 2 )
def snake_case__ ( self : Union[str, Any] ) -> None:
self._resize(len(self._buckets ) // 2 )
def snake_case__ ( self : Dict , __a : KEY ) -> Iterator[int]:
__UpperCAmelCase = self._get_bucket_index(UpperCamelCase__ )
for _ in range(len(self._buckets ) ):
yield ind
__UpperCAmelCase = self._get_next_ind(UpperCamelCase__ )
def snake_case__ ( self : Any , __a : KEY , __a : VAL ) -> None:
for ind in self._iterate_buckets(UpperCamelCase__ ):
if self._try_set(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
break
def __setitem__( self : str , __a : KEY , __a : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(UpperCamelCase__ , UpperCamelCase__ )
def __delitem__( self : int , __a : KEY ) -> None:
for ind in self._iterate_buckets(UpperCamelCase__ ):
__UpperCAmelCase = self._buckets[ind]
if item is None:
raise KeyError(UpperCamelCase__ )
if item is _deleted:
continue
if item.key == key:
__UpperCAmelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple , __a : KEY ) -> VAL:
for ind in self._iterate_buckets(UpperCamelCase__ ):
__UpperCAmelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(UpperCamelCase__ )
def __len__( self : Optional[int] ) -> int:
return self._len
def __iter__( self : int ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : str ) -> str:
__UpperCAmelCase = ''' ,'''.join(
f"""{item.key}: {item.val}""" for item in self._buckets if item )
return f"""HashMap({val_string})"""
| 710 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ):
"""simple docstring"""
__UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' )
__UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 654 | 0 |
'''simple docstring'''
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
| 711 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
__UpperCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i]
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__UpperCAmelCase = []
__UpperCAmelCase = -1
for i in range(UpperCamelCase__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__UpperCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__UpperCAmelCase = 0
__UpperCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
__lowerCAmelCase : List[Any] = 4
__lowerCAmelCase : List[Any] = [2, 5, 3, 7]
__lowerCAmelCase : Tuple = [0, 0, 0, 0]
__lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__lowerCAmelCase : Dict = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 654 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowerCAmelCase : Dict = logging.get_logger(__name__)
__lowerCAmelCase : Optional[int] = {"vocab_file": "sentencepiece.model"}
__lowerCAmelCase : Any = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
}
__lowerCAmelCase : str = {
"google/rembert": 256,
}
class A ( UpperCAmelCase ):
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Any , __a : str , __a : Optional[Any]=False , __a : Optional[int]=True , __a : Dict=True , __a : int="[CLS]" , __a : List[Any]="[SEP]" , __a : str="[UNK]" , __a : Any="[SEP]" , __a : List[Any]="[PAD]" , __a : Dict="[CLS]" , __a : Union[str, Any]="[MASK]" , **__a : Tuple , ) -> Optional[int]:
super().__init__(
do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , )
__UpperCAmelCase = do_lower_case
__UpperCAmelCase = remove_space
__UpperCAmelCase = keep_accents
__UpperCAmelCase = vocab_file
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(__a )
@property
def snake_case__ ( self : str ) -> Dict:
return len(self.sp_model )
def snake_case__ ( self : Optional[Any] ) -> Any:
__UpperCAmelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase = self.__dict__.copy()
__UpperCAmelCase = None
return state
def __setstate__( self : Tuple , __a : int ) -> str:
__UpperCAmelCase = d
__UpperCAmelCase = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , __a : Union[str, Any] , __a : Dict=False ) -> Union[str, Any]:
__UpperCAmelCase = self.sp_model.EncodeAsPieces(__a )
return pieces
def snake_case__ ( self : Dict , __a : List[str] ) -> Union[str, Any]:
return self.sp_model.PieceToId(__a )
def snake_case__ ( self : Tuple , __a : List[Any] ) -> Dict:
return self.sp_model.IdToPiece(__a )
def snake_case__ ( self : Optional[Any] , __a : Tuple ) -> Tuple:
__UpperCAmelCase = self.sp_model.decode_pieces(__a )
return out_string
def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] = None ) -> List[int]:
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , __a : Any , __a : Optional[Any] = None , __a : Optional[int] = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1]
return [1] + ([0] * len(__a )) + [1]
def snake_case__ ( self : Optional[Any] , __a : Tuple , __a : Tuple = None ) -> List[int]:
__UpperCAmelCase = [self.sep_token_id]
__UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Union[str, Any] , __a : List[Any] , __a : List[Any] = None ) -> Tuple[str]:
if not os.path.isdir(__a ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__a ) )
return
__UpperCAmelCase = os.path.join(
__a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ):
copyfile(self.vocab_file , __a )
return (out_vocab_file,)
| 712 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : int , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict:
requires_backends(cls , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : Any ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Any , **__a : int ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
| 654 | 0 |
'''simple docstring'''
import math
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
if (
not isinstance(lowerCamelCase_ , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * power_factor
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
if (
not isinstance(lowerCamelCase_ , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 654 | 0 |
from __future__ import annotations
import math
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = str(A__ )
__UpperCAmelCase = [n]
for i in range(1 , len(A__ ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if len(str(A__ ) ) > 3:
if not is_prime(int(str(A__ )[-3:] ) ) or not is_prime(int(str(A__ )[:3] ) ):
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : int = 1_1 ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = 1_3
while len(A__ ) != count:
if validate(A__ ):
__UpperCAmelCase = list_truncated_nums(A__ )
if all(is_prime(A__ ) for i in list_nums ):
list_truncated_primes.append(A__ )
num += 2
return list_truncated_primes
def lowerCAmelCase ( ):
"""simple docstring"""
return sum(compute_truncated_primes(1_1 ) )
if __name__ == "__main__":
print(F"""{sum(compute_truncated_primes(11)) = }""")
| 714 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : Optional[Any] = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def snake_case__ ( *__a : Optional[Any] , **__a : Union[str, Any] ) -> List[Any]:
pass
@is_pipeline_test
@require_vision
@require_torch
class A ( unittest.TestCase ):
a_ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def snake_case__ ( self : List[str] , __a : int , __a : Tuple , __a : Any ) -> Optional[int]:
__UpperCAmelCase = pipeline(
'''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' )
__UpperCAmelCase = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def snake_case__ ( self : Optional[Any] , __a : Optional[Any] , __a : List[Any] ) -> List[Any]:
__UpperCAmelCase = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase = len(__a )
self.assertGreater(__a , 0 )
self.assertEqual(
__a , [
{
'''score''': ANY(__a ),
'''label''': ANY(__a ),
'''box''': {'''xmin''': ANY(__a ), '''ymin''': ANY(__a ), '''xmax''': ANY(__a ), '''ymax''': ANY(__a )},
}
for i in range(__a )
] , )
@require_tf
@unittest.skip('''Zero Shot Object Detection not implemented in TF''' )
def snake_case__ ( self : List[str] ) -> str:
pass
@require_torch
def snake_case__ ( self : int ) -> Tuple:
__UpperCAmelCase = pipeline(
'''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' )
__UpperCAmelCase = object_detector(
'''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [
{'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}},
{'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}},
{'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}},
{'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}},
{'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}},
{'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}},
{'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}},
{'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}},
{'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}},
] , )
__UpperCAmelCase = object_detector(
[
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
}
] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [
[
{'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}},
{'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}},
{'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}},
{'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}},
{'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}},
{'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}},
{'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}},
{'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}},
{'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}},
]
] , )
@require_torch
@slow
def snake_case__ ( self : int ) -> List[str]:
__UpperCAmelCase = pipeline('''zero-shot-object-detection''' )
__UpperCAmelCase = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}},
] , )
__UpperCAmelCase = object_detector(
[
{
'''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
},
{
'''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
},
] , )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [
[
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}},
],
[
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}},
],
] , )
@require_tf
@unittest.skip('''Zero Shot Object Detection not implemented in TF''' )
def snake_case__ ( self : Any ) -> str:
pass
@require_torch
@slow
def snake_case__ ( self : Union[str, Any] ) -> Tuple:
__UpperCAmelCase = 0.2
__UpperCAmelCase = pipeline('''zero-shot-object-detection''' )
__UpperCAmelCase = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__a , )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}},
] , )
@require_torch
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
__UpperCAmelCase = 2
__UpperCAmelCase = pipeline('''zero-shot-object-detection''' )
__UpperCAmelCase = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__a , )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}},
] , )
| 715 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ):
"""simple docstring"""
__UpperCAmelCase = {}
if train_file is not None:
__UpperCAmelCase = [train_file]
if eval_file is not None:
__UpperCAmelCase = [eval_file]
if test_file is not None:
__UpperCAmelCase = [test_file]
__UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ )
__UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() )
__UpperCAmelCase = features_name.pop(UpperCamelCase__ )
__UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) )
__UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )}
__UpperCAmelCase = tokenizer.model_input_names
__UpperCAmelCase = {}
if len(UpperCamelCase__ ) == 1:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , )
elif len(UpperCamelCase__ ) == 2:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A :
a_ = field(metadata={'''help''': '''Which column contains the label'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} )
a_ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
a_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase ( ):
"""simple docstring"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
__UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__UpperCAmelCase = TFTrainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 654 | 0 |
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
__lowerCAmelCase : str = logging.get_logger(__name__)
def lowerCAmelCase ( UpperCamelCase__ : str=None , UpperCamelCase__ : str=None ):
"""simple docstring"""
return field(default_factory=lambda: default , metadata=a__ )
@dataclass
class A :
a_ = list_field(
default=[] , metadata={
'''help''': (
'''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'''
''' of all available models'''
)
} , )
a_ = list_field(
default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} )
a_ = list_field(
default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Use FP16 to accelerate inference.'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Benchmark training of model'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Verbose memory tracing'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , )
a_ = field(
default=UpperCAmelCase , metadata={
'''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'''
} , )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Trace memory line by line'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Save result to a CSV file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Save all print statements in a log file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Whether to print environment information'''} )
a_ = field(
default=UpperCAmelCase , metadata={
'''help''': (
'''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'''
''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'''
''' for debugging / testing and on TPU.'''
)
} , )
a_ = field(
default=F"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , )
a_ = field(
default=F"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , )
a_ = field(
default=F"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , )
a_ = field(
default=F"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , )
a_ = field(
default=F"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , )
a_ = field(
default=F"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , )
a_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} )
a_ = field(
default=UpperCAmelCase , metadata={
'''help''': (
'''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'''
''' model weights.'''
)
} , )
def snake_case__ ( self : List[Any] ) -> List[str]:
warnings.warn(
f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' , lowercase_ , )
def snake_case__ ( self : Tuple ) -> Tuple:
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def snake_case__ ( self : Any ) -> List[str]:
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def snake_case__ ( self : Any ) -> Tuple:
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 716 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A :
def __init__( self : List[Any] , __a : Any , ) -> Dict:
__UpperCAmelCase = parent
__UpperCAmelCase = 1_3
__UpperCAmelCase = 7
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = 9_9
__UpperCAmelCase = 3_2
__UpperCAmelCase = 2
__UpperCAmelCase = 4
__UpperCAmelCase = 3_7
__UpperCAmelCase = '''gelu'''
__UpperCAmelCase = 0.1
__UpperCAmelCase = 0.1
__UpperCAmelCase = 5_1_2
__UpperCAmelCase = 1_6
__UpperCAmelCase = 2
__UpperCAmelCase = 0.0_2
__UpperCAmelCase = 3
__UpperCAmelCase = 4
__UpperCAmelCase = None
def snake_case__ ( self : Optional[int] ) -> Dict:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any:
__UpperCAmelCase = TFDistilBertModel(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
__UpperCAmelCase = [input_ids, input_mask]
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int:
__UpperCAmelCase = TFDistilBertForMaskedLM(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict:
__UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForSequenceClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str:
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = TFDistilBertForMultipleChoice(__a )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForTokenClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : str ) -> Any:
__UpperCAmelCase = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
a_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
a_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a_ = False
a_ = False
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = TFDistilBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ) -> str:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*__a )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*__a )
def snake_case__ ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*__a )
def snake_case__ ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a )
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*__a )
@slow
def snake_case__ ( self : Dict ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCAmelCase = TFDistilBertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
class A ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ) -> Dict:
__UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(__a )[0]
__UpperCAmelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , __a )
__UpperCAmelCase = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
| 654 | 0 |
'''simple docstring'''
import random
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase = a[left_index]
__UpperCAmelCase = left_index + 1
for j in range(left_index + 1 , snake_case__ ):
if a[j] < pivot:
__UpperCAmelCase , __UpperCAmelCase = a[i], a[j]
i += 1
__UpperCAmelCase , __UpperCAmelCase = a[i - 1], a[left_index]
return i - 1
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ):
"""simple docstring"""
if left < right:
__UpperCAmelCase = random.randint(snake_case__ , right - 1 )
__UpperCAmelCase , __UpperCAmelCase = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
__UpperCAmelCase = partition(snake_case__ , snake_case__ , snake_case__ )
quick_sort_random(
snake_case__ , snake_case__ , snake_case__ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
snake_case__ , pivot_index + 1 , snake_case__ ) # recursive quicksort to the right of the pivot point
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = input('''Enter numbers separated by a comma:\n''' ).strip()
__UpperCAmelCase = [int(snake_case__ ) for item in user_input.split(''',''' )]
quick_sort_random(snake_case__ , 0 , len(snake_case__ ) )
print(snake_case__ )
if __name__ == "__main__":
main()
| 717 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__lowerCAmelCase : List[Any] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCAmelCase : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=8 ):
"""simple docstring"""
__UpperCAmelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A ( UpperCAmelCase ):
def __init__( self : Optional[Any] , __a : UNetaDConditionModel , __a : DDPMScheduler , __a : VQModel , ) -> Tuple:
super().__init__()
self.register_modules(
unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , movq=UpperCAmelCase__ , )
__UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def snake_case__ ( self : int , __a : List[Any] , __a : Dict , __a : Optional[Any] , __a : Tuple , __a : Tuple , __a : List[Any] ) -> int:
if latents is None:
__UpperCAmelCase = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__ )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
__UpperCAmelCase = latents.to(UpperCAmelCase__ )
__UpperCAmelCase = latents * scheduler.init_noise_sigma
return latents
def snake_case__ ( self : int , __a : List[str]=0 ) -> str:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" )
__UpperCAmelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , __a : int=0 ) -> str:
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
__UpperCAmelCase = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=UpperCAmelCase__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase = cpu_offload_with_hook(UpperCAmelCase__ , UpperCAmelCase__ , prev_module_hook=UpperCAmelCase__ )
# We'll offload the last model manually.
__UpperCAmelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def snake_case__ ( self : List[Any] ) -> int:
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCAmelCase__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCAmelCase__ )
def __call__( self : Any , __a : Union[torch.FloatTensor, List[torch.FloatTensor]] , __a : Union[torch.FloatTensor, List[torch.FloatTensor]] , __a : int = 5_1_2 , __a : int = 5_1_2 , __a : int = 1_0_0 , __a : float = 4.0 , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , ) -> Optional[Any]:
__UpperCAmelCase = self._execution_device
__UpperCAmelCase = guidance_scale > 1.0
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__UpperCAmelCase = torch.cat(UpperCAmelCase__ , dim=0 )
__UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
__UpperCAmelCase = torch.cat(UpperCAmelCase__ , dim=0 )
if do_classifier_free_guidance:
__UpperCAmelCase = image_embeds.repeat_interleave(UpperCAmelCase__ , dim=0 )
__UpperCAmelCase = negative_image_embeds.repeat_interleave(UpperCAmelCase__ , dim=0 )
__UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase__ )
self.scheduler.set_timesteps(UpperCAmelCase__ , device=UpperCAmelCase__ )
__UpperCAmelCase = self.scheduler.timesteps
__UpperCAmelCase = self.unet.config.in_channels
__UpperCAmelCase = downscale_height_and_width(UpperCAmelCase__ , UpperCAmelCase__ , self.movq_scale_factor )
# create initial latent
__UpperCAmelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__UpperCAmelCase = {'''image_embeds''': image_embeds}
__UpperCAmelCase = self.unet(
sample=UpperCAmelCase__ , timestep=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , added_cond_kwargs=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
__UpperCAmelCase = noise_pred.chunk(2 )
__UpperCAmelCase = variance_pred.chunk(2 )
__UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase = self.scheduler.step(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ , )[0]
# post-processing
__UpperCAmelCase = self.movq.decode(UpperCAmelCase__ , force_not_quantize=UpperCAmelCase__ )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
__UpperCAmelCase = image * 0.5 + 0.5
__UpperCAmelCase = image.clamp(0 , 1 )
__UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__UpperCAmelCase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase__ )
| 718 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class A ( UpperCAmelCase ):
a_ = '''bert-generation'''
def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
| 654 | 0 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
__lowerCAmelCase : Any = logging.getLogger(__name__)
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = argparse.ArgumentParser(
description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' )
parser.add_argument(
'''--dataset_name''' , type=UpperCamelCase__ , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , )
parser.add_argument(
'''--dataset_config''' , type=UpperCamelCase__ , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' )
parser.add_argument(
'''--tokenizer_name_or_path''' , type=UpperCamelCase__ , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , )
parser.add_argument(
'''--shard_size''' , type=UpperCamelCase__ , default=1_0_0_0 , help='''Number of entries to go in a single shard.''' , )
parser.add_argument('''--split''' , type=UpperCamelCase__ , default='''train''' , choices=['''train''', '''test''', '''validation'''] )
parser.add_argument(
'''--limit''' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='''Limit the number of shards (used for debugging).''' , )
parser.add_argument(
'''--max_length''' , type=UpperCamelCase__ , default=5_1_2 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum'''
''' sequence length that is a multiple of 8.''' , )
parser.add_argument(
'''--output_dir''' , default='''tf-tpu''' , type=UpperCamelCase__ , help='''Output directory where the TFRecord shards will be saved. If the'''
''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'''
''' shards will be directly saved to a Google Cloud Storage bucket.''' , )
__UpperCAmelCase = parser.parse_args()
return args
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
def fn(UpperCamelCase__ : Optional[int] ):
return tokenizer(examples['''text'''] )
return fn
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = []
for i in range(len(tokenized_data['''input_ids'''] ) ):
__UpperCAmelCase = {
"input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ),
"attention_mask": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ),
}
__UpperCAmelCase = tf.train.Features(feature=UpperCamelCase__ )
__UpperCAmelCase = tf.train.Example(features=UpperCamelCase__ )
__UpperCAmelCase = example.SerializeToString()
records.append(UpperCamelCase__ )
return records
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
__UpperCAmelCase = min(len(UpperCamelCase__ ) , args.limit )
__UpperCAmelCase = dataset.select(range(UpperCamelCase__ ) )
print(f"""Limiting the dataset to {args.limit} entries.""" )
__UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
__UpperCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(UpperCamelCase__ ):
os.makedirs(UpperCamelCase__ )
else:
__UpperCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
__UpperCAmelCase = tokenize_function(UpperCamelCase__ )
__UpperCAmelCase = dataset.map(UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=4 , remove_columns=['''text'''] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(UpperCamelCase__ : Optional[int] ):
