code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import re def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" if len(re.findall('''[ATCG]''' , UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
701
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class A ( UpperCAmelCase ): def __init__( self : int , __a : Callable , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[dict] = None , __a : Optional[int] = None , **__a : Optional[Any] , ) -> str: super().__init__( features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) __UpperCAmelCase = Generator( cache_dir=__a , features=__a , generator=__a , gen_kwargs=__a , **__a , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: # Build iterable dataset if self.streaming: __UpperCAmelCase = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) __UpperCAmelCase = self.builder.as_dataset( split='''train''' , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
703
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
0
'''simple docstring''' import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase ( *UpperCamelCase__ : Optional[Any] ): """simple docstring""" with open(UpperCamelCase__ , '''r''' ) as fh: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX ) try: print(*UpperCamelCase__ ) finally: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) __lowerCAmelCase : Tuple = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __lowerCAmelCase : Union[str, Any] = torch.device("cuda", local_rank) __lowerCAmelCase : str = socket.gethostname() __lowerCAmelCase : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowerCAmelCase : Union[str, Any] = dist.get_rank() __lowerCAmelCase : int = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCAmelCase : Any = ["gpt2"] __lowerCAmelCase : Union[str, Any] = "gpt2" if is_tf_available(): class A ( tf.Module ): def __init__( self : Any , __a : Any ) -> Optional[int]: super().__init__() __UpperCAmelCase = tokenizer __UpperCAmelCase = AutoConfig.from_pretrained(__a ) __UpperCAmelCase = TFGPTaLMHeadModel.from_config(__a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def snake_case__ ( self : int , __a : Optional[Any] ) -> int: __UpperCAmelCase = self.tokenizer(__a ) __UpperCAmelCase = tokenized['''input_ids'''].to_tensor() __UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCAmelCase = self.model(input_ids=__a , attention_mask=__a )['''logits'''] return outputs @require_tf @require_keras_nlp class A ( unittest.TestCase ): def snake_case__ ( self : int ) -> Dict: super().setUp() __UpperCAmelCase = [GPTaTokenizer.from_pretrained(__a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def snake_case__ ( self : Optional[Any] ) -> List[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCAmelCase = python_outputs[key].numpy() __UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__a , tf.intaa ) == tf_outputs_values ) ) @slow def snake_case__ ( self : int ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.function(__a ) for test_inputs in self.test_sentences: __UpperCAmelCase = tf.constant(__a ) __UpperCAmelCase = compiled_tokenizer(__a ) __UpperCAmelCase = tf_tokenizer(__a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case__ ( self : Tuple ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = ModelToSave(tokenizer=__a ) __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = model.serving(__a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase = Path(__a ) / '''saved.model''' tf.saved_model.save(__a , __a , signatures={'''serving_default''': model.serving} ) __UpperCAmelCase = tf.saved_model.load(__a ) __UpperCAmelCase = loaded_model.signatures['''serving_default'''](__a )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def snake_case__ ( self : Optional[int] ) -> Dict: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__a ) # Build model with some sample inputs __UpperCAmelCase = tf_tokenizer.get_config() __UpperCAmelCase = TFGPTaTokenizer.from_config(__a ) __UpperCAmelCase = model_from_config(__a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def snake_case__ ( self : Dict ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCAmelCase = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__a , max_length=__a ) __UpperCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A : def __init__( self : Dict , __a : Optional[int] , __a : List[Any]=2 , __a : Any=True , __a : str=False , __a : Tuple=1_0 , __a : str=3 , __a : Optional[int]=3_2 * 8 , __a : List[str]=3_2 * 8 , __a : Union[str, Any]=4 , __a : Dict=6_4 , ) -> Optional[int]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = is_training __UpperCAmelCase = use_auxiliary_loss __UpperCAmelCase = num_queries __UpperCAmelCase = num_channels __UpperCAmelCase = min_size __UpperCAmelCase = max_size __UpperCAmelCase = num_labels __UpperCAmelCase = hidden_dim __UpperCAmelCase = hidden_dim def snake_case__ ( self : Optional[Any] ) -> List[Any]: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __a ) __UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__a ) __UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__a ) > 0.5 ).float() __UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=__a ) > 0.5).long() __UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCAmelCase = self.num_queries __UpperCAmelCase = self.num_labels __UpperCAmelCase = [1, 1, 1, 1] __UpperCAmelCase = self.num_channels __UpperCAmelCase = 6_4 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = self.hidden_dim __UpperCAmelCase = self.hidden_dim __UpperCAmelCase = self.hidden_dim return config def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Dict ) -> Union[str, Any]: __UpperCAmelCase = output.encoder_hidden_states __UpperCAmelCase = output.pixel_decoder_hidden_states __UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , config.decoder_layers ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Dict , __a : Dict=False ) -> str: with torch.no_grad(): __UpperCAmelCase = MaskaFormerModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(pixel_values=__a , pixel_mask=__a ) __UpperCAmelCase = model(__a , output_hidden_states=__a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__a , __a ) def snake_case__ ( self : Optional[int] , __a : str , __a : List[Any] , __a : Dict , __a : Any , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = MaskaFormerForUniversalSegmentation(config=__a ) model.to(__a ) model.eval() def comm_check_on_output(__a : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCAmelCase = model(pixel_values=__a , pixel_mask=__a ) __UpperCAmelCase = model(__a ) comm_check_on_output(__a ) __UpperCAmelCase = model( pixel_values=__a , pixel_mask=__a , mask_labels=__a , class_labels=__a ) comm_check_on_output(__a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def snake_case__ ( self : str ) -> List[str]: __UpperCAmelCase = MaskaFormerModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case__ ( self : Tuple ) -> Optional[Any]: self.config_tester.run_common_tests() def snake_case__ ( self : Optional[int] ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def snake_case__ ( self : Optional[Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def snake_case__ ( self : List[Any] ) -> Dict: pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def snake_case__ ( self : str ) -> Any: pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def snake_case__ ( self : Optional[int] ) -> Tuple: pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def snake_case__ ( self : List[str] ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case__ ( self : List[str] ) -> Tuple: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : Optional[int] ) -> Any: pass def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__a ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a ) @slow def snake_case__ ( self : Tuple ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCAmelCase = MaskaFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case__ ( self : Union[str, Any] ) -> int: __UpperCAmelCase = (self.model_tester.min_size,) * 2 __UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=__a ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__a ), '''class_labels''': torch.zeros(2 , 1_0 , device=__a ).long(), } __UpperCAmelCase = self.model_tester.get_config() __UpperCAmelCase = MaskaFormerForUniversalSegmentation(__a ).to(__a ) __UpperCAmelCase = model(**__a ) self.assertTrue(outputs.loss is not None ) def snake_case__ ( self : Optional[int] ) -> int: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def snake_case__ ( self : Optional[int] ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__a ).to(__a ) __UpperCAmelCase = model(**__a , output_attentions=__a ) self.assertTrue(outputs.attentions is not None ) def snake_case__ ( self : List[Any] ) -> Union[str, Any]: if not self.model_tester.is_training: return __UpperCAmelCase = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = model_class(__a ) model.to(__a ) model.train() __UpperCAmelCase = model(__a , mask_labels=__a , class_labels=__a ).loss loss.backward() def snake_case__ ( self : str ) -> Dict: __UpperCAmelCase = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = model_class(__a ).to(__a ) model.train() __UpperCAmelCase = model(__a , mask_labels=__a , class_labels=__a ) __UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : Dict = 1e-4 def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class A ( unittest.TestCase ): @cached_property def snake_case__ ( self : str ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case__ ( self : Optional[int] ) -> Optional[Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__a ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(__a , return_tensors='''pt''' ).to(__a ) __UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __UpperCAmelCase = model(**__a ) __UpperCAmelCase = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(__a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __UpperCAmelCase = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(__a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __UpperCAmelCase = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(__a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __a , atol=__a ) ) def snake_case__ ( self : List[str] ) -> Any: __UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(__a , return_tensors='''pt''' ).to(__a ) __UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __UpperCAmelCase = model(**__a ) # masks_queries_logits __UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCAmelCase = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] __UpperCAmelCase = torch.tensor(__a ).to(__a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __a , atol=__a ) ) # class_queries_logits __UpperCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCAmelCase = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(__a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=__a ) ) def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) __UpperCAmelCase = inputs['''pixel_values'''].to(__a ) __UpperCAmelCase = [el.to(__a ) for el in inputs['''mask_labels''']] __UpperCAmelCase = [el.to(__a ) for el in inputs['''class_labels''']] with torch.no_grad(): __UpperCAmelCase = model(**__a ) self.assertTrue(outputs.loss is not None )