# Concatenate all texts.
__UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
__UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
__UpperCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
__UpperCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , UpperCamelCase__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
__UpperCAmelCase = dataset_tokenized.map(UpperCamelCase__ , batched=UpperCamelCase__ , batch_size=1_0_0_0 , num_proc=4 )
__UpperCAmelCase = 0
__UpperCAmelCase = 0
for shard in range(0 , len(UpperCamelCase__ ) , args.shard_size ):
__UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size]
__UpperCAmelCase = len(dataset_snapshot['''input_ids'''] )
__UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""dataset-{shard_count}-{records_containing}.tfrecord""" )
__UpperCAmelCase = get_serialized_examples(UpperCamelCase__ )
with tf.io.TFRecordWriter(UpperCamelCase__ ) as out_file:
for i in range(len(UpperCamelCase__ ) ):
__UpperCAmelCase = serialized_examples[i]
out_file.write(UpperCamelCase__ )
print('''Wrote file {} containing {} records'''.format(UpperCamelCase__ , UpperCamelCase__ ) )
shard_count += 1
total_records += records_containing
with open(f"""split-{args.split}-records-count.txt""" , '''w''' ) as f:
print(f"""Total {args.split} records: {total_records}""" , file=UpperCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Optional[Any] = parse_args()
main(args)
| 719 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__lowerCAmelCase : str = 299_792_458
# Symbols
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z")
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 )
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return np.array(
[
[gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0],
[-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ):
"""simple docstring"""
# Ensure event is not empty
if event is None:
__UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(UpperCamelCase__ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__lowerCAmelCase : Dict = transform(29_979_245)
print("Example of four vector: ")
print(F"""ct' = {four_vector[0]}""")
print(F"""x' = {four_vector[1]}""")
print(F"""y' = {four_vector[2]}""")
print(F"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
__lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
__lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"""\n{numerical_vector}""")
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if num <= 0:
raise ValueError('''Input must be a positive integer''' )
__UpperCAmelCase = [True] * (num + 1)
__UpperCAmelCase = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , __a ):
__UpperCAmelCase = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 720 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : Any = tuple[int, int]
class A :
def __init__( self : Optional[int] ) -> int:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Dict ) -> Optional[int]:
return len(self.elements ) == 0
def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__a )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : int , __a : Any ) -> int:
if item in self.set:
self.set.remove(__a )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : List[str] ) -> Dict:
return self.elements[0][1]
def snake_case__ ( self : Any ) -> List[str]:
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(__a )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# euclidean distance
__UpperCAmelCase = np.array(UpperCamelCase__ )
__UpperCAmelCase = np.array(UpperCamelCase__ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# integer division by time variable
return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = '''*'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(UpperCamelCase__ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(UpperCamelCase__ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ):
"""simple docstring"""
for itera in range(UpperCamelCase__ ):
open_list[itera].remove_element(UpperCamelCase__ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase__ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase__ ):
if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ):
open_list[j].put(
UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Dict = make_common_ground()
__lowerCAmelCase : int = blocks_blk
# hyper parameters
__lowerCAmelCase : Dict = 1
__lowerCAmelCase : List[str] = 1
__lowerCAmelCase : Union[str, Any] = 20
__lowerCAmelCase : Any = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[Any] = (0, 0)
__lowerCAmelCase : Any = (n - 1, n - 1)
__lowerCAmelCase : Optional[int] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(UpperCamelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , UpperCamelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_inad.append(UpperCamelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_anchor.append(UpperCamelCase__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 654 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A :
def __init__( self : Dict , __a : Dict , __a : Tuple=1_3 , __a : Tuple=3_2 , __a : Any=3 , __a : Dict=4 , __a : List[str]=[1_0, 2_0, 3_0, 4_0] , __a : List[Any]=[2, 2, 3, 2] , __a : Optional[Any]=True , __a : int=True , __a : List[str]=3_7 , __a : Optional[int]="gelu" , __a : Dict=1_0 , __a : Any=0.0_2 , __a : Union[str, Any]=["stage2", "stage3", "stage4"] , __a : Tuple=[2, 3, 4] , __a : Union[str, Any]=None , ) -> str:
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = image_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = num_stages
__UpperCAmelCase = hidden_sizes
__UpperCAmelCase = depths
__UpperCAmelCase = is_training
__UpperCAmelCase = use_labels
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = num_labels
__UpperCAmelCase = initializer_range
__UpperCAmelCase = out_features
__UpperCAmelCase = out_indices
__UpperCAmelCase = scope
def snake_case__ ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def snake_case__ ( self : Any , __a : Optional[Any] , __a : Any , __a : List[str] ) -> Union[str, Any]:
__UpperCAmelCase = ConvNextVaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__UpperCAmelCase = model(snake_case_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def snake_case__ ( self : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] ) -> Any:
__UpperCAmelCase = ConvNextVaForImageClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
__UpperCAmelCase = model(snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : int , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] ) -> Any:
__UpperCAmelCase = ConvNextVaBackbone(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__UpperCAmelCase = model(snake_case_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase = None
__UpperCAmelCase = ConvNextVaBackbone(config=snake_case_ )
model.to(snake_case_ )
model.eval()
__UpperCAmelCase = model(snake_case_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.prepare_config_and_inputs()
__UpperCAmelCase = config_and_inputs
__UpperCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.prepare_config_and_inputs()
__UpperCAmelCase = config_and_inputs
__UpperCAmelCase = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class A ( _snake_case , _snake_case , unittest.TestCase ):
a_ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
a_ = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
a_ = False
def snake_case__ ( self : List[str] ) -> Optional[int]:
__UpperCAmelCase = ConvNextVaModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 )
def snake_case__ ( self : List[Any] ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
return
@unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' )
def snake_case__ ( self : List[Any] ) -> str:
pass
@unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
pass
@unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' )
def snake_case__ ( self : str ) -> Union[str, Any]:
pass
def snake_case__ ( self : Union[str, Any] ) -> str:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase = True
if model_class.__name__ in [
*get_values(snake_case_ ),
*get_values(snake_case_ ),
]:
continue
__UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.train()
__UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ )
__UpperCAmelCase = model(**snake_case_ ).loss
loss.backward()
def snake_case__ ( self : Union[str, Any] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase = False
__UpperCAmelCase = True
if (
model_class.__name__
in [*get_values(snake_case_ ), *get_values(snake_case_ )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ )
__UpperCAmelCase = model(**snake_case_ ).loss
loss.backward()
def snake_case__ ( self : Dict ) -> str:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = model_class(snake_case_ )
__UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase = [*signature.parameters.keys()]
__UpperCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case_ )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def snake_case__ ( self : int ) -> Optional[Any]:
def check_hidden_states_output(__a : Dict , __a : Any , __a : List[str] ):
__UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
__UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
__UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase = True
check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase = True
check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase = ConvNextVaModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class A ( unittest.TestCase ):
@cached_property
def snake_case__ ( self : int ) -> int:
return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
__UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(snake_case_ )
__UpperCAmelCase = self.default_image_processor
__UpperCAmelCase = prepare_img()
__UpperCAmelCase = preprocessor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ )
# forward pass
with torch.no_grad():
__UpperCAmelCase = model(**snake_case_ )
# verify the logits
__UpperCAmelCase = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , snake_case_ )
__UpperCAmelCase = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(snake_case_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
| 721 |
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
__lowerCAmelCase : List[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
__lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
__lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
__lowerCAmelCase : Optional[int] = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
]
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__UpperCAmelCase = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
__UpperCAmelCase = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = tf_models
__UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = flax_models
__UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = pt_models
__UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
__UpperCAmelCase = True
break
# Try again after removing the last word in the name
__UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] )
__UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__UpperCAmelCase = list(UpperCamelCase__ )
all_models.sort()
__UpperCAmelCase = {'''model_type''': all_models}
__UpperCAmelCase = [pt_models[t] for t in all_models]
__UpperCAmelCase = [tf_models[t] for t in all_models]
__UpperCAmelCase = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__UpperCAmelCase = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__UpperCAmelCase = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__UpperCAmelCase = '''AutoTokenizer'''
__UpperCAmelCase = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""]
__UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
__UpperCAmelCase = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = get_frameworks_table()
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
__UpperCAmelCase = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ )
__UpperCAmelCase = Dataset.from_json(UpperCamelCase__ )
__UpperCAmelCase = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(UpperCamelCase__ ) )
}
__UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__UpperCAmelCase = sorted(table.keys() )
__UpperCAmelCase = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) )
if commit_sha is not None:
__UpperCAmelCase = (
f"""Update with commit {commit_sha}\n\nSee: """
f"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
__UpperCAmelCase = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS
__UpperCAmelCase = []
for key in pipeline_tasks:
if key not in in_table:
__UpperCAmelCase = pipeline_tasks[key]['''pt''']
if isinstance(UpperCamelCase__ , (list, tuple) ):
__UpperCAmelCase = model[0]
__UpperCAmelCase = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ''', '''.join(UpperCamelCase__ )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
f"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
__lowerCAmelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 654 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class A ( lowercase__ , lowercase__ , unittest.TestCase ):
a_ = StableDiffusionPanoramaPipeline
a_ = TEXT_TO_IMAGE_PARAMS
a_ = TEXT_TO_IMAGE_BATCH_PARAMS
a_ = TEXT_TO_IMAGE_IMAGE_PARAMS
a_ = TEXT_TO_IMAGE_IMAGE_PARAMS
def snake_case__ ( self : Tuple ) -> str:
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
__UpperCAmelCase = DDIMScheduler()
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
__UpperCAmelCase = CLIPTextModel(UpperCAmelCase__ )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def snake_case__ ( self : Tuple , __a : Any , __a : Any=0 ) -> List[Any]:
__UpperCAmelCase = torch.manual_seed(UpperCAmelCase__ )
__UpperCAmelCase = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
# Setting height and width to None to prevent OOMs on CPU.
'''height''': None,
'''width''': None,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__ ( self : Optional[Any] ) -> Any:
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe(**UpperCAmelCase__ ).images
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__ ( self : Dict ) -> Union[str, Any]:
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ )
__UpperCAmelCase = '''french fries'''
__UpperCAmelCase = sd_pipe(**UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ )
__UpperCAmelCase = output.images
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__ ( self : Dict ) -> Optional[int]:
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe(**UpperCAmelCase__ , view_batch_size=2 )
__UpperCAmelCase = output.images
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__ ( self : str ) -> str:
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = EulerAncestralDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' )
__UpperCAmelCase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe(**UpperCAmelCase__ ).images
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__ ( self : Tuple ) -> str:
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = PNDMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=UpperCAmelCase__ )
__UpperCAmelCase = StableDiffusionPanoramaPipeline(**UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe.to(UpperCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ )
__UpperCAmelCase = sd_pipe(**UpperCAmelCase__ ).images
__UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def snake_case__ ( self : int ) -> int:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : int , __a : int=0 ) -> List[Any]:
__UpperCAmelCase = torch.manual_seed(UpperCAmelCase__ )
__UpperCAmelCase = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__ ( self : Any ) -> Dict:
__UpperCAmelCase = '''stabilityai/stable-diffusion-2-base'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' )
__UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__UpperCAmelCase = self.get_inputs()
__UpperCAmelCase = pipe(**UpperCAmelCase__ ).images
__UpperCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 2_0_4_8, 3)
__UpperCAmelCase = np.array(
[
0.3_6_9_6_8_3_9_2,
0.2_7_0_2_5_3_7_2,
0.3_2_4_4_6_7_6_6,
0.2_8_3_7_9_3_8_7,
0.3_6_3_6_3_2_7_4,
0.3_0_7_3_3_3_4_7,
0.2_7_1_0_0_0_2_7,
0.2_7_0_5_4_1_2_5,
0.2_5_5_3_6_0_9_6,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def snake_case__ ( self : Any ) -> List[str]:
__UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-base''' , safety_checker=UpperCAmelCase__ )
__UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__UpperCAmelCase = self.get_inputs()
__UpperCAmelCase = pipe(**UpperCAmelCase__ ).images
__UpperCAmelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 2_0_4_8, 3)
__UpperCAmelCase = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def snake_case__ ( self : Optional[int] ) -> int:
__UpperCAmelCase = 0
def callback_fn(__a : int , __a : int , __a : torch.FloatTensor ) -> None:
__UpperCAmelCase = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__UpperCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 2_5_6)
__UpperCAmelCase = latents[0, -3:, -3:, -1]
__UpperCAmelCase = np.array(
[
0.1_8_6_8_1_8_6_9,
0.3_3_9_0_7_8_1_6,
0.5_3_6_1_2_7_6,
0.1_4_4_3_2_8_6_5,
-0.0_2_8_5_6_6_1_1,
-0.7_3_9_4_1_1_2_3,
0.2_3_3_9_7_9_8_7,
0.4_7_3_2_2_6_8_2,
-0.3_7_8_2_3_1_6_4,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
__UpperCAmelCase = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 2_5_6)
__UpperCAmelCase = latents[0, -3:, -3:, -1]
__UpperCAmelCase = np.array(
[
0.1_8_5_3_9_6_4_5,
0.3_3_9_8_7_2_4_8,
0.5_3_7_8_5_5_9,
0.1_4_4_3_7_1_4_2,
-0.0_2_4_5_5_2_6_1,
-0.7_3_3_8_3_1_7,
0.2_3_9_9_0_7_5_5,
0.4_7_3_5_6_2_7_2,
-0.3_7_8_6_5_0_5,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
__UpperCAmelCase = False
__UpperCAmelCase = '''stabilityai/stable-diffusion-2-base'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' )
__UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ )
__UpperCAmelCase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing()
__UpperCAmelCase = self.get_inputs()
pipe(**UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def snake_case__ ( self : int ) -> Any:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase = '''stabilityai/stable-diffusion-2-base'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''' )
__UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ )
__UpperCAmelCase = pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase = self.get_inputs()
__UpperCAmelCase = pipe(**UpperCAmelCase__ )
__UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 1_0**9
| 700 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__lowerCAmelCase : Optional[int] = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class A ( unittest.TestCase ):
def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple:
__UpperCAmelCase = None
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
__UpperCAmelCase = os.path.abspath('''examples''' )
for item in os.listdir(__a ):
if item not in EXCLUDE_EXAMPLES:
__UpperCAmelCase = os.path.join(__a , __a )
if os.path.isfile(__a ) and ".py" in item_path:
with self.subTest(
tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ):
__UpperCAmelCase = compare_against_test(
os.path.join(__a , __a ) , __a , __a , __a )
__UpperCAmelCase = '''\n'''.join(__a )
if special_strings is not None:
for string in special_strings:
__UpperCAmelCase = diff.replace(__a , '''''' )
self.assertEqual(__a , '''''' )
def snake_case__ ( self : Optional[Any] ) -> str:
self.one_complete_example('''complete_nlp_example.py''' , __a )
self.one_complete_example('''complete_nlp_example.py''' , __a )
def snake_case__ ( self : List[str] ) -> Tuple:
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
__UpperCAmelCase = [
''' ''' * 1_6 + '''{\n\n''',
''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 2_0 + '''"epoch": epoch,\n\n''',
''' ''' * 1_6 + '''},\n\n''',
''' ''' * 1_6 + '''step=epoch,\n''',
''' ''' * 1_2,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class A ( UpperCAmelCase ):
a_ = False
@classmethod
def snake_case__ ( cls : Tuple ) -> str:
super().setUpClass()
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
__UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Dict ) -> int:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
def snake_case__ ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
if torch.cuda.is_available():
__UpperCAmelCase = torch.cuda.device_count()
else:
__UpperCAmelCase = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
else:
self.assertIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
@slow
def snake_case__ ( self : Any ) -> Optional[Any]:
__UpperCAmelCase = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
__UpperCAmelCase = re.findall('''({.+})''' , __a )
__UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1]
__UpperCAmelCase = ast.literal_eval(__a )
self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 )
def snake_case__ ( self : Dict ) -> int:
__UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdir:
__UpperCAmelCase = f"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
__UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
__UpperCAmelCase = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 654 | 0 |
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
assert column_title.isupper()
__UpperCAmelCase = 0
__UpperCAmelCase = len(_lowerCAmelCase ) - 1
__UpperCAmelCase = 0
while index >= 0:
__UpperCAmelCase = (ord(column_title[index] ) - 6_4) * pow(2_6 , _lowerCAmelCase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 701 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__lowerCAmelCase : Any = ""
__lowerCAmelCase : int = ""
__lowerCAmelCase : Union[str, Any] = ""
__lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal)
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ )
print('''Processing...''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for index, image in enumerate(UpperCamelCase__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCAmelCase = random_chars(3_2 )
__UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" )
__UpperCAmelCase = []
for anno in new_annos[index]:
__UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(UpperCamelCase__ )
with open(f"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ):
__UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(UpperCamelCase__ ) as in_file:
__UpperCAmelCase = in_file.readlines()
__UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" )
__UpperCAmelCase = []
for obj_list in obj_lists:
__UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(UpperCamelCase__ )
labels.append(UpperCamelCase__ )
return img_paths, labels
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = []
for idx in range(len(UpperCamelCase__ ) ):
__UpperCAmelCase = []
__UpperCAmelCase = img_list[idx]
path_list.append(UpperCamelCase__ )
__UpperCAmelCase = anno_list[idx]
__UpperCAmelCase = cva.imread(UpperCamelCase__ )
if flip_type == 1:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(UpperCamelCase__ )
new_imgs_list.append(UpperCamelCase__ )
return new_imgs_list, new_annos_lists, path_list
def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 654 | 0 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : int = tuple[int, int]
class A :
def __init__( self : List[str] ) -> Optional[Any]:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : List[str] ) -> int:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
return len(self.elements ) == 0
def snake_case__ ( self : Dict , __a : Dict , __a : Any ) -> Union[str, Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__lowerCamelCase )
else:
# update
# print("update", item)
__UpperCAmelCase = []
(__UpperCAmelCase) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
(__UpperCAmelCase) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : Any , __a : Optional[int] ) -> Optional[int]:
if item in self.set:
self.set.remove(__lowerCamelCase )
__UpperCAmelCase = []
(__UpperCAmelCase) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
(__UpperCAmelCase) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : Dict ) -> List[Any]:
return self.elements[0][1]
def snake_case__ ( self : Dict ) -> Any:
(__UpperCAmelCase) = heapq.heappop(self.elements )
self.set.remove(__lowerCamelCase )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
__UpperCAmelCase = np.array(lowerCamelCase_ )
__UpperCAmelCase = np.array(lowerCamelCase_ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
return consistent_heuristic(lowerCamelCase_ , lowerCamelCase_ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](lowerCamelCase_ , lowerCamelCase_ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
__UpperCAmelCase = '''*'''
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
(__UpperCAmelCase) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(lowerCamelCase_ ):
for j in range(lowerCamelCase_ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(lowerCamelCase_ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(lowerCamelCase_ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , ):
"""simple docstring"""
for itera in range(lowerCamelCase_ ):
open_list[itera].remove_element(lowerCamelCase_ )
# print("s", s)
# print("j", j)
(__UpperCAmelCase) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(lowerCamelCase_ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(lowerCamelCase_ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(lowerCamelCase_ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(lowerCamelCase_ , key(lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ ) )
if neighbours not in close_list_inad:
for var in range(1 , lowerCamelCase_ ):
if key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) <= Wa * key(
lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ ):
open_list[j].put(
lowerCamelCase_ , key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Dict = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : Any = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Optional[int] = make_common_ground()
__lowerCAmelCase : Optional[int] = blocks_blk
# hyper parameters
__lowerCAmelCase : List[Any] = 1
__lowerCAmelCase : str = 1
__lowerCAmelCase : Tuple = 20
__lowerCAmelCase : int = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[int] = (0, 0)
__lowerCAmelCase : Optional[int] = (n - 1, n - 1)
__lowerCAmelCase : Union[str, Any] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(lowerCamelCase_ ):
open_list.append(PriorityQueue() )
open_list[i].put(lowerCamelCase_ , key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , lowerCamelCase_ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
__UpperCAmelCase = open_list[i].top_show()
visited.add(lowerCamelCase_ )
expand_state(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
close_list_inad.append(lowerCamelCase_ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(lowerCamelCase_ )
expand_state(
lowerCamelCase_ , 0 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , )
close_list_anchor.append(lowerCamelCase_ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(lowerCamelCase_ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 702 |
'''simple docstring'''
from pathlib import Path
import fire
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = Path(UpperCamelCase__ )
__UpperCAmelCase = Path(UpperCamelCase__ )
dest_dir.mkdir(exist_ok=UpperCamelCase__ )
for path in src_dir.iterdir():
__UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
__UpperCAmelCase = dest_dir.joinpath(path.name )
print(UpperCamelCase__ )
dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 654 | 0 |
'''simple docstring'''
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A ( unittest.TestCase ):
a_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self : Dict , __a : int , __a : Any , __a : int ) -> str:
__UpperCAmelCase = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
__UpperCAmelCase = VideoClassificationPipeline(model=_lowercase , image_processor=_lowercase , top_k=2 )
__UpperCAmelCase = [
example_video_filepath,
'''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''',
]
return video_classifier, examples
def snake_case__ ( self : Tuple , __a : Union[str, Any] , __a : List[Any] ) -> List[str]:
for example in examples:
__UpperCAmelCase = video_classifier(_lowercase )
self.assertEqual(
_lowercase , [
{'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )},
{'''score''': ANY(_lowercase ), '''label''': ANY(_lowercase )},
] , )
@require_torch
def snake_case__ ( self : str ) -> Tuple:
__UpperCAmelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification'''
__UpperCAmelCase = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 1_0} , crop_size={'''height''': 1_0, '''width''': 1_0} )
__UpperCAmelCase = pipeline(
'''video-classification''' , model=_lowercase , feature_extractor=_lowercase , frame_sampling_rate=4 )
__UpperCAmelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
__UpperCAmelCase = video_classifier(_lowercase , top_k=2 )
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , )
__UpperCAmelCase = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [
[{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}],
[{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def snake_case__ ( self : Dict ) -> Optional[Any]:
pass
| 703 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = f"""Input value of [number={number}] must be an integer"""
raise TypeError(UpperCamelCase__ )
if number < 1:
__UpperCAmelCase = f"""Input value of [number={number}] must be > 0"""
raise ValueError(UpperCamelCase__ )
__UpperCAmelCase = 1
for i in range(1 , UpperCamelCase__ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 654 | 0 |
'''simple docstring'''
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
__lowerCAmelCase : List[str] = "<<<<<<< This should probably be modified because it mentions: "
__lowerCAmelCase : List[str] = "=======\n>>>>>>>\n"
__lowerCAmelCase : Optional[int] = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
__lowerCAmelCase : Optional[Any] = [
# (pattern, replacement)
# Order is important here for some replacements
(r"tfds\.core", r"datasets"),
(r"tf\.io\.gfile\.GFile", r"open"),
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
(r"tfds\.features\.FeaturesDict\(", r"dict("),
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(r"tfds\.", r"datasets."),
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
(r"self\.builder_config", r"self.config"),
]
def lowerCAmelCase ( UpperCamelCase__ : str ):
"""simple docstring"""
return ConvertCommand(args.tfds_path , args.datasets_directory )
class A ( snake_case__ ):
@staticmethod
def snake_case__ ( __a : Any ) -> List[str]:
__UpperCAmelCase = parser.add_parser(
'''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , )
train_parser.add_argument(
'''--tfds_path''' , type=lowercase_ , required=lowercase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , )
train_parser.add_argument(
'''--datasets_directory''' , type=lowercase_ , required=lowercase_ , help='''Path to the HuggingFace Datasets folder.''' )
train_parser.set_defaults(func=lowercase_ )
def __init__( self : int , __a : List[str] , __a : List[Any] , *__a : Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase = get_logger('''datasets-cli/converting''' )
__UpperCAmelCase = tfds_path
__UpperCAmelCase = datasets_directory
def snake_case__ ( self : int ) -> str:
if os.path.isdir(self._tfds_path ):
__UpperCAmelCase = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
__UpperCAmelCase = os.path.dirname(self._tfds_path )
else:
raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' )
__UpperCAmelCase = os.path.abspath(self._datasets_directory )
self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" )
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = {}
if os.path.isdir(self._tfds_path ):
__UpperCAmelCase = os.listdir(lowercase_ )
else:
__UpperCAmelCase = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f"""Looking at file {f_name}""" )
__UpperCAmelCase = os.path.join(lowercase_ , lowercase_ )
__UpperCAmelCase = os.path.join(lowercase_ , lowercase_ )
if not os.path.isfile(lowercase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('''Skipping file''' )
continue
with open(lowercase_ , encoding='''utf-8''' ) as f:
__UpperCAmelCase = f.readlines()
__UpperCAmelCase = []
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = []
for line in lines:
__UpperCAmelCase = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
__UpperCAmelCase = "import datasets\n"
elif "import tensorflow" in out_line:
# order is important here
__UpperCAmelCase = ""
continue
elif "from absl import logging" in out_line:
__UpperCAmelCase = "from datasets import logging\n"
elif "getLogger" in out_line:
__UpperCAmelCase = out_line.replace('''getLogger''' , '''get_logger''' )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
__UpperCAmelCase = True
__UpperCAmelCase = list(filter(lambda __a : e in out_line , lowercase_ ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase_ ) + '''\n''' )
out_lines.append(lowercase_ )
out_lines.append(lowercase_ )
continue
else:
for pattern, replacement in TO_CONVERT:
__UpperCAmelCase = re.sub(lowercase_ , lowercase_ , lowercase_ )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
__UpperCAmelCase = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , lowercase_ )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) )
__UpperCAmelCase = "from . import " + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f"""Error converting {out_line.strip()}""" )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
__UpperCAmelCase = True
out_lines.append(lowercase_ )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
__UpperCAmelCase = f_name.replace('''.py''' , '''''' )
__UpperCAmelCase = os.path.join(lowercase_ , lowercase_ )
__UpperCAmelCase = os.path.join(lowercase_ , lowercase_ )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
self._logger.info(f"""Adding directory {output_dir}""" )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(lowercase_ )
if needs_manual_update:
with_manual_update.append(lowercase_ )
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f:
f.writelines(lowercase_ )
self._logger.info(f"""Converted in {output_file}""" )
for utils_file in utils_files:
try:
__UpperCAmelCase = os.path.basename(lowercase_ )
__UpperCAmelCase = imports_to_builder_map[f_name.replace('''.py''' , '''''' )]
self._logger.info(f"""Moving {dest_folder} to {utils_file}""" )
shutil.copy(lowercase_ , lowercase_ )
except KeyError:
self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f"""You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.""" )
| 704 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowerCAmelCase ( ):
"""simple docstring"""
raise RuntimeError('''CUDA out of memory.''' )
class A ( nn.Module ):
def __init__( self : Optional[Any] ) -> int:
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]:
return self.lineara(self.batchnorm(self.lineara(__a ) ) )
class A ( unittest.TestCase ):
def snake_case__ ( self : Optional[int] ) -> Any:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : Union[str, Any] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def snake_case__ ( self : Any ) -> int:
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(__a : Optional[int] ):
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : Any ) -> List[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Dict ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : List[Any] ) -> List[str]:
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(__a ) as cm:
mock_training_loop_function(1_2_8 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Tuple ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def snake_case__ ( self : Any ) -> List[Any]:
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , __a )
__UpperCAmelCase = release_memory(__a )
self.assertEqual(torch.cuda.memory_allocated() , __a )
| 654 | 0 |
'''simple docstring'''
from pathlib import Path
import fire
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = Path(UpperCamelCase__ )
__UpperCAmelCase = Path(UpperCamelCase__ )
dest_dir.mkdir(exist_ok=UpperCamelCase__ )
for path in src_dir.iterdir():
__UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
__UpperCAmelCase = dest_dir.joinpath(path.name )
print(UpperCamelCase__ )
dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 705 |
'''simple docstring'''
from __future__ import annotations
import math
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = u
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = temp * (u - i)
return temp
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = int(input('''enter the numbers of values: ''' ) )
__UpperCAmelCase = []
for _ in range(UpperCamelCase__ ):
y.append([] )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
y[i].append(UpperCamelCase__ )
__UpperCAmelCase = 0
print('''enter the values of parameters in a list: ''' )
__UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = float(input() )
__UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) )
__UpperCAmelCase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCamelCase__ ):
for j in range(n - i ):
__UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1]
__UpperCAmelCase = y[0][0]
for i in range(1 , UpperCamelCase__ ):
summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ )
print(f"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 654 | 0 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def lowerCAmelCase ( UpperCamelCase__ : str ):
"""simple docstring"""
if not sentence:
return ""
__UpperCAmelCase = dict(zip(_lowerCamelCase , _lowerCamelCase ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 706 |
'''simple docstring'''
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : Dict = logging.get_logger(__name__)
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''),
('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''),
('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''),
('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''),
('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''),
('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''),
] )
return rename_keys
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
__UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" )
__UpperCAmelCase = in_proj_weight[
: encoder_config.hidden_size, :
]
__UpperCAmelCase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
__UpperCAmelCase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = dct.pop(UpperCamelCase__ )
__UpperCAmelCase = val
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
if "handwritten" in checkpoint_url:
__UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'''
__UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' )
return im
@torch.no_grad()
def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ )
__UpperCAmelCase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
__UpperCAmelCase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = 4_0_9_6
__UpperCAmelCase = 2_4
__UpperCAmelCase = 1_6
__UpperCAmelCase = 1_0_2_4
else:
raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = False
__UpperCAmelCase = '''relu'''
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
# load HuggingFace model
__UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ )
__UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ )
__UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
# load state_dict of original model, rename some keys
__UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model''']
__UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
__UpperCAmelCase = state_dict.pop(UpperCamelCase__ )
if key.startswith('''decoder''' ) and "output_projection" not in key:
__UpperCAmelCase = val
else:
__UpperCAmelCase = val
# load state dict
model.load_state_dict(UpperCamelCase__ )
# Check outputs on an image
__UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size )
__UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' )
__UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values
# verify logits
__UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
__UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ )
__UpperCAmelCase = outputs.logits
__UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] )
elif "trocr-large-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] )
elif "trocr-base-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] )
elif "trocr-large-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected"
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 654 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
class A ( UpperCAmelCase ):
def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCamelCase , )
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
| 707 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class A ( unittest.TestCase ):
def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]:
return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy"""
def snake_case__ ( self : Dict ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return image
def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = '''bf16''' if fpaa else None
__UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained(
__a , subfolder='''unet''' , dtype=__a , revision=__a )
return model, params
def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return hidden_states
@parameterized.expand(
[
# fmt: off
[8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]],
[1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]],
[8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]],
[3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]],
# fmt: on
] )
def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]],
[1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]],
[8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]],
[3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]],
# fmt: on
] )
def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
| 654 | 0 |
'''simple docstring'''
from math import pow, sqrt
def lowerCAmelCase ( *UpperCamelCase__ : float ):
"""simple docstring"""
__UpperCAmelCase = len(UpperCamelCase__ ) > 0 and all(value > 0.0 for value in values )
return result
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(UpperCamelCase__ , UpperCamelCase__ )
else ValueError('''Input Error: Molar mass values must greater than 0.''' )
)
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
| 708 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
__lowerCAmelCase : Optional[int] = "examples/"
__lowerCAmelCase : Dict = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
__lowerCAmelCase : List[str] = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
__lowerCAmelCase : int = "README.md"
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ):
"""simple docstring"""
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern]
__UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ )
__UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
for folder, directories, fnames in os.walk(UpperCamelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' )
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if not patch:
update_version_in_examples(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = '''🤗 Transformers currently provides the following architectures'''
__UpperCAmelCase = '''1. Want to contribute a new model?'''
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.readlines()
# Find the start of the list.
__UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
__UpperCAmelCase = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0]
return packaging.version.parse(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Any=False ):
"""simple docstring"""
__UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
__UpperCAmelCase = default_version.base_version
elif patch:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = default_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = get_version()
__UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
__UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
__lowerCAmelCase : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 654 | 0 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE_ :
def __init__( self : str , __a : Optional[Any]=None , __a : int=None ) -> str:
# Input as list
__UpperCAmelCase = list(poly_a or [0] )[:]
__UpperCAmelCase = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
__UpperCAmelCase = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
__UpperCAmelCase = len(self.polyB )
# Add 0 to make lengths equal a power of 2
__UpperCAmelCase = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
__UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
__UpperCAmelCase = self.__multiply()
def snake_case__ ( self : Optional[int] , __a : Optional[int] ) -> Any:
__UpperCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(UpperCamelCase__ ) <= 1:
return dft[0]
#
__UpperCAmelCase = self.c_max_length // 2
while next_ncol > 0:
__UpperCAmelCase = [[] for i in range(UpperCamelCase__ )]
__UpperCAmelCase = self.root**next_ncol
# First half of next step
__UpperCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCamelCase__ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
__UpperCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(UpperCamelCase__ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
__UpperCAmelCase = new_dft
__UpperCAmelCase = next_ncol // 2
return dft[0]
def snake_case__ ( self : Optional[Any] ) -> Any:
__UpperCAmelCase = self.__dft('''A''' )
__UpperCAmelCase = self.__dft('''B''' )
__UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
__UpperCAmelCase = 2
while next_ncol <= self.c_max_length:
__UpperCAmelCase = [[] for i in range(UpperCamelCase__ )]
__UpperCAmelCase = self.root ** (next_ncol // 2)
__UpperCAmelCase = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
__UpperCAmelCase = new_inverse_c
next_ncol *= 2
# Unpack
__UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : Tuple ) -> List[Any]:
__UpperCAmelCase = 'A = ' + ' + '.join(
f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) )
__UpperCAmelCase = 'B = ' + ' + '.join(
f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) )
__UpperCAmelCase = 'A*B = ' + ' + '.join(
f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) )
return f"""{a}\n{b}\n{c}"""
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 709 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(UpperCamelCase__ )
__UpperCAmelCase = max(UpperCamelCase__ )
__UpperCAmelCase = min(UpperCamelCase__ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , UpperCamelCase__ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
__lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip()
__lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| 654 | 0 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : Any = logging.get_logger(__name__)
__lowerCAmelCase : Dict = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : int ):
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__UpperCAmelCase = TOKENIZER_CLASSES
else:
__UpperCAmelCase = {tokenizer_name: getattr(UpperCamelCase__ , tokenizer_name + '''Fast''' )}
logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__UpperCAmelCase = TOKENIZER_CLASSES[tokenizer_name]
__UpperCAmelCase = True
if checkpoint_name is None:
__UpperCAmelCase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__UpperCAmelCase = [checkpoint_name]
logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__UpperCAmelCase = tokenizer_class.from_pretrained(UpperCamelCase__ , force_download=UpperCamelCase__ )
# Save fast tokenizer
logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__UpperCAmelCase , __UpperCAmelCase = checkpoint.split('''/''' )
__UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
elif add_prefix:
__UpperCAmelCase = checkpoint
__UpperCAmelCase = dump_path
else:
__UpperCAmelCase = None
__UpperCAmelCase = dump_path
logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__UpperCAmelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__UpperCAmelCase = file_path.split(UpperCamelCase__ )[-1][0]
if next_char == "/":
__UpperCAmelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = None
logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__UpperCAmelCase = tokenizer.save_pretrained(
UpperCamelCase__ , legacy_format=UpperCamelCase__ , filename_prefix=UpperCamelCase__ )
logger.info(f"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('''tokenizer.json''' ):
os.remove(UpperCamelCase__ )
logger.info(f"""=> removing {file_name}""" )
if __name__ == "__main__":
__lowerCAmelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help=(
F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """
"download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--checkpoint_name",
default=None,
type=str,
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
)
parser.add_argument(
"--force_download",
action="store_true",
help="Re-download checkpoints.",
)
__lowerCAmelCase : Tuple = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 710 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ):
"""simple docstring"""
__UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' )
__UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 654 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A ( unittest.TestCase ):
def __init__( self : str , __a : str , __a : int=1_3 , __a : Optional[Any]=3 , __a : List[str]=2_2_4 , __a : List[Any]=3_0 , __a : Optional[int]=4_0_0 , __a : List[Any]=True , __a : Dict=None , __a : Union[str, Any]=True , __a : Dict=[0.5, 0.5, 0.5] , __a : int=[0.5, 0.5, 0.5] , ) -> Tuple:
__UpperCAmelCase = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase = parent
__UpperCAmelCase = batch_size
__UpperCAmelCase = num_channels
__UpperCAmelCase = image_size
__UpperCAmelCase = min_resolution
__UpperCAmelCase = max_resolution
__UpperCAmelCase = do_resize
__UpperCAmelCase = size
__UpperCAmelCase = do_normalize
__UpperCAmelCase = image_mean
__UpperCAmelCase = image_std
def snake_case__ ( self : int ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class A ( lowercase_ , unittest.TestCase ):
a_ = ViTImageProcessor if is_vision_available() else None
def snake_case__ ( self : Tuple ) -> Union[str, Any]:
__UpperCAmelCase = EfficientFormerImageProcessorTester(self )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
return self.image_proc_tester.prepare_image_processor_dict()
def snake_case__ ( self : Optional[Any] ) -> int:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) )
def snake_case__ ( self : Dict ) -> Union[str, Any]:
pass
def snake_case__ ( self : str ) -> Any:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , Image.Image )
# Test not batched input
__UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def snake_case__ ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , np.ndarray )
# Test not batched input
__UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def snake_case__ ( self : str ) -> List[Any]:
__UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , torch.Tensor )
# Test not batched input
__UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
__UpperCAmelCase = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
| 711 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
__UpperCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i]
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__UpperCAmelCase = []
__UpperCAmelCase = -1
for i in range(UpperCamelCase__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__UpperCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__UpperCAmelCase = 0
__UpperCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
__lowerCAmelCase : List[Any] = 4
__lowerCAmelCase : List[Any] = [2, 5, 3, 7]
__lowerCAmelCase : Tuple = [0, 0, 0, 0]
__lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__lowerCAmelCase : Dict = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 654 | 0 |
'''simple docstring'''
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
__lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
class A ( __UpperCAmelCase ):
a_ = '''vision-encoder-decoder'''
a_ = True
def __init__( self : int , **__a : Dict ) -> Tuple:
super().__init__(**lowerCAmelCase_ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"""A configuraton of type {self.model_type} cannot be instantiated because """
f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
__UpperCAmelCase = kwargs.pop('''encoder''' )
__UpperCAmelCase = encoder_config.pop('''model_type''' )
__UpperCAmelCase = kwargs.pop('''decoder''' )
__UpperCAmelCase = decoder_config.pop('''model_type''' )
__UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ )
__UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ )
__UpperCAmelCase = True
@classmethod
def snake_case__ ( cls : Dict , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> Optional[Any]:
logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
__UpperCAmelCase = True
__UpperCAmelCase = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase_ )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = copy.deepcopy(self.__dict__ )
__UpperCAmelCase = self.encoder.to_dict()
__UpperCAmelCase = self.decoder.to_dict()
__UpperCAmelCase = self.__class__.model_type
return output
class A ( __UpperCAmelCase ):
a_ = version.parse('''1.11''' )
@property
def snake_case__ ( self : Any ) -> Union[str, Any]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def snake_case__ ( self : int ) -> Any:
return 1e-4
@property
def snake_case__ ( self : Dict ) -> Any:
return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} )
class A ( __UpperCAmelCase ):
@property
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = OrderedDict()
__UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
__UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
__UpperCAmelCase = {0: '''batch''', 1: '''encoder_sequence'''}
return common_inputs
def snake_case__ ( self : Dict , __a : "PreTrainedTokenizerBase" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , ) -> List[Any]:
import torch
__UpperCAmelCase = OrderedDict()
__UpperCAmelCase = super().generate_dummy_inputs(
lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ )
__UpperCAmelCase , __UpperCAmelCase = dummy_input['''input_ids'''].shape
__UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size)
__UpperCAmelCase = dummy_input.pop('''input_ids''' )
__UpperCAmelCase = dummy_input.pop('''attention_mask''' )
__UpperCAmelCase = torch.zeros(lowerCAmelCase_ )
return common_inputs
class A ( __UpperCAmelCase ):
@property
def snake_case__ ( self : str ) -> List[str]:
pass
def snake_case__ ( self : Any , __a : PretrainedConfig ) -> Tuple:
return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase_ )
def snake_case__ ( self : Any , __a : PretrainedConfig , __a : PretrainedConfig , __a : str = "default" ) -> List[Any]:
__UpperCAmelCase = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase_ , lowerCAmelCase_ )
| 712 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : int , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict:
requires_backends(cls , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : Any ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Any , **__a : int ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return round(float(moles / volume ) * nfactor )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return round(float((moles * 0.08_21 * temperature) / (volume) ) )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return round(float((moles * 0.08_21 * temperature) / (pressure) ) )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ):
"""simple docstring"""
return round(float((pressure * volume) / (0.08_21 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 654 | 0 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str="attention" ):
"""simple docstring"""
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""]
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""]
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""]
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""]
return k, o, q, v
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=False ):
"""simple docstring"""
if split_mlp_wi:
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""]
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""]
__UpperCAmelCase = (wi_a, wi_a)
else:
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""]
__UpperCAmelCase = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""]
return wi, wo
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ):
"""simple docstring"""
return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""]
def lowerCAmelCase ( UpperCamelCase__ : Dict , *, UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase = traverse_util.flatten_dict(variables['''target'''] )
__UpperCAmelCase = {'''/'''.join(UpperCAmelCase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
__UpperCAmelCase = '''encoder/layers_0/mlp/wi_0/kernel''' in old
print('''Split MLP:''' , UpperCAmelCase__ )
__UpperCAmelCase = collections.OrderedDict()
# Shared embeddings.
__UpperCAmelCase = old['''token_embedder/embedding''']
# Encoder.
for i in range(UpperCAmelCase__ ):
# Block i, layer 0 (Self Attention).
__UpperCAmelCase = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''encoder''' , '''pre_attention_layer_norm''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = tax_attention_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''encoder''' , '''attention''' )
__UpperCAmelCase = layer_norm
__UpperCAmelCase = k.T
__UpperCAmelCase = o.T
__UpperCAmelCase = q.T
__UpperCAmelCase = v.T
# Block i, layer 1 (MLP).
__UpperCAmelCase = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''encoder''' , '''pre_mlp_layer_norm''' )
__UpperCAmelCase , __UpperCAmelCase = tax_mlp_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''encoder''' , UpperCAmelCase__ )
__UpperCAmelCase = layer_norm
if split_mlp_wi:
__UpperCAmelCase = wi[0].T
__UpperCAmelCase = wi[1].T
else:
__UpperCAmelCase = wi.T
__UpperCAmelCase = wo.T
__UpperCAmelCase = old[
'''encoder/relpos_bias/rel_embedding'''
].T
__UpperCAmelCase = old['''encoder/encoder_norm/scale''']
if not is_encoder_only:
# Decoder.
for i in range(UpperCAmelCase__ ):
# Block i, layer 0 (Self Attention).
__UpperCAmelCase = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''decoder''' , '''pre_self_attention_layer_norm''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = tax_attention_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''decoder''' , '''self_attention''' )
__UpperCAmelCase = layer_norm
__UpperCAmelCase = k.T
__UpperCAmelCase = o.T
__UpperCAmelCase = q.T
__UpperCAmelCase = v.T
# Block i, layer 1 (Cross Attention).
__UpperCAmelCase = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''decoder''' , '''pre_cross_attention_layer_norm''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = tax_attention_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''decoder''' , '''encoder_decoder_attention''' )
__UpperCAmelCase = layer_norm
__UpperCAmelCase = k.T
__UpperCAmelCase = o.T
__UpperCAmelCase = q.T
__UpperCAmelCase = v.T
# Block i, layer 2 (MLP).
__UpperCAmelCase = tax_layer_norm_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''decoder''' , '''pre_mlp_layer_norm''' )
__UpperCAmelCase , __UpperCAmelCase = tax_mlp_lookup(UpperCAmelCase__ , UpperCAmelCase__ , '''decoder''' , UpperCAmelCase__ )
__UpperCAmelCase = layer_norm
if split_mlp_wi:
__UpperCAmelCase = wi[0].T
__UpperCAmelCase = wi[1].T
else:
__UpperCAmelCase = wi.T
__UpperCAmelCase = wo.T
__UpperCAmelCase = old['''decoder/decoder_norm/scale''']
__UpperCAmelCase = old[
'''decoder/relpos_bias/rel_embedding'''
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
__UpperCAmelCase = old['''decoder/logits_dense/kernel'''].T
return new
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
__UpperCAmelCase = state_dict['''shared.weight''']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
__UpperCAmelCase = state_dict['''shared.weight''']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('''Using shared word embeddings as lm_head.''' )
__UpperCAmelCase = state_dict['''shared.weight''']
return state_dict
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = checkpoints.load_tax_checkpoint(UpperCAmelCase__ )
__UpperCAmelCase = convert_tax_to_pytorch(UpperCAmelCase__ , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase__ )
__UpperCAmelCase = make_state_dict(UpperCAmelCase__ , UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] = False ):
"""simple docstring"""
__UpperCAmelCase = TaConfig.from_json_file(UpperCAmelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
__UpperCAmelCase = TaEncoderModel(UpperCAmelCase__ )
else:
__UpperCAmelCase = TaForConditionalGeneration(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCAmelCase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(UpperCAmelCase__ )
print('''Done''' )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
)
__lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 714 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : Optional[Any] = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A ( UpperCAmelCase ):
a_ = ['''image_processor''', '''tokenizer''']
a_ = '''BlipImageProcessor'''
a_ = '''AutoTokenizer'''
def __init__( self : Union[str, Any] , __a : List[Any] , __a : List[str] ) -> Optional[Any]:
__UpperCAmelCase = False
super().__init__(__UpperCamelCase , __UpperCamelCase )
__UpperCAmelCase = self.image_processor
def __call__( self : Any , __a : ImageInput = None , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ) -> int:
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
__UpperCAmelCase = self.tokenizer
__UpperCAmelCase = self.tokenizer(
text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , )
return text_encoding
# add pixel_values
__UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase )
if text is not None:
__UpperCAmelCase = self.tokenizer(
text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , )
else:
__UpperCAmelCase = None
if text_encoding is not None:
encoding_image_processor.update(__UpperCamelCase )
return encoding_image_processor
def snake_case__ ( self : Any , *__a : Union[str, Any] , **__a : List[Any] ) -> Any:
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def snake_case__ ( self : List[str] , *__a : List[Any] , **__a : int ) -> str:
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def snake_case__ ( self : Optional[int] ) -> Tuple:
__UpperCAmelCase = self.tokenizer.model_input_names
__UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 715 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ):
"""simple docstring"""
__UpperCAmelCase = {}
if train_file is not None:
__UpperCAmelCase = [train_file]
if eval_file is not None:
__UpperCAmelCase = [eval_file]
if test_file is not None:
__UpperCAmelCase = [test_file]
__UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ )
__UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() )
__UpperCAmelCase = features_name.pop(UpperCamelCase__ )
__UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) )
__UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )}
__UpperCAmelCase = tokenizer.model_input_names
__UpperCAmelCase = {}
if len(UpperCamelCase__ ) == 1:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , )
elif len(UpperCamelCase__ ) == 2:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A :
a_ = field(metadata={'''help''': '''Which column contains the label'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} )
a_ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
a_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase ( ):
"""simple docstring"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
__UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__UpperCAmelCase = TFTrainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 654 | 0 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
# TF training parameters
__lowerCAmelCase : List[str] = False
__lowerCAmelCase : List[Any] = False
def lowerCAmelCase ( UpperCamelCase__ : Namespace ):
"""simple docstring"""
return TrainCommand(_UpperCamelCase )
class A ( UpperCAmelCase ):
@staticmethod
def snake_case__ ( __a : Any ) -> List[Any]:
__UpperCAmelCase = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' )
train_parser.add_argument(
'''--train_data''' , type=__a , required=__a , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , )
train_parser.add_argument(
'''--column_label''' , type=__a , default=0 , help='''Column of the dataset csv file with example labels.''' )
train_parser.add_argument(
'''--column_text''' , type=__a , default=1 , help='''Column of the dataset csv file with example texts.''' )
train_parser.add_argument(
'''--column_id''' , type=__a , default=2 , help='''Column of the dataset csv file with example ids.''' )
train_parser.add_argument(
'''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' )
train_parser.add_argument('''--validation_data''' , type=__a , default='''''' , help='''path to validation dataset.''' )
train_parser.add_argument(
'''--validation_split''' , type=__a , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , )
train_parser.add_argument('''--output''' , type=__a , default='''./''' , help='''path to saved the trained model.''' )
train_parser.add_argument(
'''--task''' , type=__a , default='''text_classification''' , help='''Task to train the model on.''' )
train_parser.add_argument(
'''--model''' , type=__a , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' )
train_parser.add_argument('''--train_batch_size''' , type=__a , default=3_2 , help='''Batch size for training.''' )
train_parser.add_argument('''--valid_batch_size''' , type=__a , default=6_4 , help='''Batch size for validation.''' )
train_parser.add_argument('''--learning_rate''' , type=__a , default=3e-5 , help='''Learning rate.''' )
train_parser.add_argument('''--adam_epsilon''' , type=__a , default=1e-08 , help='''Epsilon for Adam optimizer.''' )
train_parser.set_defaults(func=__a )
def __init__( self : Tuple , __a : Any ) -> int:
__UpperCAmelCase = logging.get_logger('''transformers-cli/training''' )
__UpperCAmelCase = '''tf''' if is_tf_available() else '''torch'''
os.makedirs(args.output , exist_ok=__a )
__UpperCAmelCase = args.output
__UpperCAmelCase = args.column_label
__UpperCAmelCase = args.column_text
__UpperCAmelCase = args.column_id
self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" )
if args.task == "text_classification":
__UpperCAmelCase = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f"""Loading dataset from {args.train_data}""" )
__UpperCAmelCase = Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
__UpperCAmelCase = None
if args.validation_data:
self.logger.info(f"""Loading validation dataset from {args.validation_data}""" )
__UpperCAmelCase = Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
__UpperCAmelCase = args.validation_split
__UpperCAmelCase = args.train_batch_size
__UpperCAmelCase = args.valid_batch_size
__UpperCAmelCase = args.learning_rate
__UpperCAmelCase = args.adam_epsilon
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def snake_case__ ( self : List[str] ) -> List[str]:
raise NotImplementedError
def snake_case__ ( self : Union[str, Any] ) -> Dict:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 716 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A :
def __init__( self : List[Any] , __a : Any , ) -> Dict:
__UpperCAmelCase = parent
__UpperCAmelCase = 1_3
__UpperCAmelCase = 7
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = 9_9
__UpperCAmelCase = 3_2
__UpperCAmelCase = 2
__UpperCAmelCase = 4
__UpperCAmelCase = 3_7
__UpperCAmelCase = '''gelu'''
__UpperCAmelCase = 0.1
__UpperCAmelCase = 0.1
__UpperCAmelCase = 5_1_2
__UpperCAmelCase = 1_6
__UpperCAmelCase = 2
__UpperCAmelCase = 0.0_2
__UpperCAmelCase = 3
__UpperCAmelCase = 4
__UpperCAmelCase = None
def snake_case__ ( self : Optional[int] ) -> Dict:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any:
__UpperCAmelCase = TFDistilBertModel(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
__UpperCAmelCase = [input_ids, input_mask]
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int:
__UpperCAmelCase = TFDistilBertForMaskedLM(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict:
__UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForSequenceClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str:
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = TFDistilBertForMultipleChoice(__a )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForTokenClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : str ) -> Any:
__UpperCAmelCase = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
a_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
a_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a_ = False
a_ = False
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = TFDistilBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ) -> str:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*__a )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*__a )
def snake_case__ ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*__a )
def snake_case__ ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a )
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*__a )
@slow
def snake_case__ ( self : Dict ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCAmelCase = TFDistilBertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
class A ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ) -> Dict:
__UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(__a )[0]
__UpperCAmelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , __a )
__UpperCAmelCase = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
| 654 | 0 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__lowerCAmelCase : Optional[int] = datasets.load_iris()
__lowerCAmelCase : Optional[int] = np.array(data["data"])
__lowerCAmelCase : int = np.array(data["target"])
__lowerCAmelCase : Dict = data["""target_names"""]
__lowerCAmelCase : List[str] = train_test_split(X, y)
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
return np.linalg.norm(np.array(UpperCamelCase__ ) - np.array(UpperCamelCase__ ) )
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=5 ):
"""simple docstring"""
__UpperCAmelCase = zip(UpperCamelCase__ , UpperCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase = []
for data_point in data:
__UpperCAmelCase = euclidean_distance(data_point[0] , UpperCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase = [i[1] for i in sorted(UpperCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase = Counter(UpperCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 717 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__lowerCAmelCase : List[Any] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
import functools
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = len(UpperCamelCase__ )
__UpperCAmelCase = len(UpperCamelCase__ )
@functools.cache
def min_distance(UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
__UpperCAmelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , UpperCamelCase__ ) , 1 + min_distance(UpperCamelCase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 718 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class A ( UpperCAmelCase ):
a_ = '''bert-generation'''
def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
| 654 | 0 |
'''simple docstring'''
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
"stable diffusion controlnet",
"0.22.0",
"Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.",
standard_warn=False,
stacklevel=3,
)
| 719 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__lowerCAmelCase : str = 299_792_458
# Symbols
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z")
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 )
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return np.array(
[
[gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0],
[-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ):
"""simple docstring"""
# Ensure event is not empty
if event is None:
__UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(UpperCamelCase__ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__lowerCAmelCase : Dict = transform(29_979_245)
print("Example of four vector: ")
print(F"""ct' = {four_vector[0]}""")
print(F"""x' = {four_vector[1]}""")
print(F"""y' = {four_vector[2]}""")
print(F"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
__lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
__lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"""\n{numerical_vector}""")
| 654 | 0 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class A :
def __init__( self : List[str] ) -> List[str]:
__UpperCAmelCase = psutil.Process()
__UpperCAmelCase = False
def snake_case__ ( self : Tuple ) -> int:
__UpperCAmelCase = -1
while True:
__UpperCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase = True
__UpperCAmelCase = threading.Thread(target=self.peak_monitor )
__UpperCAmelCase = True
self.thread.start()
def snake_case__ ( self : Any ) -> Union[str, Any]:
__UpperCAmelCase = False
self.thread.join()
return self.cpu_memory_peak
__lowerCAmelCase : Dict = PeakCPUMemory()
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {'''time''': time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
__UpperCAmelCase = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
__UpperCAmelCase = torch.cuda.memory_allocated(UpperCamelCase__ )
torch.cuda.reset_peak_memory_stats()
return measures
def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = {'''time''': time.time() - start_measures['''time''']}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
__UpperCAmelCase = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**2_0
__UpperCAmelCase = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**2_0
# GPU mem
for i in range(torch.cuda.device_count() ):
__UpperCAmelCase = (torch.cuda.memory_allocated(UpperCamelCase__ ) - start_measures[str(UpperCamelCase__ )]) / 2**2_0
__UpperCAmelCase = (torch.cuda.max_memory_allocated(UpperCamelCase__ ) - start_measures[str(UpperCamelCase__ )]) / 2**2_0
return measures
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
print(f"""{description}:""" )
print(f"""- Time: {measures['time']:.2f}s""" )
for i in range(torch.cuda.device_count() ):
print(f"""- GPU {i} allocated: {measures[str(UpperCamelCase__ )]:.2f}MiB""" )
__UpperCAmelCase = measures[f"""{i}-peak"""]
print(f"""- GPU {i} peak: {peak:.2f}MiB""" )
print(f"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" )
print(f"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
| 720 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : Any = tuple[int, int]
class A :
def __init__( self : Optional[int] ) -> int:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Dict ) -> Optional[int]:
return len(self.elements ) == 0
def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__a )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : int , __a : Any ) -> int:
if item in self.set:
self.set.remove(__a )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : List[str] ) -> Dict:
return self.elements[0][1]
def snake_case__ ( self : Any ) -> List[str]:
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(__a )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# euclidean distance
__UpperCAmelCase = np.array(UpperCamelCase__ )
__UpperCAmelCase = np.array(UpperCamelCase__ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# integer division by time variable
return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = '''*'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(UpperCamelCase__ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(UpperCamelCase__ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ):
"""simple docstring"""
for itera in range(UpperCamelCase__ ):
open_list[itera].remove_element(UpperCamelCase__ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase__ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase__ ):
if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ):
open_list[j].put(
UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Dict = make_common_ground()
__lowerCAmelCase : int = blocks_blk
# hyper parameters
__lowerCAmelCase : Dict = 1
__lowerCAmelCase : List[str] = 1
__lowerCAmelCase : Union[str, Any] = 20
__lowerCAmelCase : Any = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[Any] = (0, 0)
__lowerCAmelCase : Any = (n - 1, n - 1)
__lowerCAmelCase : Optional[int] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(UpperCamelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , UpperCamelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_inad.append(UpperCamelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_anchor.append(UpperCamelCase__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCAmelCase : Optional[int] = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 721 |
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
__lowerCAmelCase : List[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
__lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
__lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
__lowerCAmelCase : Optional[int] = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
]
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__UpperCAmelCase = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
__UpperCAmelCase = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = tf_models
__UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = flax_models
__UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = pt_models
__UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
__UpperCAmelCase = True
break
# Try again after removing the last word in the name
__UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] )
__UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__UpperCAmelCase = list(UpperCamelCase__ )
all_models.sort()
__UpperCAmelCase = {'''model_type''': all_models}
__UpperCAmelCase = [pt_models[t] for t in all_models]
__UpperCAmelCase = [tf_models[t] for t in all_models]
__UpperCAmelCase = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__UpperCAmelCase = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__UpperCAmelCase = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__UpperCAmelCase = '''AutoTokenizer'''
__UpperCAmelCase = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""]
__UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
__UpperCAmelCase = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = get_frameworks_table()
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
__UpperCAmelCase = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ )
__UpperCAmelCase = Dataset.from_json(UpperCamelCase__ )
__UpperCAmelCase = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(UpperCamelCase__ ) )
}
__UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__UpperCAmelCase = sorted(table.keys() )
__UpperCAmelCase = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) )
if commit_sha is not None:
__UpperCAmelCase = (
f"""Update with commit {commit_sha}\n\nSee: """
f"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
__UpperCAmelCase = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS
__UpperCAmelCase = []
for key in pipeline_tasks:
if key not in in_table:
__UpperCAmelCase = pipeline_tasks[key]['''pt''']
if isinstance(UpperCamelCase__ , (list, tuple) ):
__UpperCAmelCase = model[0]
__UpperCAmelCase = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ''', '''.join(UpperCamelCase__ )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
f"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
__lowerCAmelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 654 | 0 |
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__lowerCAmelCase : str = 299_792_458
# Symbols
__lowerCAmelCase : Any = symbols("ct x y z")
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 )
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return np.array(
[
[gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0],
[-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ):
"""simple docstring"""
# Ensure event is not empty
if event is None:
__UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(UpperCamelCase__ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__lowerCAmelCase : Dict = transform(29_979_245)
print("Example of four vector: ")
print(F"""ct' = {four_vector[0]}""")
print(F"""x' = {four_vector[1]}""")
print(F"""y' = {four_vector[2]}""")
print(F"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
__lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
__lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"""\n{numerical_vector}""")
| 700 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__lowerCAmelCase : Optional[int] = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class A ( unittest.TestCase ):
def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple:
__UpperCAmelCase = None
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
__UpperCAmelCase = os.path.abspath('''examples''' )
for item in os.listdir(__a ):
if item not in EXCLUDE_EXAMPLES:
__UpperCAmelCase = os.path.join(__a , __a )
if os.path.isfile(__a ) and ".py" in item_path:
with self.subTest(
tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ):
__UpperCAmelCase = compare_against_test(
os.path.join(__a , __a ) , __a , __a , __a )
__UpperCAmelCase = '''\n'''.join(__a )
if special_strings is not None:
for string in special_strings:
__UpperCAmelCase = diff.replace(__a , '''''' )
self.assertEqual(__a , '''''' )
def snake_case__ ( self : Optional[Any] ) -> str:
self.one_complete_example('''complete_nlp_example.py''' , __a )
self.one_complete_example('''complete_nlp_example.py''' , __a )
def snake_case__ ( self : List[str] ) -> Tuple:
__UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
__UpperCAmelCase = [
''' ''' * 1_6 + '''{\n\n''',
''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 2_0 + '''"epoch": epoch,\n\n''',
''' ''' * 1_6 + '''},\n\n''',
''' ''' * 1_6 + '''step=epoch,\n''',
''' ''' * 1_2,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class A ( UpperCAmelCase ):
a_ = False
@classmethod
def snake_case__ ( cls : Tuple ) -> str:
super().setUpClass()
__UpperCAmelCase = tempfile.mkdtemp()
__UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
__UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Dict ) -> int:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
def snake_case__ ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
if torch.cuda.is_available():
__UpperCAmelCase = torch.cuda.device_count()
else:
__UpperCAmelCase = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
else:
self.assertIn('''epoch 0:''' , __a )
self.assertIn('''epoch 1:''' , __a )
@slow
def snake_case__ ( self : Any ) -> Optional[Any]:
__UpperCAmelCase = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
__UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a )
__UpperCAmelCase = re.findall('''({.+})''' , __a )
__UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1]
__UpperCAmelCase = ast.literal_eval(__a )
self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 )
def snake_case__ ( self : Dict ) -> int:
__UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdir:
__UpperCAmelCase = f"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
__UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
__UpperCAmelCase = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 654 | 0 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : bool = True , UpperCamelCase__ : float = math.inf , UpperCamelCase__ : float = -math.inf , UpperCamelCase__ : float = math.inf , UpperCamelCase__ : float = -math.inf , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 1_0_0 , UpperCamelCase__ : float = 0.01 , UpperCamelCase__ : float = 1 , ):
"""simple docstring"""
__UpperCAmelCase = False
__UpperCAmelCase = search_prob
__UpperCAmelCase = start_temperate
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = None
while not search_end:
__UpperCAmelCase = current_state.score()
if best_state is None or current_score > best_state.score():
__UpperCAmelCase = current_state
scores.append(UpperCamelCase__ )
iterations += 1
__UpperCAmelCase = None
__UpperCAmelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__UpperCAmelCase = random.randint(0 , len(UpperCamelCase__ ) - 1 ) # picking a random neighbor
__UpperCAmelCase = neighbors.pop(UpperCamelCase__ )
__UpperCAmelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__UpperCAmelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__UpperCAmelCase = picked_neighbor
else:
__UpperCAmelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__UpperCAmelCase = picked_neighbor
__UpperCAmelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__UpperCAmelCase = True
else:
__UpperCAmelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(UpperCamelCase__ ) , UpperCamelCase__ )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ):
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
__lowerCAmelCase : List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__lowerCAmelCase : List[str] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
__lowerCAmelCase : List[str] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__lowerCAmelCase : int = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
return (3 * x**2) - (6 * y)
__lowerCAmelCase : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__lowerCAmelCase : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F"""{local_min.score()}"""
)
__lowerCAmelCase : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__lowerCAmelCase : List[str] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F"""{local_min.score()}"""
)
| 701 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__lowerCAmelCase : Any = ""
__lowerCAmelCase : int = ""
__lowerCAmelCase : Union[str, Any] = ""
__lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal)
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ )
print('''Processing...''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for index, image in enumerate(UpperCamelCase__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCAmelCase = random_chars(3_2 )
__UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" )
__UpperCAmelCase = []
for anno in new_annos[index]:
__UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(UpperCamelCase__ )
with open(f"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ):
__UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(UpperCamelCase__ ) as in_file:
__UpperCAmelCase = in_file.readlines()
__UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" )
__UpperCAmelCase = []
for obj_list in obj_lists:
__UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(UpperCamelCase__ )
labels.append(UpperCamelCase__ )
return img_paths, labels
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = []
for idx in range(len(UpperCamelCase__ ) ):
__UpperCAmelCase = []
__UpperCAmelCase = img_list[idx]
path_list.append(UpperCamelCase__ )
__UpperCAmelCase = anno_list[idx]
__UpperCAmelCase = cva.imread(UpperCamelCase__ )
if flip_type == 1:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(UpperCamelCase__ )
new_imgs_list.append(UpperCamelCase__ )
return new_imgs_list, new_annos_lists, path_list
def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if number < 0:
raise ValueError('''number must not be negative''' )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 |
'''simple docstring'''
from pathlib import Path
import fire
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = Path(UpperCamelCase__ )
__UpperCAmelCase = Path(UpperCamelCase__ )
dest_dir.mkdir(exist_ok=UpperCamelCase__ )
for path in src_dir.iterdir():
__UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
__UpperCAmelCase = dest_dir.joinpath(path.name )
print(UpperCamelCase__ )
dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 654 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
__lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
class A ( UpperCAmelCase ):
def __init__( self : str , *__a : Union[str, Any] , **__a : str ) -> None:
warnings.warn(
'''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use OwlViTImageProcessor instead.''' , __a , )
super().__init__(*__a , **__a )
| 703 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
__UpperCAmelCase = f"""Input value of [number={number}] must be an integer"""
raise TypeError(UpperCamelCase__ )
if number < 1:
__UpperCAmelCase = f"""Input value of [number={number}] must be > 0"""
raise ValueError(UpperCamelCase__ )
__UpperCAmelCase = 1
for i in range(1 , UpperCamelCase__ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 654 | 0 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ):
"""simple docstring"""
__UpperCAmelCase = {}
if train_file is not None:
__UpperCAmelCase = [train_file]
if eval_file is not None:
__UpperCAmelCase = [eval_file]
if test_file is not None:
__UpperCAmelCase = [test_file]
__UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ )
__UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() )
__UpperCAmelCase = features_name.pop(UpperCamelCase__ )
__UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) )
__UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )}
__UpperCAmelCase = tokenizer.model_input_names
__UpperCAmelCase = {}
if len(UpperCamelCase__ ) == 1:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , )
elif len(UpperCamelCase__ ) == 2:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A :
a_ = field(metadata={'''help''': '''Which column contains the label'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} )
a_ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
a_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
__UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__UpperCAmelCase = TFTrainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 704 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowerCAmelCase ( ):
"""simple docstring"""
raise RuntimeError('''CUDA out of memory.''' )
class A ( nn.Module ):
def __init__( self : Optional[Any] ) -> int:
super().__init__()
__UpperCAmelCase = nn.Linear(3 , 4 )
__UpperCAmelCase = nn.BatchNormad(4 )
__UpperCAmelCase = nn.Linear(4 , 5 )
def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]:
return self.lineara(self.batchnorm(self.lineara(__a ) ) )
class A ( unittest.TestCase ):
def snake_case__ ( self : Optional[int] ) -> Any:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : Union[str, Any] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
def snake_case__ ( self : str ) -> int:
__UpperCAmelCase = []
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Optional[int] ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' )
self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def snake_case__ ( self : Any ) -> int:
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(__a : Optional[int] ):
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : Any ) -> List[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Dict ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def snake_case__ ( self : List[Any] ) -> List[str]:
@find_executable_batch_size(starting_batch_size=1_2_8 )
def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(__a ) as cm:
mock_training_loop_function(1_2_8 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
@find_executable_batch_size(starting_batch_size=1_6 )
def mock_training_loop_function(__a : Tuple ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def snake_case__ ( self : Any ) -> List[Any]:
__UpperCAmelCase = torch.cuda.memory_allocated()
__UpperCAmelCase = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , __a )
__UpperCAmelCase = release_memory(__a )
self.assertEqual(torch.cuda.memory_allocated() , __a )
| 654 | 0 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( UpperCAmelCase ):
a_ = (DEISMultistepScheduler,)
a_ = (('''num_inference_steps''', 2_5),)
def snake_case__ ( self : int , **__a : Union[str, Any] ) -> int:
__UpperCAmelCase = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__a )
return config
def snake_case__ ( self : Optional[Any] , __a : Dict=0 , **__a : int ) -> List[Any]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config(**__a )
__UpperCAmelCase = scheduler_class(**__a )
scheduler.set_timesteps(__a )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__a )
__UpperCAmelCase = scheduler_class.from_pretrained(__a )
new_scheduler.set_timesteps(__a )