706
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , ): """simple docstring""" __UpperCAmelCase = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } __UpperCAmelCase , __UpperCAmelCase = input_paths_and_base_extractors[compression_format] if input_path is None: __UpperCAmelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) __UpperCAmelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __UpperCAmelCase = file_path.read_text(encoding='''utf-8''' ) else: __UpperCAmelCase = output_path.read_text(encoding='''utf-8''' ) __UpperCAmelCase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , ): """simple docstring""" __UpperCAmelCase = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } __UpperCAmelCase = input_paths[compression_format] if input_path is None: __UpperCAmelCase = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) __UpperCAmelCase = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None __UpperCAmelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __UpperCAmelCase = file_path.read_text(encoding='''utf-8''' ) else: __UpperCAmelCase = output_path.read_text(encoding='''utf-8''' ) __UpperCAmelCase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" import tarfile __UpperCAmelCase = tmp_path / '''data_dot_dot''' directory.mkdir() __UpperCAmelCase = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(UpperCamelCase__ , '''w''' ) as f: f.add(UpperCamelCase__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" import tarfile __UpperCAmelCase = tmp_path / '''data_sym_link''' directory.mkdir() __UpperCAmelCase = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } __UpperCAmelCase = insecure_tar_files[insecure_tar_file] __UpperCAmelCase = tmp_path / '''extracted''' TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 __UpperCAmelCase = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
707
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
'''simple docstring''' from itertools import count def lowerCAmelCase ( UpperCamelCase__ : int = 5_0 ): """simple docstring""" __UpperCAmelCase = [1] * min_block_length for n in count(UpperCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F"""{solution() = }""")
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __lowerCAmelCase : Tuple = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __lowerCAmelCase : Any = 10 __lowerCAmelCase : Dict = 256 def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" if len(UpperCamelCase__ ) < MIN_NUM_TOKENS: return None __UpperCAmelCase = MinHash(num_perm=UpperCamelCase__ ) for token in set(UpperCamelCase__ ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(UpperCamelCase__ ) if len(t.strip() ) > 0} class A : def __init__( self : List[Any] , *, __a : float = 0.8_5 , ) -> Optional[int]: __UpperCAmelCase = duplication_jaccard_threshold __UpperCAmelCase = NUM_PERM __UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __UpperCAmelCase = defaultdict(__a ) def snake_case__ ( self : Dict , __a : Tuple , __a : MinHash ) -> None: __UpperCAmelCase = self._index.query(__a ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def snake_case__ ( self : str ) -> List[List[Dict]]: __UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase = [base] + list(__a ) # reformat the cluster to be a list of dict __UpperCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def snake_case__ ( self : int , __a : str ) -> None: __UpperCAmelCase = self.get_duplicate_clusters() with open(__a , '''w''' ) as f: json.dump(__a , __a ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = element __UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase ( UpperCamelCase__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCamelCase__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def lowerCAmelCase ( UpperCamelCase__ : Type[Dataset] , UpperCamelCase__ : float ): """simple docstring""" __UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase__ ) ) , max_queue_size=1_0_0 ) ): di.add(UpperCamelCase__ , UpperCamelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = get_tokens(UpperCamelCase__ ) __UpperCAmelCase = get_tokens(UpperCamelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __lowerCAmelCase : str = None def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = [] for elementa in cluster: __UpperCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __UpperCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(UpperCamelCase__ , UpperCamelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase = 1 extremes.append(UpperCamelCase__ ) return extremes def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): """simple docstring""" global _shared_dataset __UpperCAmelCase = dataset __UpperCAmelCase = [] __UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCamelCase__ , UpperCamelCase__ , ) , total=len(UpperCamelCase__ ) , ): extremes_list.append(UpperCamelCase__ ) return extremes_list def lowerCAmelCase ( UpperCamelCase__ : Type[Dataset] , UpperCamelCase__ : float = 0.85 ): """simple docstring""" __UpperCAmelCase = make_duplicate_clusters(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase = {} __UpperCAmelCase = find_extremes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase = element __UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase = dataset.filter(lambda UpperCamelCase__ , UpperCamelCase__ : idx not in remove_indices , with_indices=UpperCamelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: __UpperCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f"""Original dataset size: {len(UpperCamelCase__ )}""" ) print(f"""Number of duplicate clusters: {len(UpperCamelCase__ )}""" ) print(f"""Files in duplicate cluster: {len(UpperCamelCase__ )}""" ) print(f"""Unique files in duplicate cluster: {len(UpperCamelCase__ )}""" ) print(f"""Filtered dataset size: {len(UpperCamelCase__ )}""" ) return ds_filter, duplicate_clusters
710
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowerCAmelCase : Any = pytest.mark.integration @require_faiss class A ( UpperCAmelCase ): def snake_case__ ( self : Dict ) -> Dict: __UpperCAmelCase = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__a ) for x in np.arange(3_0 ).tolist()]} ) return dset def snake_case__ ( self : str ) -> int: import faiss __UpperCAmelCase = self._create_dummy_dataset() __UpperCAmelCase = dset.map( lambda __a , __a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) __UpperCAmelCase = dset.add_faiss_index('''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def snake_case__ ( self : Any ) -> List[Any]: import faiss __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: import faiss __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(__a , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: from elasticsearch import Elasticsearch __UpperCAmelCase = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __UpperCAmelCase = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0 ) __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} __UpperCAmelCase = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=__a ) __UpperCAmelCase , __UpperCAmelCase = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class A ( UpperCAmelCase ): def snake_case__ ( self : Union[str, Any] ) -> Dict: import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def snake_case__ ( self : int ) -> int: import faiss __UpperCAmelCase = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): __UpperCAmelCase = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def snake_case__ ( self : List[Any] ) -> str: import faiss __UpperCAmelCase = faiss.IndexFlat(5 ) __UpperCAmelCase = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def snake_case__ ( self : int ) -> Any: import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" import faiss __UpperCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __UpperCAmelCase = '''index.faiss''' __UpperCAmelCase = f"""mock://{index_name}""" index.save(UpperCamelCase__ , storage_options=mockfs.storage_options ) __UpperCAmelCase = FaissIndex.load(UpperCamelCase__ , storage_options=mockfs.storage_options ) __UpperCAmelCase = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase = 1 __UpperCAmelCase , __UpperCAmelCase = index.search(UpperCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A ( UpperCAmelCase ): def snake_case__ ( self : Union[str, Any] ) -> str: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: __UpperCAmelCase = Elasticsearch() __UpperCAmelCase = {'''acknowledged''': True} __UpperCAmelCase = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query __UpperCAmelCase = '''foo''' __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __UpperCAmelCase , __UpperCAmelCase = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase = '''foo''' __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} __UpperCAmelCase , __UpperCAmelCase = index.search(__a , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase = ['''foo''', '''bar''', '''foobar'''] __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __UpperCAmelCase , __UpperCAmelCase = index.search_batch(__a ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout __UpperCAmelCase = ['''foo''', '''bar''', '''foobar'''] __UpperCAmelCase = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} __UpperCAmelCase , __UpperCAmelCase = index.search_batch(__a , request_timeout=3_0 ) __UpperCAmelCase = [scores[0] for scores in total_scores] __UpperCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