# copy over dummy past residuals
__UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
__UpperCAmelCase , __UpperCAmelCase = sample, sample
for t in range(__a , time_step + scheduler.config.solver_order + 1 ):
__UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample
__UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def snake_case__ ( self : Union[str, Any] ) -> Dict:
pass
def snake_case__ ( self : str , __a : Dict=0 , **__a : List[Any] ) -> str:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
__UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**__a )
scheduler.set_timesteps(__a )
# copy over dummy past residuals (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__a )
__UpperCAmelCase = scheduler_class.from_pretrained(__a )
# copy over dummy past residuals
new_scheduler.set_timesteps(__a )
# copy over dummy past residual (must be after setting timesteps)
__UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
__UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample
__UpperCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def snake_case__ ( self : List[Any] , __a : List[str]=None , **__a : List[str] ) -> Optional[int]:
if scheduler is None:
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(**__a )
__UpperCAmelCase = scheduler_class(**__a )
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(**__a )
__UpperCAmelCase = scheduler_class(**__a )
__UpperCAmelCase = 1_0
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(__a )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(__a , __a )
__UpperCAmelCase = scheduler.step(__a , __a , __a ).prev_sample
return sample
def snake_case__ ( self : Dict ) -> Optional[Any]:
__UpperCAmelCase = dict(self.forward_default_kwargs )
__UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __a )
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase = self.get_scheduler_config()
__UpperCAmelCase = scheduler_class(**__a )
__UpperCAmelCase = self.dummy_sample
__UpperCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__a , '''set_timesteps''' ):
scheduler.set_timesteps(__a )
elif num_inference_steps is not None and not hasattr(__a , '''set_timesteps''' ):
__UpperCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
__UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
__UpperCAmelCase = scheduler.timesteps[5]
__UpperCAmelCase = scheduler.timesteps[6]
__UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample
__UpperCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def snake_case__ ( self : Union[str, Any] ) -> str:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
__UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() )
__UpperCAmelCase = self.full_loop(scheduler=__a )
__UpperCAmelCase = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
__UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
__UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
__UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
__UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
__UpperCAmelCase = self.full_loop(scheduler=__a )
__UpperCAmelCase = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def snake_case__ ( self : List[Any] ) -> Optional[int]:
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=__a )
def snake_case__ ( self : Dict ) -> List[str]:
self.check_over_configs(thresholding=__a )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type='''deis''' , solver_order=__a , solver_type=__a , )
def snake_case__ ( self : List[str] ) -> int:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__a )
def snake_case__ ( self : Optional[Any] ) -> int:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , )
__UpperCAmelCase = self.full_loop(
solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , )
assert not torch.isnan(__a ).any(), "Samples have nan numbers"
def snake_case__ ( self : List[str] ) -> Dict:
self.check_over_configs(lower_order_final=__a )
self.check_over_configs(lower_order_final=__a )
def snake_case__ ( self : str ) -> Tuple:
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=__a , time_step=0 )
def snake_case__ ( self : int ) -> List[Any]:
__UpperCAmelCase = self.full_loop()
__UpperCAmelCase = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def snake_case__ ( self : Tuple ) -> int:
__UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
__UpperCAmelCase = torch.mean(torch.abs(__a ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3
def snake_case__ ( self : int ) -> List[Any]:
__UpperCAmelCase = self.scheduler_classes[0]
__UpperCAmelCase = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 )
__UpperCAmelCase = scheduler_class(**__a )
__UpperCAmelCase = 1_0
__UpperCAmelCase = self.dummy_model()
__UpperCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__a )
for i, t in enumerate(scheduler.timesteps ):
__UpperCAmelCase = model(__a , __a )
__UpperCAmelCase = scheduler.step(__a , __a , __a ).prev_sample
assert sample.dtype == torch.floataa
| 705 |
'''simple docstring'''
from __future__ import annotations
import math
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = u
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = temp * (u - i)
return temp
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = int(input('''enter the numbers of values: ''' ) )
__UpperCAmelCase = []
for _ in range(UpperCamelCase__ ):
y.append([] )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
y[i].append(UpperCamelCase__ )
__UpperCAmelCase = 0
print('''enter the values of parameters in a list: ''' )
__UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = float(input() )
__UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) )
__UpperCAmelCase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCamelCase__ ):
for j in range(n - i ):
__UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1]
__UpperCAmelCase = y[0][0]
for i in range(1 , UpperCamelCase__ ):
summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ )
print(f"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 654 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__lowerCAmelCase : Optional[int] = 500_000
__lowerCAmelCase : str = os.path.split(__file__)
__lowerCAmelCase : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def lowerCAmelCase ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = dataset.map(**UpperCamelCase__ )
@get_duration
def lowerCAmelCase ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase = dataset.filter(**UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCAmelCase = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
__UpperCAmelCase = generate_example_dataset(
os.path.join(UpperCamelCase__ , '''dataset.arrow''' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ )
__UpperCAmelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase__ )
def tokenize(UpperCamelCase__ : Optional[Any] ):
return tokenizer(examples['''text'''] )
__UpperCAmelCase = map(UpperCamelCase__ )
__UpperCAmelCase = map(UpperCamelCase__ , batched=UpperCamelCase__ )
__UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ )
with dataset.formatted_as(type='''numpy''' ):
__UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ )
with dataset.formatted_as(type='''pandas''' ):
__UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
__UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
__UpperCAmelCase = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ )
__UpperCAmelCase = map(UpperCamelCase__ , function=UpperCamelCase__ , batched=UpperCamelCase__ )
__UpperCAmelCase = filter(UpperCamelCase__ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(UpperCamelCase__ , '''wb''' ) as f:
f.write(json.dumps(UpperCamelCase__ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 706 |
'''simple docstring'''
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : Dict = logging.get_logger(__name__)
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''),
('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''),
('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''),
('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''),
('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''),
('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''),
] )
return rename_keys
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ):
"""simple docstring"""
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
__UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" )
__UpperCAmelCase = in_proj_weight[
: encoder_config.hidden_size, :
]
__UpperCAmelCase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
__UpperCAmelCase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = dct.pop(UpperCamelCase__ )
__UpperCAmelCase = val
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
if "handwritten" in checkpoint_url:
__UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'''
__UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' )
return im
@torch.no_grad()
def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ )
__UpperCAmelCase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
__UpperCAmelCase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = 4_0_9_6
__UpperCAmelCase = 2_4
__UpperCAmelCase = 1_6
__UpperCAmelCase = 1_0_2_4
else:
raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
__UpperCAmelCase = False
__UpperCAmelCase = '''relu'''
__UpperCAmelCase = 1_0_2_4
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = False
# load HuggingFace model
__UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ )
__UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ )
__UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
# load state_dict of original model, rename some keys
__UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model''']
__UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
__UpperCAmelCase = state_dict.pop(UpperCamelCase__ )
if key.startswith('''decoder''' ) and "output_projection" not in key:
__UpperCAmelCase = val
else:
__UpperCAmelCase = val
# load state dict
model.load_state_dict(UpperCamelCase__ )
# Check outputs on an image
__UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size )
__UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' )
__UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values
# verify logits
__UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
__UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ )
__UpperCAmelCase = outputs.logits
__UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] )
elif "trocr-large-handwritten" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] )
elif "trocr-base-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] )
elif "trocr-large-printed" in checkpoint_url:
__UpperCAmelCase = torch.tensor(
[-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected"
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(UpperCamelCase__ )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
__lowerCAmelCase : Optional[int] = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 654 | 0 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
__lowerCAmelCase : str = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : tuple , UpperCamelCase__ : Path , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=False , ):
"""simple docstring"""
output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , )
else:
export(
UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , )
@torch.no_grad()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : bool = False ):
"""simple docstring"""
__UpperCAmelCase = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
__UpperCAmelCase = '''cuda'''
elif fpaa and not torch.cuda.is_available():
raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' )
else:
__UpperCAmelCase = '''cpu'''
__UpperCAmelCase = Path(UpperCamelCase__ )
# VAE DECODER
__UpperCAmelCase = AutoencoderKL.from_pretrained(model_path + '''/vae''' )
__UpperCAmelCase = vae_decoder.config.latent_channels
# forward only through the decoder part
__UpperCAmelCase = vae_decoder.decode
onnx_export(
UpperCamelCase__ , model_args=(
torch.randn(1 , UpperCamelCase__ , 2_5 , 2_5 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ),
False,
) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={
'''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
} , opset=UpperCamelCase__ , )
del vae_decoder
if __name__ == "__main__":
__lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
__lowerCAmelCase : Optional[int] = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 707 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class A ( unittest.TestCase ):
def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]:
return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy"""
def snake_case__ ( self : Dict ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return image
def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = '''bf16''' if fpaa else None
__UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained(
__a , subfolder='''unet''' , dtype=__a , revision=__a )
return model, params
def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]:
__UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa
__UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a )
return hidden_states
@parameterized.expand(
[
# fmt: off
[8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]],
[1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]],
[8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]],
[3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]],
# fmt: on
] )
def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]],
[1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]],
[8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]],
[3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]],
# fmt: on
] )
def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a )
__UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a )
__UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a )
__UpperCAmelCase = model.apply(
{'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample
assert sample.shape == latents.shape
__UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__a , __a , atol=1e-2 )
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int = 5_0 ):
"""simple docstring"""
__UpperCAmelCase = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 708 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
__lowerCAmelCase : Optional[int] = "examples/"
__lowerCAmelCase : Dict = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
__lowerCAmelCase : List[str] = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
__lowerCAmelCase : int = "README.md"
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ):
"""simple docstring"""
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern]
__UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ )
__UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
for folder, directories, fnames in os.walk(UpperCamelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' )
def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if not patch:
update_version_in_examples(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = '''🤗 Transformers currently provides the following architectures'''
__UpperCAmelCase = '''1. Want to contribute a new model?'''
with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase = f.readlines()
# Find the start of the list.
__UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
__UpperCAmelCase = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , )
index += 1
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(UpperCamelCase__ )
def lowerCAmelCase ( ):
"""simple docstring"""
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
__UpperCAmelCase = f.read()
__UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0]
return packaging.version.parse(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : Any=False ):
"""simple docstring"""
__UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
__UpperCAmelCase = default_version.base_version
elif patch:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = default_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = get_version()
__UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
__UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCamelCase__ ) == 0:
__UpperCAmelCase = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(UpperCamelCase__ )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
__lowerCAmelCase : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 654 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase ):
a_ = 4_2
class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase , UpperCAmelCase ):
@register_to_config
def __init__( self : List[str] , __a : int = 3_2 , __a : int = 6_4 , __a : int = 2_0 , __a : int = 7_6_8 , __a : Union[str, Any]=7_7 , __a : Any=4 , __a : float = 0.0 , __a : str = "silu" , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[str] = "linear" , __a : Optional[str] = "prd" , __a : Optional[int] = None , __a : Optional[int] = None , __a : Optional[int] = None , ) -> Union[str, Any]:
super().__init__()
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = attention_head_dim
__UpperCAmelCase = num_attention_heads * attention_head_dim
__UpperCAmelCase = additional_embeddings
__UpperCAmelCase = time_embed_dim or inner_dim
__UpperCAmelCase = embedding_proj_dim or embedding_dim
__UpperCAmelCase = clip_embed_dim or embedding_dim
__UpperCAmelCase = Timesteps(__a , __a , 0 )
__UpperCAmelCase = TimestepEmbedding(__a , __a , out_dim=__a , act_fn=__a )
__UpperCAmelCase = nn.Linear(__a , __a )
if embedding_proj_norm_type is None:
__UpperCAmelCase = None
elif embedding_proj_norm_type == "layer":
__UpperCAmelCase = nn.LayerNorm(__a )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
__UpperCAmelCase = nn.Linear(__a , __a )
if encoder_hid_proj_type is None:
__UpperCAmelCase = None
elif encoder_hid_proj_type == "linear":
__UpperCAmelCase = nn.Linear(__a , __a )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
__UpperCAmelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __a ) )
if added_emb_type == "prd":
__UpperCAmelCase = nn.Parameter(torch.zeros(1 , 1 , __a ) )
elif added_emb_type is None:
__UpperCAmelCase = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
__UpperCAmelCase = nn.ModuleList(
[
BasicTransformerBlock(
__a , __a , __a , dropout=__a , activation_fn='''gelu''' , attention_bias=__a , )
for d in range(__a )
] )
if norm_in_type == "layer":
__UpperCAmelCase = nn.LayerNorm(__a )
elif norm_in_type is None:
__UpperCAmelCase = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
__UpperCAmelCase = nn.LayerNorm(__a )
__UpperCAmelCase = nn.Linear(__a , __a )
__UpperCAmelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
__UpperCAmelCase = causal_attention_mask[None, ...]
self.register_buffer('''causal_attention_mask''' , __a , persistent=__a )
__UpperCAmelCase = nn.Parameter(torch.zeros(1 , __a ) )
__UpperCAmelCase = nn.Parameter(torch.zeros(1 , __a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def snake_case__ ( self : Dict ) -> Dict[str, AttentionProcessor]:
__UpperCAmelCase = {}
def fn_recursive_add_processors(__a : str , __a : torch.nn.Module , __a : Dict[str, AttentionProcessor] ):
if hasattr(__a , '''set_processor''' ):
__UpperCAmelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , __a , __a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__a , __a , __a )
return processors
def snake_case__ ( self : Optional[Any] , __a : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Any:
__UpperCAmelCase = len(self.attn_processors.keys() )
if isinstance(__a , __a ) and len(__a ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(__a )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(__a : str , __a : torch.nn.Module , __a : Union[str, Any] ):
if hasattr(__a , '''set_processor''' ):
if not isinstance(__a , __a ):
module.set_processor(__a )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , __a , __a )
for name, module in self.named_children():
fn_recursive_attn_processor(__a , __a , __a )
def snake_case__ ( self : Any ) -> int:
self.set_attn_processor(AttnProcessor() )
def snake_case__ ( self : List[str] , __a : str , __a : Union[torch.Tensor, float, int] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.BoolTensor] = None , __a : bool = True , ) -> str:
__UpperCAmelCase = hidden_states.shape[0]
__UpperCAmelCase = timestep
if not torch.is_tensor(__a ):
__UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0:
__UpperCAmelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase = timesteps * torch.ones(__a , dtype=timesteps.dtype , device=timesteps.device )
__UpperCAmelCase = self.time_proj(__a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__UpperCAmelCase = timesteps_projected.to(dtype=self.dtype )
__UpperCAmelCase = self.time_embedding(__a )
if self.embedding_proj_norm is not None:
__UpperCAmelCase = self.embedding_proj_norm(__a )
__UpperCAmelCase = self.embedding_proj(__a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__UpperCAmelCase = self.encoder_hidden_states_proj(__a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' )
__UpperCAmelCase = self.proj_in(__a )
__UpperCAmelCase = self.positional_embedding.to(hidden_states.dtype )
__UpperCAmelCase = []
__UpperCAmelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(__a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__UpperCAmelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__UpperCAmelCase = hidden_states[:, None, :]
__UpperCAmelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__UpperCAmelCase = self.prd_embedding.to(hidden_states.dtype ).expand(__a , -1 , -1 )
additional_embeds.append(__a )
__UpperCAmelCase = torch.cat(
__a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__UpperCAmelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__UpperCAmelCase = F.pad(
__a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__UpperCAmelCase = hidden_states + positional_embeddings
if attention_mask is not None:
__UpperCAmelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
__UpperCAmelCase = F.pad(__a , (0, self.additional_embeddings) , value=0.0 )
__UpperCAmelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__UpperCAmelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__UpperCAmelCase = self.norm_in(__a )
for block in self.transformer_blocks:
__UpperCAmelCase = block(__a , attention_mask=__a )
__UpperCAmelCase = self.norm_out(__a )
if self.prd_embedding is not None:
__UpperCAmelCase = hidden_states[:, -1]
else:
__UpperCAmelCase = hidden_states[:, additional_embeddings_len:]
__UpperCAmelCase = self.proj_to_clip_embeddings(__a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__a )
def snake_case__ ( self : str , __a : int ) -> str:
__UpperCAmelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 709 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
__UpperCAmelCase = len(UpperCamelCase__ )
__UpperCAmelCase = max(UpperCamelCase__ )
__UpperCAmelCase = min(UpperCamelCase__ )
# create the counting array
__UpperCAmelCase = coll_max + 1 - coll_min
__UpperCAmelCase = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , UpperCamelCase__ ):
__UpperCAmelCase = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__UpperCAmelCase = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , UpperCamelCase__ ) ):
__UpperCAmelCase = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
__lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip()
__lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| 654 | 0 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def snake_case__ ( *__a : Dict , **__a : Tuple ) -> int:
pass
@is_pipeline_test
@require_torch
@require_vision
class A ( unittest.TestCase ):
a_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def snake_case__ ( self : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] ) -> List[str]:
__UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' )
__UpperCAmelCase = [
{
'''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''question''': '''How many cats are there?''',
},
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''question''': '''How many cats are there?''',
},
]
return vqa_pipeline, examples
def snake_case__ ( self : List[str] , __a : Tuple , __a : Any ) -> Dict:
__UpperCAmelCase = vqa_pipeline(__a , top_k=1 )
self.assertEqual(
__a , [
[{'''score''': ANY(__a ), '''answer''': ANY(__a )}],
[{'''score''': ANY(__a ), '''answer''': ANY(__a )}],
] , )
@require_torch
def snake_case__ ( self : Tuple ) -> Union[str, Any]:
__UpperCAmelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' )
__UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
__UpperCAmelCase = '''How many cats are there?'''
__UpperCAmelCase = vqa_pipeline(image=__a , question='''How many cats are there?''' , top_k=2 )
self.assertEqual(
__a , [{'''score''': ANY(__a ), '''answer''': ANY(__a )}, {'''score''': ANY(__a ), '''answer''': ANY(__a )}] )
__UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
__a , [{'''score''': ANY(__a ), '''answer''': ANY(__a )}, {'''score''': ANY(__a ), '''answer''': ANY(__a )}] )
@slow
@require_torch
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
__UpperCAmelCase = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' )
__UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png'''
__UpperCAmelCase = '''How many cats are there?'''
__UpperCAmelCase = vqa_pipeline(image=__a , question=__a , top_k=2 )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] )
__UpperCAmelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] )
__UpperCAmelCase = vqa_pipeline(
[{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 )
self.assertEqual(
nested_simplify(__a , decimals=4 ) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , )
@require_tf
@unittest.skip('''Visual question answering not implemented in TF''' )
def snake_case__ ( self : Tuple ) -> str:
pass
| 710 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ):
"""simple docstring"""
__UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' )
__UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 654 | 0 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A ( nn.Module ):
def __init__( self : Tuple , __a : nn.Module , __a : int ) -> Optional[int]:
super().__init__()
__UpperCAmelCase = module
__UpperCAmelCase = nn.Sequential(
nn.Linear(module.in_features , __a , bias=__a ) , nn.Linear(__a , module.out_features , bias=__a ) , )
__UpperCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=__a )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def snake_case__ ( self : List[Any] , __a : List[Any] , *__a : Tuple , **__a : Dict ) -> str:
return self.module(__a , *__a , **__a ) + self.adapter(__a )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
a_ = '''bigscience/bloom-1b7'''
# Constant values
a_ = 2.109_659_552_692_574
a_ = '''Hello my name is'''
a_ = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
a_ = 1_0
def snake_case__ ( self : str ) -> str:
# Models and tokenizer
__UpperCAmelCase = AutoTokenizer.from_pretrained(self.model_name )
class A ( UpperCAmelCase ):
def snake_case__ ( self : Dict ) -> List[str]:
super().setUp()
# Models and tokenizer
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='''auto''' )
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' )
def snake_case__ ( self : str ) -> Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Optional[int] ) -> List[str]:
__UpperCAmelCase = self.model_abit.config
self.assertTrue(hasattr(__a , '''quantization_config''' ) )
__UpperCAmelCase = config.to_dict()
__UpperCAmelCase = config.to_diff_dict()
__UpperCAmelCase = config.to_json_string()
def snake_case__ ( self : Tuple ) -> Any:
from bitsandbytes.nn import Paramsabit
__UpperCAmelCase = self.model_fpaa.get_memory_footprint()
__UpperCAmelCase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__UpperCAmelCase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(__a , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def snake_case__ ( self : List[Any] ) -> Dict:
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
__UpperCAmelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS )
def snake_case__ ( self : Union[str, Any] ) -> str:
__UpperCAmelCase = BitsAndBytesConfig()
__UpperCAmelCase = True
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__a , device_map='''auto''' )
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
__UpperCAmelCase = model_abit_from_config.generate(
input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS )
def snake_case__ ( self : Optional[Any] ) -> str:
with self.assertRaises(__a ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(__a )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
__UpperCAmelCase = BitsAndBytesConfig()
with self.assertRaises(__a ):
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__a , load_in_abit=__a , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
with self.assertRaises(__a ):
# Tries with `str`
self.model_abit.to('''cpu''' )
with self.assertRaises(__a ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(__a ):
# Tries with a `device`
self.model_abit.to(torch.device('''cuda:0''' ) )
with self.assertRaises(__a ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(__a ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
__UpperCAmelCase = self.model_fpaa.to(torch.floataa )
__UpperCAmelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
__UpperCAmelCase = self.model_fpaa.to('''cpu''' )
# Check this does not throw an error
__UpperCAmelCase = self.model_fpaa.half()
# Check this does not throw an error
__UpperCAmelCase = self.model_fpaa.float()
def snake_case__ ( self : str ) -> Dict:
__UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__a , device_map='''auto''' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A ( unittest.TestCase ):
@classmethod
def snake_case__ ( cls : int ) -> Any:
__UpperCAmelCase = '''t5-small'''
__UpperCAmelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense
__UpperCAmelCase = AutoTokenizer.from_pretrained(cls.model_name )
__UpperCAmelCase = '''Translate in German: Hello, my dog is cute'''
def snake_case__ ( self : Dict ) -> str:
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : List[Any] ) -> Dict:
from transformers import TaForConditionalGeneration
__UpperCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules
__UpperCAmelCase = None
# test with `t5-small`
__UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' )
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
__UpperCAmelCase = model.generate(**__a )
# test with `flan-t5-small`
__UpperCAmelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__a , device_map='''auto''' )
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
__UpperCAmelCase = model.generate(**__a )
__UpperCAmelCase = modules
def snake_case__ ( self : str ) -> List[Any]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
__UpperCAmelCase = model.generate(**__a )
# test with `flan-t5-small`
__UpperCAmelCase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__a , device_map='''auto''' )
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 )
__UpperCAmelCase = model.generate(**__a )
class A ( UpperCAmelCase ):
def snake_case__ ( self : str ) -> List[Any]:
super().setUp()
# model_name
__UpperCAmelCase = '''bigscience/bloom-560m'''
__UpperCAmelCase = '''t5-small'''
# Different types of model
__UpperCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' )
# Sequence classification model
__UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=__a , device_map='''auto''' )
# CausalLM model
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a , device_map='''auto''' )
# Seq2seq model
__UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=__a , device_map='''auto''' )
def snake_case__ ( self : Any ) -> int:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : str ) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A ( UpperCAmelCase ):
def snake_case__ ( self : str ) -> Optional[Any]:
super().setUp()
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : int ) -> List[str]:
__UpperCAmelCase = pipeline(
'''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__UpperCAmelCase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A ( UpperCAmelCase ):
def snake_case__ ( self : int ) -> int:
super().setUp()
def snake_case__ ( self : Dict ) -> Any:
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=__a , device_map='''balanced''' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__UpperCAmelCase = self.tokenizer(self.input_text , return_tensors='''pt''' )
# Second real batch
__UpperCAmelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__a ) , self.EXPECTED_OUTPUTS )
class A ( UpperCAmelCase ):
def snake_case__ ( self : Union[str, Any] ) -> int:
__UpperCAmelCase = '''facebook/opt-350m'''
super().setUp()
def snake_case__ ( self : Optional[Any] ) -> List[str]:
if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ):
return
# Step 1: freeze all parameters
__UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__a )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__UpperCAmelCase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__UpperCAmelCase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(__a ) ):
__UpperCAmelCase = LoRALayer(module.q_proj , rank=1_6 )
__UpperCAmelCase = LoRALayer(module.k_proj , rank=1_6 )
__UpperCAmelCase = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
__UpperCAmelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__UpperCAmelCase = model.forward(**__a )
out.logits.norm().backward()
for module in model.modules():
if isinstance(__a , __a ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(__a , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A ( UpperCAmelCase ):
a_ = '''gpt2-xl'''
a_ = 3.3_191_854_854_152_187
| 711 |
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
__UpperCAmelCase = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i]
__UpperCAmelCase = []
__UpperCAmelCase = 0
__UpperCAmelCase = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
__UpperCAmelCase = []
__UpperCAmelCase = -1
for i in range(UpperCamelCase__ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
__UpperCAmelCase = i
total_time += burst_time[target_process]
completed += 1
__UpperCAmelCase = 0
__UpperCAmelCase = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ):
"""simple docstring"""
__UpperCAmelCase = [0] * no_of_processes
for i in range(UpperCamelCase__ ):
__UpperCAmelCase = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
__lowerCAmelCase : List[Any] = 4
__lowerCAmelCase : List[Any] = [2, 5, 3, 7]
__lowerCAmelCase : Tuple = [0, 0, 0, 0]
__lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__lowerCAmelCase : Dict = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 654 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(UpperCAmelCase ) , '''Tatoeba directory does not exist.''' )
class A ( unittest.TestCase ):
@cached_property
def snake_case__ ( self : Dict ) -> str:
__UpperCAmelCase = tempfile.mkdtemp()
return TatoebaConverter(save_dir=__a )
@slow
def snake_case__ ( self : List[Any] ) -> Tuple:
self.resolver.convert_models(['''heb-eng'''] )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__a )
assert mmeta["long_pair"] == "heb-eng"
| 712 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : int , **__a : int ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict:
requires_backends(cls , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ):
"""simple docstring"""
requires_backends(UpperCamelCase__ , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : str , **__a : Any ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Any , **__a : int ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str:
requires_backends(cls , ['''torch'''] )
class A ( metaclass=UpperCAmelCase ):
a_ = ['''torch''']
def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]:
requires_backends(self , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any:
requires_backends(cls , ['''torch'''] )
@classmethod
def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]:
requires_backends(cls , ['''torch'''] )
| 654 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__lowerCAmelCase : Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class A ( unittest.TestCase ):
a_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
a_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
a_ = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def snake_case__ ( self : Union[str, Any] ) -> Dict:
__UpperCAmelCase = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' )
__UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] )
__UpperCAmelCase = text_classifier('''This is great !''' , top_k=2 )
self.assertEqual(
nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}] )
__UpperCAmelCase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 )
self.assertEqual(
nested_simplify(__a ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}],
[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}],
] , )
__UpperCAmelCase = text_classifier('''This is great !''' , top_k=1 )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] )
# Legacy behavior
__UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=__a )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] )
__UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=__a )
self.assertEqual(
nested_simplify(__a ) , [[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}]] )
__UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__a )
self.assertEqual(
nested_simplify(__a ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}],
[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}],
] , )
__UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__a )
self.assertEqual(
nested_simplify(__a ) , [
{'''label''': '''LABEL_0''', '''score''': 0.5_0_4},
{'''label''': '''LABEL_0''', '''score''': 0.5_0_4},
] , )
@require_torch
def snake_case__ ( self : Optional[Any] ) -> Tuple:
import torch
__UpperCAmelCase = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , )
__UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] )
@require_tf
def snake_case__ ( self : int ) -> Tuple:
__UpperCAmelCase = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' )
__UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] )
@slow
@require_torch
def snake_case__ ( self : List[Any] ) -> Optional[int]:
__UpperCAmelCase = pipeline('''text-classification''' )
__UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
__UpperCAmelCase = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
__UpperCAmelCase = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] )
@slow
@require_tf
def snake_case__ ( self : List[Any] ) -> Dict:
__UpperCAmelCase = pipeline('''text-classification''' , framework='''tf''' )
__UpperCAmelCase = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
__UpperCAmelCase = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
__UpperCAmelCase = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] )
def snake_case__ ( self : List[Any] , __a : List[Any] , __a : Optional[int] , __a : Any ) -> List[Any]:
__UpperCAmelCase = TextClassificationPipeline(model=__a , tokenizer=__a )
return text_classifier, ["HuggingFace is in", "This is another test"]
def snake_case__ ( self : int , __a : List[str] , __a : str ) -> Dict:
__UpperCAmelCase = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__UpperCAmelCase = '''HuggingFace is in'''
__UpperCAmelCase = text_classifier(__a )
self.assertEqual(nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}] )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
__UpperCAmelCase = ['''HuggingFace is in ''', '''Paris is in France''']
__UpperCAmelCase = text_classifier(__a )
self.assertEqual(
nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}, {'''label''': ANY(__a ), '''score''': ANY(__a )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__UpperCAmelCase = text_classifier(__a , top_k=__a )
__UpperCAmelCase = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__a ) , [[{'''label''': ANY(__a ), '''score''': ANY(__a )}] * N, [{'''label''': ANY(__a ), '''score''': ANY(__a )}] * N] , )
__UpperCAmelCase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''}
__UpperCAmelCase = text_classifier(__a )
self.assertEqual(
nested_simplify(__a ) , {'''label''': ANY(__a ), '''score''': ANY(__a )} , )
self.assertTrue(outputs['''label'''] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__UpperCAmelCase = [['''HuggingFace is in ''', '''Paris is in France''']]
with self.assertRaises(__a ):
text_classifier(__a )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__UpperCAmelCase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] )
self.assertEqual(
nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
| 713 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 654 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__lowerCAmelCase : Any = ""
__lowerCAmelCase : int = ""
__lowerCAmelCase : Union[str, Any] = ""
__lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal)
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ )
print('''Processing...''' )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for index, image in enumerate(UpperCamelCase__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCAmelCase = random_chars(3_2 )
__UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] )
print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" )
__UpperCAmelCase = []
for anno in new_annos[index]:
__UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(UpperCamelCase__ )
with open(f"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ):
__UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(UpperCamelCase__ ) as in_file:
__UpperCAmelCase = in_file.readlines()
__UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" )
__UpperCAmelCase = []
for obj_list in obj_lists:
__UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(UpperCamelCase__ )
labels.append(UpperCamelCase__ )
return img_paths, labels
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ):
"""simple docstring"""
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = []
for idx in range(len(UpperCamelCase__ ) ):
__UpperCAmelCase = []
__UpperCAmelCase = img_list[idx]
path_list.append(UpperCamelCase__ )
__UpperCAmelCase = anno_list[idx]
__UpperCAmelCase = cva.imread(UpperCamelCase__ )
if flip_type == 1:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ )
for bbox in img_annos:
__UpperCAmelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(UpperCamelCase__ )
new_imgs_list.append(UpperCamelCase__ )
return new_imgs_list, new_annos_lists, path_list
def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCAmelCase = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 714 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCAmelCase : Optional[Any] = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase : Tuple = {
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any = ["BloomTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
"BloomForCausalLM",
"BloomModel",
"BloomPreTrainedModel",
"BloomForSequenceClassification",
"BloomForTokenClassification",
"BloomForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 715 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ):
"""simple docstring"""
__UpperCAmelCase = {}
if train_file is not None:
__UpperCAmelCase = [train_file]
if eval_file is not None:
__UpperCAmelCase = [eval_file]
if test_file is not None:
__UpperCAmelCase = [test_file]
__UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ )
__UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() )
__UpperCAmelCase = features_name.pop(UpperCamelCase__ )
__UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) )
__UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )}
__UpperCAmelCase = tokenizer.model_input_names
__UpperCAmelCase = {}
if len(UpperCamelCase__ ) == 1:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , )
elif len(UpperCamelCase__ ) == 2:
for k in files.keys():
__UpperCAmelCase = ds[k].map(
lambda UpperCamelCase__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names}
__UpperCAmelCase = labelaid[ex[label_name]]
yield (d, label)
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__UpperCAmelCase = (
tf.data.Dataset.from_generator(
UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A :
a_ = field(metadata={'''help''': '''Which column contains the label'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} )
a_ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
a_ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
a_ = field(
default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase ( ):
"""simple docstring"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
f"""16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict:
__UpperCAmelCase = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__UpperCAmelCase = TFTrainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__UpperCAmelCase = trainer.evaluate()
__UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(UpperCamelCase__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
results.update(UpperCamelCase__ )
return results
if __name__ == "__main__":
main()
| 654 | 0 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
__lowerCAmelCase : Optional[int] = NewType("DataClass", Any)
__lowerCAmelCase : Any = NewType("DataClassType", Any)
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" )
def lowerCAmelCase ( UpperCamelCase__ : list ):
"""simple docstring"""
__UpperCAmelCase = {str(UpperCamelCase__ ): choice for choice in choices}
return lambda UpperCamelCase__ : str_to_choice.get(UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase ( *,
UpperCamelCase__ : Union[str, List[str]] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : Any = dataclasses.MISSING , UpperCamelCase__ : Callable[[], Any] = dataclasses.MISSING , UpperCamelCase__ : dict = None , **UpperCamelCase__ : Optional[Any] , ):
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__UpperCAmelCase = {}
if aliases is not None:
__UpperCAmelCase = aliases
if help is not None:
__UpperCAmelCase = help
return dataclasses.field(metadata=UpperCamelCase__ , default=UpperCamelCase__ , default_factory=UpperCamelCase__ , **UpperCamelCase__ )
class A ( UpperCAmelCase ):
a_ = 4_2
def __init__( self : Optional[int] , __a : Union[DataClassType, Iterable[DataClassType]] , **__a : Any ) -> Optional[int]:
# To make the default appear when using --help
if "formatter_class" not in kwargs:
__UpperCAmelCase = ArgumentDefaultsHelpFormatter
super().__init__(**__a )
if dataclasses.is_dataclass(__a ):
__UpperCAmelCase = [dataclass_types]
__UpperCAmelCase = list(__a )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(__a )
@staticmethod
def snake_case__ ( __a : ArgumentParser , __a : dataclasses.Field ) -> Optional[Any]:
__UpperCAmelCase = f"""--{field.name}"""
__UpperCAmelCase = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type , __a ):
raise RuntimeError(
'''Unresolved type detected, which should have been done with the help of '''
'''`typing.get_type_hints` method by default''' )
__UpperCAmelCase = kwargs.pop('''aliases''' , [] )
if isinstance(__a , __a ):
__UpperCAmelCase = [aliases]
__UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type )
if origin_type is Union or (hasattr(__a , '''UnionType''' ) and isinstance(__a , types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__
):
raise ValueError(
'''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because'''
''' the argument parser only supports one type per argument.'''