711
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( UpperCAmelCase , unittest.TestCase ): a_ = BioGptTokenizer a_ = False def snake_case__ ( self : Any ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def snake_case__ ( self : Dict , __a : Any ) -> List[Any]: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) __UpperCAmelCase = '''lower''' __UpperCAmelCase = ['''low''', '''er</w>'''] __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + ['''<unk>'''] __UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = MobileBertTokenizer a_ = MobileBertTokenizerFast a_ = True a_ = True a_ = filter_non_english a_ = '''google/mobilebert-uncased''' def snake_case__ ( self : Tuple ) -> Optional[int]: super().setUp() __UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __UpperCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def snake_case__ ( self : Optional[int] , __a : Any ) -> Tuple: __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = '''unwanted, running''' return input_text, output_text def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def snake_case__ ( self : Tuple ) -> Any: if not self.test_rust_tokenizer: return __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = tokenizer.tokenize(__a ) __UpperCAmelCase = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(__a ) __UpperCAmelCase = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing __UpperCAmelCase = self.get_tokenizer(do_lower_case=__a ) __UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=__a ) __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = tokenizer.tokenize(__a ) __UpperCAmelCase = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokenizer.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(__a ) __UpperCAmelCase = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def snake_case__ ( self : List[Any] ) -> Any: __UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case__ ( self : Tuple ) -> int: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def snake_case__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case__ ( self : List[Any] ) -> Any: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case__ ( self : List[str] ) -> str: __UpperCAmelCase = BasicTokenizer(do_lower_case=__a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __UpperCAmelCase = {} for i, token in enumerate(__a ): __UpperCAmelCase = i __UpperCAmelCase = WordpieceTokenizer(vocab=__a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def snake_case__ ( self : Optional[int] ) -> List[str]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def snake_case__ ( self : str ) -> str: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def snake_case__ ( self : Tuple ) -> List[Any]: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def snake_case__ ( self : Tuple ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __UpperCAmelCase = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(__a , '''do_lower_case''' ) else False __UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = ['''的''', '''人''', '''有'''] __UpperCAmelCase = ''''''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = tokenizer_p.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_r.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__a ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = False __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) __UpperCAmelCase = tokenizer_r.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_p.encode(__a , add_special_tokens=__a ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__a ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
713
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase ): def __init__( self : Optional[int] , __a : WhisperForConditionalGeneration , __a : WhisperProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ) -> Any: super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=__a , speech_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , ) def snake_case__ ( self : Any , __a : Optional[Union[str, int]] = "auto" ) -> Dict: if slice_size == "auto": __UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: self.enable_attention_slicing(__a ) @torch.no_grad() def __call__( self : Optional[int] , __a : int , __a : Union[str, Any]=1_6_0_0_0 , __a : int = 5_1_2 , __a : int = 5_1_2 , __a : int = 5_0 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Optional[int] , ) -> Tuple: __UpperCAmelCase = self.speech_processor.feature_extractor( __a , return_tensors='''pt''' , sampling_rate=__a ).input_features.to(self.device ) __UpperCAmelCase = self.speech_model.generate(__a , max_length=4_8_0_0_0_0 ) __UpperCAmelCase = self.speech_processor.tokenizer.batch_decode(__a , skip_special_tokens=__a , normalize=__a )[ 0 ] if isinstance(__a , __a ): __UpperCAmelCase = 1 elif isinstance(__a , __a ): __UpperCAmelCase = len(__a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__a )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__a )}.""" ) # get prompt text embeddings __UpperCAmelCase = self.tokenizer( __a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = text_embeddings.shape __UpperCAmelCase = text_embeddings.repeat(1 , __a , 1 ) __UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , __a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase = 4_2 if negative_prompt is None: __UpperCAmelCase = [''''''] * batch_size elif type(__a ) is not type(__a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=""" f""" {type(__a )}.""" ) elif isinstance(__a , __a ): __UpperCAmelCase = [negative_prompt] elif batch_size != len(__a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: __UpperCAmelCase = negative_prompt __UpperCAmelCase = text_input_ids.shape[-1] __UpperCAmelCase = self.tokenizer( __a , padding='''max_length''' , max_length=__a , truncation=__a , return_tensors='''pt''' , ) __UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase = uncond_embeddings.shape[1] __UpperCAmelCase = uncond_embeddings.repeat(1 , __a , 1 ) __UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , __a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase = torch.randn(__a , generator=__a , device='''cpu''' , dtype=__a ).to( self.device ) else: __UpperCAmelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase = {} if accepts_eta: __UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual __UpperCAmelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase = noise_pred.chunk(2 ) __UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a , __a ) __UpperCAmelCase = 1 / 0.1_8_2_1_5 * latents __UpperCAmelCase = self.vae.decode(__a ).sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(__a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=UpperCamelCase__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=UpperCamelCase__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=UpperCamelCase__ ) return parser.parse_args() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = parse_args() # Import training_script as a module. __UpperCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCAmelCase = script_fpath.stem __UpperCAmelCase = importlib.import_module(UpperCamelCase__ ) # Patch sys.argv __UpperCAmelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
715
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A : def __init__( self : Optional[int] , __a : Any , __a : List[Any]=1_3 , __a : Any=7 , __a : str=True , __a : Optional[Any]=True , __a : Optional[Any]=True , __a : Optional[int]=True , __a : Optional[Any]=9_9 , __a : Any=6_4 , __a : Any=3_2 , __a : int=5 , __a : int=4 , __a : List[Any]=3_7 , __a : Optional[int]="gelu" , __a : Optional[Any]=0.1 , __a : Union[str, Any]=0.1 , __a : str=5_1_2 , __a : List[Any]=1_6 , __a : Optional[int]=2 , __a : int=0.0_2 , __a : Dict=3 , __a : Optional[Any]=4 , __a : Any=None , ) -> str: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = embedding_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : List[str] ) -> Dict: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def snake_case__ ( self : List[Any] , __a : Any , __a : Optional[Any] , __a : List[Any] , __a : Dict , __a : int , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: __UpperCAmelCase = MegatronBertModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a ) __UpperCAmelCase = model(__a , token_type_ids=__a ) __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : List[str] , __a : Union[str, Any] , __a : Tuple , __a : Any , __a : List[Any] ) -> Optional[int]: __UpperCAmelCase = MegatronBertForMaskedLM(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[int] , __a : Any , __a : Any , __a : Tuple , __a : int , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = MegatronBertForCausalLM(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Any , __a : Tuple , __a : Tuple , __a : List[str] , __a : Optional[int] , __a : Union[str, Any] , __a : Union[str, Any] , __a : int ) -> Tuple: __UpperCAmelCase = MegatronBertForNextSentencePrediction(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case__ ( self : List[Any] , __a : Tuple , __a : List[str] , __a : Tuple , __a : Tuple , __a : Any , __a : Optional[Any] , __a : int ) -> List[str]: __UpperCAmelCase = MegatronBertForPreTraining(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case__ ( self : Dict , __a : List[str] , __a : Optional[Any] , __a : Tuple , __a : str , __a : Dict , __a : Optional[int] , __a : Any ) -> List[str]: __UpperCAmelCase = MegatronBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : str , __a : Dict , __a : List[Any] , __a : str , __a : Union[str, Any] , __a : List[str] , __a : Any , __a : List[str] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForSequenceClassification(__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : List[Any] , __a : List[Any] , __a : Any , __a : List[str] , __a : Optional[int] , __a : Optional[int] , __a : Any ) -> str: __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForTokenClassification(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : List[Any] , __a : Any , __a : Dict , __a : str , __a : Union[str, Any] , __a : Union[str, Any] ) -> List[str]: __UpperCAmelCase = self.num_choices __UpperCAmelCase = MegatronBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : str ) -> str: __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a_ = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a_ = True # test_resize_embeddings = False a_ = False def snake_case__ ( self : Any , __a : List[Any] , __a : Optional[int] , __a : Optional[int]=False ) -> Any: __UpperCAmelCase = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class in get_values(__a ): __UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def snake_case__ ( self : List[str] ) -> List[str]: __UpperCAmelCase = MegatronBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : List[str] ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__a ) def snake_case__ ( self : Any ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__a ) def snake_case__ ( self : str ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__a ) def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__a ) def snake_case__ ( self : Any ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__a ) def snake_case__ ( self : Dict ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__a ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__a ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) __lowerCAmelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __UpperCAmelCase = os.path.join(os.environ['''MYDIR'''] , __a ) __UpperCAmelCase = MegatronBertModel.from_pretrained(__a ) model.to(__a ) model.half() __UpperCAmelCase = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __a ) __UpperCAmelCase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): __UpperCAmelCase = output[0, ii, jj] __UpperCAmelCase = expected[3 * ii + jj] __UpperCAmelCase = '''ii={} jj={} a={} b={}'''.format(__a , __a , __a , __a ) self.assertTrue(math.isclose(__a , __a , rel_tol=__a , abs_tol=__a ) , msg=__a )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) __UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __UpperCAmelCase = 1 if upper_limit > 0: __UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __lowerCAmelCase : int = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A ( unittest.TestCase ): def __init__( self : int , __a : List[str] , __a : Optional[int]=7 , __a : List[str]=3 , __a : Dict=1_8 , __a : Optional[int]=3_0 , __a : Optional[Any]=4_0_0 , __a : List[str]=True , __a : Union[str, Any]=None , __a : List[Any]=True , __a : Optional[int]=None , __a : int=True , ) -> Tuple: __UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_0} __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_flip_channel_order def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A ( UpperCAmelCase , unittest.TestCase ): a_ = MobileViTImageProcessor if is_vision_available() else None def snake_case__ ( self : List[str] ) -> int: __UpperCAmelCase = MobileViTImageProcessingTester(self ) @property def snake_case__ ( self : Dict ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , '''do_resize''' ) ) self.assertTrue(hasattr(__a , '''size''' ) ) self.assertTrue(hasattr(__a , '''do_center_crop''' ) ) self.assertTrue(hasattr(__a , '''center_crop''' ) ) self.assertTrue(hasattr(__a , '''do_flip_channel_order''' ) ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 2_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def snake_case__ ( self : Dict ) -> List[str]: pass def snake_case__ ( self : List[Any] ) -> int: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> List[str]: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processing(__a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A ( unittest.TestCase ): a_ = JukeboxTokenizer a_ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def snake_case__ ( self : Optional[int] ) -> Any: import torch __UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) __UpperCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def snake_case__ ( self : List[str] ) -> Optional[Any]: import torch __UpperCAmelCase = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) __UpperCAmelCase = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
0
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __a : Union[str, Any]="</s>" , __a : Dict="<unk>" , __a : Any="<pad>" , __a : str=1_2_5 , __a : int=None , **__a : Any , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase = [f"""<extra_id_{i}>""" for i in range(__a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCAmelCase = len(set(filter(lambda __a : bool('''extra_id''' in str(__a ) ) , __a ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( eos_token=__a , unk_token=__a , pad_token=__a , extra_ids=__a , additional_special_tokens=__a , **__a , ) __UpperCAmelCase = extra_ids __UpperCAmelCase = 2**8 # utf is 8 bits # define special tokens dict __UpperCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCAmelCase = len(self.special_tokens_encoder ) __UpperCAmelCase = len(__a ) for i, token in enumerate(__a ): __UpperCAmelCase = self.vocab_size + i - n __UpperCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case__ ( self : Optional[int] ) -> Tuple: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__a )) + [1] return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def snake_case__ ( self : Dict , __a : List[int] ) -> List[int]: if len(__a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = self._add_eos_if_not_present(__a ) if token_ids_a is None: return token_ids_a else: __UpperCAmelCase = self._add_eos_if_not_present(__a ) return token_ids_a + token_ids_a def snake_case__ ( self : Tuple , __a : str ) -> List[str]: __UpperCAmelCase = [chr(__a ) for i in text.encode('''utf-8''' )] return tokens def snake_case__ ( self : Tuple , __a : str ) -> Optional[Any]: if token in self.special_tokens_encoder: __UpperCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCAmelCase = self.added_tokens_encoder[token] elif len(__a ) != 1: __UpperCAmelCase = self.unk_token_id else: __UpperCAmelCase = ord(__a ) + self._num_special_tokens return token_id def snake_case__ ( self : str , __a : List[str] ) -> List[Any]: if index in self.special_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[index] else: __UpperCAmelCase = chr(index - self._num_special_tokens ) return token def snake_case__ ( self : Tuple , __a : Dict ) -> Tuple: __UpperCAmelCase = b'''''' for token in tokens: if token in self.special_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __UpperCAmelCase = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __UpperCAmelCase = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __UpperCAmelCase = token.encode('''utf-8''' ) else: __UpperCAmelCase = bytes([ord(__a )] ) bstring += tok_string __UpperCAmelCase = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case__ ( self : List[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: return ()
720
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
0
'''simple docstring''' __lowerCAmelCase : List[str] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = set() # keep track of all the paths to be checked __UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __UpperCAmelCase = queue.pop(0 ) # get the last node from the path __UpperCAmelCase = path[-1] if node not in explored: __UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __UpperCAmelCase = list(UpperCamelCase__ ) new_path.append(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(UpperCamelCase__ ) # in case there's no path between the 2 nodes return [] def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __UpperCAmelCase = [start] __UpperCAmelCase = set(UpperCamelCase__ ) # Keep tab on distances from `start` node. __UpperCAmelCase = {start: 0, target: -1} while queue: __UpperCAmelCase = queue.pop(0 ) if node == target: __UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) __UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
721
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self : List[Any] , __a : int , __a : Optional[Any]=sys.maxsize ) -> Union[str, Any]: __UpperCAmelCase = '''bilinear''' __UpperCAmelCase = max_size __UpperCAmelCase = short_edge_length def __call__( self : List[Any] , __a : Optional[Any] ) -> int: __UpperCAmelCase = [] for img in imgs: __UpperCAmelCase , __UpperCAmelCase = img.shape[:2] # later: provide list and randomly choose index for resize __UpperCAmelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __UpperCAmelCase = size * 1.0 / min(__a , __a ) if h < w: __UpperCAmelCase , __UpperCAmelCase = size, scale * w else: __UpperCAmelCase , __UpperCAmelCase = scale * h, size if max(__a , __a ) > self.max_size: __UpperCAmelCase = self.max_size * 1.0 / max(__a , __a ) __UpperCAmelCase = newh * scale __UpperCAmelCase = neww * scale __UpperCAmelCase = int(neww + 0.5 ) __UpperCAmelCase = int(newh + 0.5 ) if img.dtype == np.uinta: __UpperCAmelCase = Image.fromarray(__a ) __UpperCAmelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __UpperCAmelCase = np.asarray(__a ) else: __UpperCAmelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __UpperCAmelCase = nn.functional.interpolate( __a , (newh, neww) , mode=self.interp_method , align_corners=__a ).squeeze(0 ) img_augs.append(__a ) return img_augs class A : def __init__( self : Union[str, Any] , __a : Any ) -> Optional[int]: __UpperCAmelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __UpperCAmelCase = cfg.INPUT.FORMAT __UpperCAmelCase = cfg.SIZE_DIVISIBILITY __UpperCAmelCase = cfg.PAD_VALUE __UpperCAmelCase = cfg.INPUT.MAX_SIZE_TEST __UpperCAmelCase = cfg.MODEL.DEVICE __UpperCAmelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __UpperCAmelCase = lambda __a : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self : Optional[Any] , __a : Optional[Any] ) -> str: __UpperCAmelCase = tuple(max(__a ) for s in zip(*[img.shape for img in images] ) ) __UpperCAmelCase = [im.shape[-2:] for im in images] __UpperCAmelCase = [ nn.functional.pad( __a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__a , __a ) ] return torch.stack(__a ), torch.tensor(__a ) def __call__( self : Tuple , __a : Optional[int] , __a : Union[str, Any]=False ) -> Union[str, Any]: with torch.no_grad(): if not isinstance(__a , __a ): __UpperCAmelCase = [images] if single_image: assert len(__a ) == 1 for i in range(len(__a ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__a , images.pop(__a ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __a , torch.as_tensor(img_tensorize(images.pop(__a ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __UpperCAmelCase = torch.tensor([im.shape[:2] for im in images] ) __UpperCAmelCase = self.aug(__a ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __UpperCAmelCase = [self.normalizer(__a ) for x in images] # now pad them to do the following operations __UpperCAmelCase , __UpperCAmelCase = self.pad(__a ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __UpperCAmelCase = torch.true_divide(__a , __a ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" __UpperCAmelCase , __UpperCAmelCase = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase__ )
700
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
701
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase : Dict = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''input_features'''] def __init__( self : List[str] , __a : Union[str, Any]=8_0 , __a : List[Any]=1_6_0_0_0 , __a : Any=1_6_0 , __a : Any=3_0 , __a : Union[str, Any]=4_0_0 , __a : Tuple=0.0 , __a : Tuple=False , **__a : Any , ) -> Union[str, Any]: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , return_attention_mask=__a , **__a , ) __UpperCAmelCase = n_fft __UpperCAmelCase = hop_length __UpperCAmelCase = chunk_length __UpperCAmelCase = chunk_length * sampling_rate __UpperCAmelCase = self.n_samples // hop_length __UpperCAmelCase = sampling_rate __UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=__a , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case__ ( self : Optional[int] , __a : np.array ) -> np.ndarray: __UpperCAmelCase = spectrogram( __a , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) __UpperCAmelCase = log_spec[:, :-1] __UpperCAmelCase = np.maximum(__a , log_spec.max() - 8.0 ) __UpperCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case__ ( __a : List[np.ndarray] , __a : List[np.ndarray] , __a : float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase = np.array(__a , np.intaa ) __UpperCAmelCase = [] for vector, length in zip(__a , attention_mask.sum(-1 ) ): __UpperCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase = padding_value normed_input_values.append(__a ) else: __UpperCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : bool = True , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = None , __a : Optional[str] = "max_length" , __a : Optional[int] = None , __a : Optional[int] = None , __a : Optional[bool] = None , **__a : Optional[Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCAmelCase = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __UpperCAmelCase = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): __UpperCAmelCase = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase = [np.asarray([raw_speech] ).T] __UpperCAmelCase = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding __UpperCAmelCase = self.pad( __a , padding=__a , max_length=max_length if max_length else self.n_samples , truncation=__a , pad_to_multiple_of=__a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) __UpperCAmelCase = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format __UpperCAmelCase = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) __UpperCAmelCase = [self._np_extract_fbank_features(__a ) for waveform in input_features[0]] if isinstance(input_features[0] , __a ): __UpperCAmelCase = [np.asarray(__a , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase = padded_inputs.convert_to_tensors(__a ) return padded_inputs def snake_case__ ( self : List[str] ) -> Dict[str, Any]: __UpperCAmelCase = copy.deepcopy(self.__dict__ ) __UpperCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCAmelCase : List[Any] = HfArgumentParser(InitializationArguments) __lowerCAmelCase : int = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCAmelCase : int = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCAmelCase : Dict = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
703
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __lowerCAmelCase : Optional[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) return (preds == labels).mean() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) __UpperCAmelCase = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) __UpperCAmelCase = pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] __UpperCAmelCase = spearmanr(UpperCamelCase__ , UpperCamelCase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), f"""Predictions and labels have mismatched lengths {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "mrpc": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "sts-b": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "qqp": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Any ): """simple docstring""" warnings.warn(UpperCamelCase__ , UpperCamelCase__ ) requires_backends(UpperCamelCase__ , '''sklearn''' ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError(UpperCamelCase__ )
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase : str = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase : Optional[Any] = { "camembert-base": 512, } __lowerCAmelCase : str = "▁" class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __a : int , __a : Union[str, Any]="<s>" , __a : Tuple="</s>" , __a : Optional[int]="</s>" , __a : Dict="<s>" , __a : Tuple="<unk>" , __a : List[str]="<pad>" , __a : List[str]="<mask>" , __a : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , __a : Optional[Dict[str, Any]] = None , **__a : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __UpperCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __UpperCAmelCase = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} __UpperCAmelCase = len(self.fairseq_tokens_to_ids ) __UpperCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case__ ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self : Dict ) -> str: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self : Union[str, Any] , __a : str ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def snake_case__ ( self : int , __a : Union[str, Any] ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__a ) def snake_case__ ( self : Optional[Any] , __a : List[Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__ ( self : Dict , __a : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase = [] __UpperCAmelCase = '''''' __UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __UpperCAmelCase = True __UpperCAmelCase = [] else: current_sub_tokens.append(__a ) __UpperCAmelCase = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self : Optional[Any] ) -> Tuple: __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self : List[Any] , __a : Optional[int] ) -> Tuple: __UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase = {} __UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , '''wb''' ) as fi: __UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
706
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=UpperCamelCase__ ) __UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCamelCase__ ) EnvironmentCommand.register_subcommand(UpperCamelCase__ ) TestCommand.register_subcommand(UpperCamelCase__ ) RunBeamCommand.register_subcommand(UpperCamelCase__ ) DummyDataCommand.register_subcommand(UpperCamelCase__ ) # Parse args __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if not hasattr(UpperCamelCase__ , '''func''' ): parser.print_help() exit(1 ) __UpperCAmelCase = parse_unknown_args(UpperCamelCase__ ) # Run __UpperCAmelCase = args.func(UpperCamelCase__ , **UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
707
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
0