f""" Problem encountered in field '{field.name}'.""" )
if type(__a ) not in field.type.__args__:
# filter `str` in Union
__UpperCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__UpperCAmelCase = (
field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1]
)
__UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__UpperCAmelCase = {}
if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )):
if origin_type is Literal:
__UpperCAmelCase = field.type.__args__
else:
__UpperCAmelCase = [x.value for x in field.type]
__UpperCAmelCase = make_choice_type_function(kwargs['''choices'''] )
if field.default is not dataclasses.MISSING:
__UpperCAmelCase = field.default
else:
__UpperCAmelCase = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__UpperCAmelCase = copy(__a )
# Hack because type=bool in argparse does not behave as we want.
__UpperCAmelCase = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__UpperCAmelCase = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__UpperCAmelCase = default
# This tells argparse we accept 0 or 1 value after --field_name
__UpperCAmelCase = '''?'''
# This is the value that will get picked if we do --field_name (without value)
__UpperCAmelCase = True
elif isclass(__a ) and issubclass(__a , __a ):
__UpperCAmelCase = field.type.__args__[0]
__UpperCAmelCase = '''+'''
if field.default_factory is not dataclasses.MISSING:
__UpperCAmelCase = field.default_factory()
elif field.default is dataclasses.MISSING:
__UpperCAmelCase = True
else:
__UpperCAmelCase = field.type
if field.default is not dataclasses.MISSING:
__UpperCAmelCase = field.default
elif field.default_factory is not dataclasses.MISSING:
__UpperCAmelCase = field.default_factory()
else:
__UpperCAmelCase = True
parser.add_argument(__a , *__a , **__a )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__UpperCAmelCase = False
parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__a )
def snake_case__ ( self : Optional[int] , __a : DataClassType ) -> Optional[Any]:
if hasattr(__a , '''_argument_group_name''' ):
__UpperCAmelCase = self.add_argument_group(dtype._argument_group_name )
else:
__UpperCAmelCase = self
try:
__UpperCAmelCase = get_type_hints(__a )
except NameError:
raise RuntimeError(
f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """
'''removing line of `from __future__ import annotations` which opts in Postponed '''
'''Evaluation of Annotations (PEP 563)''' )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__a ):
__UpperCAmelCase = '''.'''.join(map(__a , sys.version_info[:3] ) )
raise RuntimeError(
f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """
'''line of `from __future__ import annotations` which opts in union types as '''
'''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To '''
'''support Python versions that lower than 3.10, you need to use '''
'''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of '''
'''`X | None`.''' ) from ex
raise
for field in dataclasses.fields(__a ):
if not field.init:
continue
__UpperCAmelCase = type_hints[field.name]
self._parse_dataclass_field(__a , __a )
def snake_case__ ( self : str , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=True , __a : int=None , __a : Optional[Any]=None , ) -> Tuple[DataClass, ...]:
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__UpperCAmelCase = []
if args_filename:
args_files.append(Path(__a ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__UpperCAmelCase = ArgumentParser()
args_file_parser.add_argument(__a , type=__a , action='''append''' )
# Use only remaining args for further parsing (remove the args_file_flag)
__UpperCAmelCase , __UpperCAmelCase = args_file_parser.parse_known_args(args=__a )
__UpperCAmelCase = vars(__a ).get(args_file_flag.lstrip('''-''' ) , __a )
if cmd_args_file_paths:
args_files.extend([Path(__a ) for p in cmd_args_file_paths] )
__UpperCAmelCase = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__UpperCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:]
__UpperCAmelCase , __UpperCAmelCase = self.parse_known_args(args=__a )
__UpperCAmelCase = []
for dtype in self.dataclass_types:
__UpperCAmelCase = {f.name for f in dataclasses.fields(__a ) if f.init}
__UpperCAmelCase = {k: v for k, v in vars(__a ).items() if k in keys}
for k in keys:
delattr(__a , __a )
__UpperCAmelCase = dtype(**__a )
outputs.append(__a )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(__a )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" )
return (*outputs,)
def snake_case__ ( self : Optional[int] , __a : Dict[str, Any] , __a : bool = False ) -> Tuple[DataClass, ...]:
__UpperCAmelCase = set(args.keys() )
__UpperCAmelCase = []
for dtype in self.dataclass_types:
__UpperCAmelCase = {f.name for f in dataclasses.fields(__a ) if f.init}
__UpperCAmelCase = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__UpperCAmelCase = dtype(**__a )
outputs.append(__a )
if not allow_extra_keys and unused_keys:
raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__a )}""" )
return tuple(__a )
def snake_case__ ( self : Optional[int] , __a : str , __a : bool = False ) -> Tuple[DataClass, ...]:
with open(Path(__a ) , encoding='''utf-8''' ) as open_json_file:
__UpperCAmelCase = json.loads(open_json_file.read() )
__UpperCAmelCase = self.parse_dict(__a , allow_extra_keys=__a )
return tuple(__a )
def snake_case__ ( self : Optional[int] , __a : str , __a : bool = False ) -> Tuple[DataClass, ...]:
__UpperCAmelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a )
return tuple(__a )
| 716 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A :
def __init__( self : List[Any] , __a : Any , ) -> Dict:
__UpperCAmelCase = parent
__UpperCAmelCase = 1_3
__UpperCAmelCase = 7
__UpperCAmelCase = True
__UpperCAmelCase = True
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = 9_9
__UpperCAmelCase = 3_2
__UpperCAmelCase = 2
__UpperCAmelCase = 4
__UpperCAmelCase = 3_7
__UpperCAmelCase = '''gelu'''
__UpperCAmelCase = 0.1
__UpperCAmelCase = 0.1
__UpperCAmelCase = 5_1_2
__UpperCAmelCase = 1_6
__UpperCAmelCase = 2
__UpperCAmelCase = 0.0_2
__UpperCAmelCase = 3
__UpperCAmelCase = 4
__UpperCAmelCase = None
def snake_case__ ( self : Optional[int] ) -> Dict:
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase = None
if self.use_input_mask:
__UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase = None
__UpperCAmelCase = None
__UpperCAmelCase = None
if self.use_labels:
__UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any:
__UpperCAmelCase = TFDistilBertModel(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
__UpperCAmelCase = [input_ids, input_mask]
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int:
__UpperCAmelCase = TFDistilBertForMaskedLM(config=__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict:
__UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a )
__UpperCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForSequenceClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str:
__UpperCAmelCase = self.num_choices
__UpperCAmelCase = TFDistilBertForMultipleChoice(__a )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
__UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int:
__UpperCAmelCase = self.num_labels
__UpperCAmelCase = TFDistilBertForTokenClassification(__a )
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
__UpperCAmelCase = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self : str ) -> Any:
__UpperCAmelCase = self.prepare_config_and_inputs()
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs
__UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
a_ = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
a_ = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a_ = False
a_ = False
def snake_case__ ( self : Any ) -> Any:
__UpperCAmelCase = TFDistilBertModelTester(self )
__UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 )
def snake_case__ ( self : List[Any] ) -> Optional[int]:
self.config_tester.run_common_tests()
def snake_case__ ( self : Any ) -> str:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*__a )
def snake_case__ ( self : Tuple ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*__a )
def snake_case__ ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*__a )
def snake_case__ ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a )
def snake_case__ ( self : Any ) -> int:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a )
def snake_case__ ( self : List[str] ) -> List[Any]:
__UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*__a )
@slow
def snake_case__ ( self : Dict ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCAmelCase = TFDistilBertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
class A ( unittest.TestCase ):
@slow
def snake_case__ ( self : int ) -> Dict:
__UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase = model(__a )[0]
__UpperCAmelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , __a )
__UpperCAmelCase = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int = 1_0 , UpperCamelCase__ : int = 2_2 ):
"""simple docstring"""
__UpperCAmelCase = range(1 , UpperCamelCase__ )
__UpperCAmelCase = range(1 , UpperCamelCase__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F"""{solution(10, 22) = }""")
| 717 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__lowerCAmelCase : List[Any] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 654 | 0 |
def lowerCAmelCase ( UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = [False] * len(UpperCamelCase__ )
__UpperCAmelCase = [-1] * len(UpperCamelCase__ )
def dfs(UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ):
__UpperCAmelCase = True
__UpperCAmelCase = c
for u in graph[v]:
if not visited[u]:
dfs(UpperCamelCase__ , 1 - c )
for i in range(len(UpperCamelCase__ ) ):
if not visited[i]:
dfs(UpperCamelCase__ , 0 )
for i in range(len(UpperCamelCase__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
__lowerCAmelCase : Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 718 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class A ( UpperCAmelCase ):
a_ = '''bert-generation'''
def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
__UpperCAmelCase = vocab_size
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = hidden_act
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = initializer_range
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = use_cache
| 654 | 0 |
'''simple docstring'''
import qiskit
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' )
# Create a Quantum Circuit acting on the q register
__UpperCAmelCase = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
__UpperCAmelCase = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(UpperCamelCase__ )
if __name__ == "__main__":
print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
| 719 |
'''simple docstring'''
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
__lowerCAmelCase : str = 299_792_458
# Symbols
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z")
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
if velocity > c:
raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('''Speed must be greater than or equal to 1!''' )
return velocity / c
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 )
def lowerCAmelCase ( UpperCamelCase__ : float ):
"""simple docstring"""
return np.array(
[
[gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0],
[-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ):
"""simple docstring"""
# Ensure event is not empty
if event is None:
__UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(UpperCamelCase__ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
__lowerCAmelCase : Dict = transform(29_979_245)
print("Example of four vector: ")
print(F"""ct' = {four_vector[0]}""")
print(F"""x' = {four_vector[1]}""")
print(F"""y' = {four_vector[2]}""")
print(F"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
__lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1}
__lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F"""\n{numerical_vector}""")
| 654 | 0 |
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class A :
def __init__( self : Tuple , __a : int | None = None ) -> str:
__UpperCAmelCase = value
__UpperCAmelCase = None # Added in order to delete a node easier
__UpperCAmelCase = None
__UpperCAmelCase = None
def __repr__( self : Optional[Any] ) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 )
class A :
def __init__( self : int , __a : Node | None = None ) -> List[Any]:
__UpperCAmelCase = root
def __str__( self : Any ) -> str:
return str(self.root )
def snake_case__ ( self : List[str] , __a : Node , __a : Node | None ) -> None:
if new_children is not None: # reset its kids
__UpperCAmelCase = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__a ): # If it is the right children
__UpperCAmelCase = new_children
else:
__UpperCAmelCase = new_children
else:
__UpperCAmelCase = new_children
def snake_case__ ( self : List[str] , __a : Node ) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False
def snake_case__ ( self : str ) -> bool:
return self.root is None
def snake_case__ ( self : Optional[int] , __a : List[str] ) -> None:
__UpperCAmelCase = Node(__a ) # create a new Node
if self.empty(): # if Tree is empty
__UpperCAmelCase = new_node # set its root
else: # Tree is not empty
__UpperCAmelCase = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
__UpperCAmelCase = new_node # We insert the new node in a leaf
break
else:
__UpperCAmelCase = parent_node.left
else:
if parent_node.right is None:
__UpperCAmelCase = new_node
break
else:
__UpperCAmelCase = parent_node.right
__UpperCAmelCase = parent_node
def snake_case__ ( self : str , *__a : int ) -> None:
for value in values:
self.__insert(__a )
def snake_case__ ( self : Optional[int] , __a : Dict ) -> Node | None:
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
__UpperCAmelCase = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
__UpperCAmelCase = node.left if value < node.value else node.right
return node
def snake_case__ ( self : List[Any] , __a : Node | None = None ) -> Node | None:
if node is None:
if self.root is None:
return None
__UpperCAmelCase = self.root
if not self.empty():
while node.right is not None:
__UpperCAmelCase = node.right
return node
def snake_case__ ( self : Any , __a : Node | None = None ) -> Node | None:
if node is None:
__UpperCAmelCase = self.root
if self.root is None:
return None
if not self.empty():
__UpperCAmelCase = self.root
while node.left is not None:
__UpperCAmelCase = node.left
return node
def snake_case__ ( self : Tuple , __a : int ) -> None:
__UpperCAmelCase = self.search(__a ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__a , __a )
elif node.left is None: # Has only right children
self.__reassign_nodes(__a , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__a , node.left )
else:
__UpperCAmelCase = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
__UpperCAmelCase = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def snake_case__ ( self : Optional[Any] , __a : Node | None ) -> Iterable:
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def snake_case__ ( self : Any , __a : Optional[int]=None ) -> Any:
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def snake_case__ ( self : Any , __a : list , __a : Node | None ) -> None:
if node:
self.inorder(__a , node.left )
arr.append(node.value )
self.inorder(__a , node.right )
def snake_case__ ( self : Any , __a : int , __a : Node ) -> int:
__UpperCAmelCase = []
self.inorder(__a , __a ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCAmelCase ( UpperCamelCase__ : Node | None ):
"""simple docstring"""
__UpperCAmelCase = []
if curr_node is not None:
__UpperCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7)
__UpperCAmelCase = BinarySearchTree()
for i in testlist:
t.insert(UpperCamelCase__ )
# Prints all the elements of the list in order traversal
print(UpperCamelCase__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''' , t.get_max().value ) # type: ignore
print('''Min Value: ''' , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(UpperCamelCase__ )
print(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 720 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : Any = tuple[int, int]
class A :
def __init__( self : Optional[int] ) -> int:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Dict ) -> Optional[int]:
return len(self.elements ) == 0
def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__a )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : int , __a : Any ) -> int:
if item in self.set:
self.set.remove(__a )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : List[str] ) -> Dict:
return self.elements[0][1]
def snake_case__ ( self : Any ) -> List[str]:
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(__a )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# euclidean distance
__UpperCAmelCase = np.array(UpperCamelCase__ )
__UpperCAmelCase = np.array(UpperCamelCase__ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# integer division by time variable
return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = '''*'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(UpperCamelCase__ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(UpperCamelCase__ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ):
"""simple docstring"""
for itera in range(UpperCamelCase__ ):
open_list[itera].remove_element(UpperCamelCase__ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase__ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase__ ):
if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ):
open_list[j].put(
UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Dict = make_common_ground()
__lowerCAmelCase : int = blocks_blk
# hyper parameters
__lowerCAmelCase : Dict = 1
__lowerCAmelCase : List[str] = 1
__lowerCAmelCase : Union[str, Any] = 20
__lowerCAmelCase : Any = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[Any] = (0, 0)
__lowerCAmelCase : Any = (n - 1, n - 1)
__lowerCAmelCase : Optional[int] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(UpperCamelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , UpperCamelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_inad.append(UpperCamelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_anchor.append(UpperCamelCase__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 654 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : Any ):
"""simple docstring"""
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def lowerCAmelCase ( UpperCamelCase__ : dict[int, list[int]] ):
"""simple docstring"""
__UpperCAmelCase = 0
__UpperCAmelCase = len(UpperCamelCase__ ) # No of vertices in graph
__UpperCAmelCase = [0] * n
__UpperCAmelCase = [False] * n
def dfs(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ):
__UpperCAmelCase = True
__UpperCAmelCase = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , id_ )
__UpperCAmelCase = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
__UpperCAmelCase = min(low[at] , low[to] )
__UpperCAmelCase = []
for i in range(UpperCamelCase__ ):
if not visited[i]:
dfs(UpperCamelCase__ , -1 , UpperCamelCase__ , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721 |
'''simple docstring'''
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
__lowerCAmelCase : List[Any] = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
__lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
__lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
__lowerCAmelCase : Optional[int] = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
]
def lowerCAmelCase ( UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ )
return [m.group(0 ) for m in matches]
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__UpperCAmelCase = {
config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
__UpperCAmelCase = collections.defaultdict(UpperCamelCase__ )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(UpperCamelCase__ ):
__UpperCAmelCase = None
if _re_tf_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = tf_models
__UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = flax_models
__UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCamelCase__ ) is not None:
__UpperCAmelCase = pt_models
__UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCamelCase__ ) > 0:
if attr_name in model_prefix_to_model_type:
__UpperCAmelCase = True
break
# Try again after removing the last word in the name
__UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] )
__UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
__UpperCAmelCase = list(UpperCamelCase__ )
all_models.sort()
__UpperCAmelCase = {'''model_type''': all_models}
__UpperCAmelCase = [pt_models[t] for t in all_models]
__UpperCAmelCase = [tf_models[t] for t in all_models]
__UpperCAmelCase = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
__UpperCAmelCase = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoProcessor'''
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
__UpperCAmelCase = '''AutoTokenizer'''
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
__UpperCAmelCase = '''AutoFeatureExtractor'''
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
__UpperCAmelCase = '''AutoTokenizer'''
__UpperCAmelCase = [processors[t] for t in all_models]
return pd.DataFrame(UpperCamelCase__ )
def lowerCAmelCase ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
__UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""]
__UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""]
# Loop through all three frameworks
for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
# The type of pipeline may not exist in this framework
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
continue
# First extract all model_names
__UpperCAmelCase = []
for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values():
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
model_names.append(UpperCamelCase__ )
else:
model_names.extend(list(UpperCamelCase__ ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase = get_frameworks_table()
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
__UpperCAmelCase = hf_hub_download(
'''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ )
__UpperCAmelCase = Dataset.from_json(UpperCamelCase__ )
__UpperCAmelCase = {
tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class'''])
for i in range(len(UpperCamelCase__ ) )
}
__UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
__UpperCAmelCase = sorted(table.keys() )
__UpperCAmelCase = pd.DataFrame(
{
'''model_class''': model_classes,
'''pipeline_tag''': [table[m][0] for m in model_classes],
'''auto_class''': [table[m][1] for m in model_classes],
} )
__UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) )
tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) )
if commit_sha is not None:
__UpperCAmelCase = (
f"""Update with commit {commit_sha}\n\nSee: """
f"""https://github.com/huggingface/transformers/commit/{commit_sha}"""
)
else:
__UpperCAmelCase = '''Update'''
upload_folder(
repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
__UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS
__UpperCAmelCase = []
for key in pipeline_tasks:
if key not in in_table:
__UpperCAmelCase = pipeline_tasks[key]['''pt''']
if isinstance(UpperCamelCase__ , (list, tuple) ):
__UpperCAmelCase = model[0]
__UpperCAmelCase = model.__name__
if model not in in_table.values():
missing.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
__UpperCAmelCase = ''', '''.join(UpperCamelCase__ )
raise ValueError(
'''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside '''
f"""`utils/update_metadata.py`: {msg}. Please add them!""" )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
__lowerCAmelCase : Tuple = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 654 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.