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_sql_dataset(UpperCamelCase__ , UpperCamelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_sql_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" with contextlib.closing(sqlitea.connect(UpperCamelCase__ ) ) as con: __UpperCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ ).read() SqlDatasetWriter(UpperCamelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) for rowa, rowa in zip(UpperCamelCase__ , UpperCamelCase__ ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ ).read() SqlDatasetWriter(UpperCamelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) __UpperCAmelCase = iter_sql_file(UpperCamelCase__ ) for rowa, rowa in zip(UpperCamelCase__ , UpperCamelCase__ ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = os.path.join(UpperCamelCase__ , '''tmp.sql''' ) __UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=UpperCamelCase__ ).read() with pytest.raises(UpperCamelCase__ ): SqlDatasetWriter(UpperCamelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count += 1 __UpperCAmelCase = '''_''' if count > 1: return False else: return "".join(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = [] while True: __UpperCAmelCase = ['''$'''] * len(UpperCamelCase__ ) __UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): __UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: __UpperCAmelCase = '''*''' __UpperCAmelCase = '''*''' temp.append('''X''' ) for i in range(len(UpperCamelCase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase__ ) == 0: return pi __UpperCAmelCase = list(set(UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Sequence[float] ): """simple docstring""" __UpperCAmelCase = [] for minterm in minterms: __UpperCAmelCase = '''''' for _ in range(UpperCamelCase__ ): __UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase__ ) return temp def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = list(UpperCamelCase__ ) __UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [0] * len(UpperCamelCase__ ) for i in range(len(chart[0] ) ): __UpperCAmelCase = 0 __UpperCAmelCase = -1 for j in range(len(UpperCamelCase__ ) ): if chart[j][i] == 1: count += 1 __UpperCAmelCase = j if count == 1: __UpperCAmelCase = 1 for i in range(len(UpperCamelCase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: __UpperCAmelCase = 0 __UpperCAmelCase = -1 __UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: __UpperCAmelCase = count_n __UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = 0 def lowerCAmelCase ( UpperCamelCase__ : list[str] , UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = [[0 for x in range(len(UpperCamelCase__ ) )] for x in range(len(UpperCamelCase__ ) )] for i in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = prime_implicants[i].count('''_''' ) for j in range(len(UpperCamelCase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , UpperCamelCase__ ): __UpperCAmelCase = 1 return chart def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''Enter the no. of variables\n''' ) ) __UpperCAmelCase = [ float(UpperCamelCase__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] __UpperCAmelCase = decimal_to_binary(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = check(UpperCamelCase__ ) print('''Prime Implicants are:''' ) print(UpperCamelCase__ ) __UpperCAmelCase = prime_implicant_chart(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = selection(UpperCamelCase__ , UpperCamelCase__ ) print('''Essential Prime Implicants are:''' ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __lowerCAmelCase : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __lowerCAmelCase : Union[str, Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("\n".join(upper_files) + "\n") __lowerCAmelCase : str = [file for file in filepaths if " " in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("\n".join(space_files) + "\n") __lowerCAmelCase : Optional[Any] = [file for file in filepaths if "-" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("\n".join(hyphen_files) + "\n") __lowerCAmelCase : Tuple = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("\n".join(nodir_files) + "\n") __lowerCAmelCase : str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
710
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __lowerCAmelCase : str = 5 __lowerCAmelCase : Union[str, Any] = 10 @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = SpeechaTextTokenizer a_ = False a_ = True def snake_case__ ( self : Tuple ) -> List[Any]: super().setUp() __UpperCAmelCase = sp.SentencePieceProcessor() spm_model.Load(__a ) __UpperCAmelCase = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__a ) )] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str] ) -> Optional[int]: __UpperCAmelCase = '''<pad>''' __UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__a ) , 1_0_0_1 ) def snake_case__ ( self : List[Any] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def snake_case__ ( self : Tuple ) -> Optional[int]: # fmt: off __UpperCAmelCase = {'''input_ids''': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class A ( unittest.TestCase ): a_ = '''valhalla/s2t_mustc_multilinguial_medium''' a_ = '''C\'est trop cool''' a_ = '''Esto es genial''' @classmethod def snake_case__ ( cls : Any ) -> List[Any]: __UpperCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case__ ( self : List[Any] ) -> List[str]: self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 1_1 ) def snake_case__ ( self : Tuple ) -> Tuple: self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def snake_case__ ( self : int ) -> Dict: self.assertIn(__a , self.tokenizer.all_special_ids ) __UpperCAmelCase = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] __UpperCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = '''fr''' __UpperCAmelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __UpperCAmelCase = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
711
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''audio_values''', '''audio_mask'''] def __init__( self : int , __a : Dict=2_0_4_8 , __a : List[str]=1 , __a : str=[1_6, 1_6] , __a : str=1_2_8 , __a : Any=4_4_1_0_0 , __a : Dict=8_6 , __a : int=2_0_4_8 , __a : List[Any]=0.0 , **__a : List[Any] , ) -> List[Any]: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , **__a , ) __UpperCAmelCase = spectrogram_length __UpperCAmelCase = num_channels __UpperCAmelCase = patch_size __UpperCAmelCase = feature_size // self.patch_size[1] __UpperCAmelCase = n_fft __UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate __UpperCAmelCase = sampling_rate __UpperCAmelCase = padding_value __UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__a , norm='''slaney''' , mel_scale='''slaney''' , ).T def snake_case__ ( self : Optional[Any] , __a : np.array ) -> np.ndarray: __UpperCAmelCase = spectrogram( __a , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=8_0.0 , ) __UpperCAmelCase = log_spec[:, :-1] __UpperCAmelCase = log_spec - 2_0.0 __UpperCAmelCase = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Union[str, Any] , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = True , __a : Optional[int] = None , __a : bool = False , __a : bool = False , **__a : Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCAmelCase = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __UpperCAmelCase = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): __UpperCAmelCase = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __UpperCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __a ): __UpperCAmelCase = [np.asarray(__a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __UpperCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __UpperCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __UpperCAmelCase = np.array(__a ).astype(np.floataa ) # convert into correct format for padding __UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __UpperCAmelCase = np.ones([len(__a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __UpperCAmelCase = padded_audio_features * self.padding_value for i in range(len(__a ) ): __UpperCAmelCase = audio_features[i] __UpperCAmelCase = feature # return as BatchFeature if return_attention_mask: __UpperCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __UpperCAmelCase = {'''audio_values''': padded_audio_features} __UpperCAmelCase = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
0
__lowerCAmelCase : Any = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __lowerCAmelCase : Optional[int] = frozenset(["prompt", "negative_prompt"]) __lowerCAmelCase : Tuple = frozenset([]) __lowerCAmelCase : str = frozenset(["image"]) __lowerCAmelCase : int = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __lowerCAmelCase : Optional[Any] = frozenset(["image"]) __lowerCAmelCase : int = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __lowerCAmelCase : str = frozenset(["prompt", "image", "negative_prompt"]) __lowerCAmelCase : Union[str, Any] = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __lowerCAmelCase : int = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __lowerCAmelCase : Any = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __lowerCAmelCase : Union[str, Any] = frozenset(["image", "mask_image"]) __lowerCAmelCase : str = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __lowerCAmelCase : int = frozenset(["example_image", "image", "mask_image"]) __lowerCAmelCase : int = frozenset(["class_labels"]) __lowerCAmelCase : List[str] = frozenset(["class_labels"]) __lowerCAmelCase : Optional[Any] = frozenset(["batch_size"]) __lowerCAmelCase : Union[str, Any] = frozenset([]) __lowerCAmelCase : Union[str, Any] = frozenset(["batch_size"]) __lowerCAmelCase : str = frozenset([]) __lowerCAmelCase : Optional[Any] = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __lowerCAmelCase : List[str] = frozenset(["prompt", "negative_prompt"]) __lowerCAmelCase : int = frozenset(["input_tokens"]) __lowerCAmelCase : Union[str, Any] = frozenset(["input_tokens"])
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): """simple docstring""" if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [parquet_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=("train",) ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): """simple docstring""" if split: __UpperCAmelCase = {split: parquet_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': parquet_path, '''test''': parquet_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCAmelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __UpperCAmelCase = pf.read() assert dataset.data.table == output_table def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = str(shared_datadir / '''test_image_rgb.jpg''' ) __UpperCAmelCase = {'''image''': [image_path]} __UpperCAmelCase = Features({'''image''': Image()} ) __UpperCAmelCase = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) __UpperCAmelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCAmelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __UpperCAmelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" assert get_writer_batch_size(UpperCamelCase__ ) == expected
715
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
0
from math import sqrt def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 4_2 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCamelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] ): """simple docstring""" __UpperCAmelCase = '''''' for word_or_phrase in separated: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCAmelCase : Tuple = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class A ( UpperCAmelCase ): a_ = '''albert''' def __init__( self : Union[str, Any] , __a : str=3_0_0_0_0 , __a : List[str]=1_2_8 , __a : List[Any]=4_0_9_6 , __a : str=1_2 , __a : List[str]=1 , __a : Tuple=6_4 , __a : Optional[int]=1_6_3_8_4 , __a : List[Any]=1 , __a : Any="gelu_new" , __a : Any=0 , __a : Dict=0 , __a : Any=5_1_2 , __a : int=2 , __a : List[Any]=0.0_2 , __a : Union[str, Any]=1e-12 , __a : List[str]=0.1 , __a : Union[str, Any]="absolute" , __a : Optional[Any]=0 , __a : Dict=2 , __a : List[str]=3 , **__a : Tuple , ) -> int: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = embedding_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_hidden_groups __UpperCAmelCase = num_attention_heads __UpperCAmelCase = inner_group_num __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = classifier_dropout_prob __UpperCAmelCase = position_embedding_type class A ( UpperCAmelCase ): @property def snake_case__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
0
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase , unittest.TestCase ): a_ = OpenAIGPTTokenizer a_ = OpenAIGPTTokenizerFast a_ = True a_ = False def snake_case__ ( self : Dict ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def snake_case__ ( self : Optional[Any] , __a : Optional[Any] ) -> List[Any]: return "lower newer", "lower newer" def snake_case__ ( self : Any ) -> Optional[int]: __UpperCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCAmelCase = '''lower''' __UpperCAmelCase = ['''low''', '''er</w>'''] __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + ['''<unk>'''] __UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def snake_case__ ( self : Tuple , __a : int=1_5 ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __UpperCAmelCase = '''This is a simple input''' __UpperCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='''max_length''' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='''max_length''' , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: pass @require_ftfy @require_spacy @require_tokenizers class A ( UpperCAmelCase ): pass
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( UpperCAmelCase , unittest.TestCase ): a_ = ShapEImgaImgPipeline a_ = ['''image'''] a_ = ['''image'''] a_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] a_ = False @property def snake_case__ ( self : Tuple ) -> List[str]: return 3_2 @property def snake_case__ ( self : Optional[Any] ) -> Optional[int]: return 3_2 @property def snake_case__ ( self : Optional[int] ) -> str: return self.time_input_dim * 4 @property def snake_case__ ( self : List[Any] ) -> int: return 8 @property def snake_case__ ( self : Optional[int] ) -> str: torch.manual_seed(0 ) __UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __UpperCAmelCase = CLIPVisionModel(__a ) return model @property def snake_case__ ( self : int ) -> Union[str, Any]: __UpperCAmelCase = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=__a , do_normalize=__a , do_resize=__a , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_2_4 , ) return image_processor @property def snake_case__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __UpperCAmelCase = PriorTransformer(**__a ) return model @property def snake_case__ ( self : Dict ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase = ShapERenderer(**__a ) return model def snake_case__ ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase = self.dummy_prior __UpperCAmelCase = self.dummy_image_encoder __UpperCAmelCase = self.dummy_image_processor __UpperCAmelCase = self.dummy_renderer __UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_0_2_4 , prediction_type='''sample''' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __UpperCAmelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def snake_case__ ( self : Tuple , __a : Dict , __a : Union[str, Any]=0 ) -> List[str]: __UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = pipe(**self.get_dummy_inputs(__a ) ) __UpperCAmelCase = output.images[0] __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) __UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : str ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase = torch_device == '''cpu''' __UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase = batch_size * [inputs[key]] __UpperCAmelCase = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : Any ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Dict ) -> Any: __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(0 ) __UpperCAmelCase = pipe( __a , generator=__a , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='''np''' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__a , __a )
720
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase ( UpperCamelCase__ : List[Any] ): """simple docstring""" if not is_accelerate_available(): return method __UpperCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCamelCase__ ) < version.parse('''0.17.0''' ): return method def wrapper(self : Optional[int] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : str ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *UpperCamelCase__ , **UpperCamelCase__ ) return wrapper
721
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
0
import requests __lowerCAmelCase : Dict = "YOUR API KEY" def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str = giphy_api_key ): """simple docstring""" __UpperCAmelCase = '''+'''.join(query.split() ) __UpperCAmelCase = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __UpperCAmelCase = requests.get(UpperCamelCase__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
701
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [] if len(UpperCamelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = nums.pop(0 ) __UpperCAmelCase = permute(UpperCamelCase__ ) for perm in permutations: perm.append(UpperCamelCase__ ) result.extend(UpperCamelCase__ ) nums.append(UpperCamelCase__ ) return result def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" def backtrack(UpperCamelCase__ : str ): if start == len(UpperCamelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): __UpperCAmelCase , __UpperCAmelCase = nums[i], nums[start] backtrack(start + 1 ) __UpperCAmelCase , __UpperCAmelCase = nums[i], nums[start] # backtrack __UpperCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
703
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class A ( UpperCAmelCase ): a_ = '''beit''' def __init__( self : Any , __a : int=8_1_9_2 , __a : Optional[Any]=7_6_8 , __a : Optional[Any]=1_2 , __a : Any=1_2 , __a : List[str]=3_0_7_2 , __a : str="gelu" , __a : Union[str, Any]=0.0 , __a : Tuple=0.0 , __a : Optional[int]=0.0_2 , __a : Union[str, Any]=1e-12 , __a : str=2_2_4 , __a : Tuple=1_6 , __a : Union[str, Any]=3 , __a : Union[str, Any]=False , __a : List[str]=False , __a : int=False , __a : Union[str, Any]=False , __a : Any=0.1 , __a : Any=0.1 , __a : List[Any]=True , __a : Optional[int]=[3, 5, 7, 1_1] , __a : Any=[1, 2, 3, 6] , __a : str=True , __a : Optional[int]=0.4 , __a : List[Any]=2_5_6 , __a : List[Any]=1 , __a : str=False , __a : Any=2_5_5 , **__a : Optional[Any] , ) -> Union[str, Any]: super().__init__(**__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = use_mask_token __UpperCAmelCase = use_absolute_position_embeddings __UpperCAmelCase = use_relative_position_bias __UpperCAmelCase = use_shared_relative_position_bias __UpperCAmelCase = layer_scale_init_value __UpperCAmelCase = drop_path_rate __UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __UpperCAmelCase = out_indices __UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __UpperCAmelCase = use_auxiliary_head __UpperCAmelCase = auxiliary_loss_weight __UpperCAmelCase = auxiliary_channels __UpperCAmelCase = auxiliary_num_convs __UpperCAmelCase = auxiliary_concat_input __UpperCAmelCase = semantic_loss_ignore_index class A ( UpperCAmelCase ): a_ = version.parse('''1.11''' ) @property def snake_case__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self : str ) -> float: return 1e-4
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('''String lengths must match!''' ) __UpperCAmelCase = 0 for chara, chara in zip(UpperCamelCase__ , UpperCamelCase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) __UpperCAmelCase = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __UpperCAmelCase = CLIPTextModel(__a ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : Union[str, Any] , __a : Optional[int] , __a : Optional[Any]=0 ) -> int: __UpperCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__a ) ).to(__a ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ) if str(__a ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(__a ) else: __UpperCAmelCase = torch.Generator(device=__a ).manual_seed(__a ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = sd_pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = '''french fries''' __UpperCAmelCase = sd_pipe(**__a , negative_prompt=__a ) __UpperCAmelCase = output.images __UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = [inputs['''prompt''']] * 2 __UpperCAmelCase = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 __UpperCAmelCase = torch.from_numpy(__a ).unsqueeze(0 ).to(__a ) __UpperCAmelCase = image / 2 + 0.5 __UpperCAmelCase = image.permute(0 , 3 , 1 , 2 ) __UpperCAmelCase = image.repeat(2 , 1 , 1 , 1 ) __UpperCAmelCase = sd_pipe(**__a ).images __UpperCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = self.get_dummy_inputs(__a ) __UpperCAmelCase = sd_pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = [round(__a , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(__a ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__ ( self : List[Any] ) -> Tuple: __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__a ) __UpperCAmelCase = VaeImageProcessor(do_resize=__a , do_normalize=__a ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __UpperCAmelCase = pipe(**self.get_dummy_inputs_by_type(__a , input_image_type='''pt''' ) )[0] __UpperCAmelCase = components['''vae'''] __UpperCAmelCase = self.get_dummy_inputs_by_type(__a , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __UpperCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() __UpperCAmelCase = pipe(**__a )[0] __UpperCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(__a , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class A ( unittest.TestCase ): def snake_case__ ( self : Dict ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[str] , __a : Dict=0 ) -> List[str]: __UpperCAmelCase = torch.manual_seed(__a ) __UpperCAmelCase = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __UpperCAmelCase = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__ ( self : Any ) -> List[str]: __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a ) __UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__ ( self : Tuple ) -> Tuple: __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a ) __UpperCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ).images __UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __UpperCAmelCase = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = 0 def callback_fn(__a : int , __a : int , __a : torch.FloatTensor ) -> None: __UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __UpperCAmelCase = latents[0, -3:, -3:, -1] __UpperCAmelCase = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __UpperCAmelCase = latents[0, -3:, -3:, -1] __UpperCAmelCase = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCAmelCase = False __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = self.get_inputs() pipe(**__a , callback=__a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case__ ( self : Any ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__a , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCAmelCase = self.get_inputs() __UpperCAmelCase = pipe(**__a ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase = inputs['''image'''].resize((5_0_4, 5_0_4) ) __UpperCAmelCase = '''timbrooks/instruct-pix2pix''' __UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __UpperCAmelCase = pipe(**__a ) __UpperCAmelCase = output.images[0] __UpperCAmelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) __UpperCAmelCase = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
706
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
0
'''simple docstring''' import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( UpperCAmelCase ): a_ = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) a_ = '''CIDAS/clipseg-rd64-refined''' a_ = '''image_segmenter''' a_ = CLIPSegForImageSegmentation a_ = ['''image''', '''text'''] a_ = ['''image'''] def __init__( self : Tuple , *__a : str , **__a : List[Any] ) -> Tuple: requires_backends(self , ['''vision'''] ) super().__init__(*__a , **__a ) def snake_case__ ( self : Any , __a : "Image" , __a : str ) -> int: return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors='''pt''' ) def snake_case__ ( self : Any , __a : Dict ) -> List[Any]: with torch.no_grad(): __UpperCAmelCase = self.model(**__a ).logits return logits def snake_case__ ( self : List[Any] , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = outputs.cpu().detach().numpy() __UpperCAmelCase = 0 __UpperCAmelCase = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
707
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=0.9_99 , UpperCamelCase__ : Dict="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __UpperCAmelCase = [] for i in range(UpperCamelCase__ ): __UpperCAmelCase = i / num_diffusion_timesteps __UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class A ( UpperCAmelCase , UpperCAmelCase ): a_ = [e.name for e in KarrasDiffusionSchedulers] a_ = 2 @register_to_config def __init__( self : Tuple , __a : int = 1_0_0_0 , __a : float = 0.0_0_0_8_5 , __a : float = 0.0_1_2 , __a : str = "linear" , __a : Optional[Union[np.ndarray, List[float]]] = None , __a : str = "epsilon" , __a : Optional[bool] = False , __a : Optional[bool] = False , __a : float = 1.0 , __a : str = "linspace" , __a : int = 0 , ) -> str: if trained_betas is not None: __UpperCAmelCase = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase = betas_for_alpha_bar(__a , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __UpperCAmelCase = betas_for_alpha_bar(__a , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __UpperCAmelCase = 1.0 - self.betas __UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__a , __a , __a ) __UpperCAmelCase = use_karras_sigmas def snake_case__ ( self : Optional[int] , __a : int , __a : List[Any]=None ) -> Any: if schedule_timesteps is None: __UpperCAmelCase = self.timesteps __UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase = 1 if len(__a ) > 1 else 0 else: __UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(__a ) else timestep __UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case__ ( self : List[str] ) -> Tuple: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case__ ( self : int , __a : torch.FloatTensor , __a : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __UpperCAmelCase = self.index_for_timestep(__a ) __UpperCAmelCase = self.sigmas[step_index] __UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case__ ( self : str , __a : int , __a : Union[str, torch.device] = None , __a : Optional[int] = None , ) -> Union[str, Any]: __UpperCAmelCase = num_inference_steps __UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , __a , dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase = (np.arange(0 , __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase = (np.arange(__a , 0 , -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase = np.log(__a ) __UpperCAmelCase = np.interp(__a , np.arange(0 , len(__a ) ) , __a ) if self.config.use_karras_sigmas: __UpperCAmelCase = self._convert_to_karras(in_sigmas=__a , num_inference_steps=self.num_inference_steps ) __UpperCAmelCase = np.array([self._sigma_to_t(__a , __a ) for sigma in sigmas] ) __UpperCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase = torch.from_numpy(__a ).to(device=__a ) __UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase = torch.from_numpy(__a ) __UpperCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__a ).startswith('''mps''' ): # mps does not support float64 __UpperCAmelCase = timesteps.to(__a , dtype=torch.floataa ) else: __UpperCAmelCase = timesteps.to(device=__a ) # empty dt and derivative __UpperCAmelCase = None __UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase = defaultdict(__a ) def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Optional[Any] ) -> List[str]: # get log sigma __UpperCAmelCase = np.log(__a ) # get distribution __UpperCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __UpperCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __UpperCAmelCase = low_idx + 1 __UpperCAmelCase = log_sigmas[low_idx] __UpperCAmelCase = log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase = (low - log_sigma) / (low - high) __UpperCAmelCase = np.clip(__a , 0 , 1 ) # transform interpolation to time range __UpperCAmelCase = (1 - w) * low_idx + w * high_idx __UpperCAmelCase = t.reshape(sigma.shape ) return t def snake_case__ ( self : List[str] , __a : torch.FloatTensor , __a : int ) -> torch.FloatTensor: __UpperCAmelCase = in_sigmas[-1].item() __UpperCAmelCase = in_sigmas[0].item() __UpperCAmelCase = 7.0 # 7.0 is the value used in the paper __UpperCAmelCase = np.linspace(0 , 1 , __a ) __UpperCAmelCase = sigma_min ** (1 / rho) __UpperCAmelCase = sigma_max ** (1 / rho) __UpperCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def snake_case__ ( self : List[Any] ) -> List[Any]: return self.dt is None def snake_case__ ( self : str , __a : Union[torch.FloatTensor, np.ndarray] , __a : Union[float, torch.FloatTensor] , __a : Union[torch.FloatTensor, np.ndarray] , __a : bool = True , ) -> Union[SchedulerOutput, Tuple]: __UpperCAmelCase = self.index_for_timestep(__a ) # advance index counter by 1 __UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase = self.sigmas[step_index] __UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __UpperCAmelCase = self.sigmas[step_index - 1] __UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase = 0 __UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __UpperCAmelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase = sigma_next - sigma_hat # store for 2nd order step __UpperCAmelCase = derivative __UpperCAmelCase = dt __UpperCAmelCase = sample else: # 2. 2nd order / Heun's method __UpperCAmelCase = (sample - pred_original_sample) / sigma_next __UpperCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __UpperCAmelCase = self.dt __UpperCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def snake_case__ ( self : Optional[int] , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 __UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase = self.timesteps.to(original_samples.device ) __UpperCAmelCase = timesteps.to(original_samples.device ) __UpperCAmelCase = [self.index_for_timestep(__a , __a ) for t in timesteps] __UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase = sigma.unsqueeze(-1 ) __UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any] ) -> Tuple: return self.config.num_train_timesteps
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCamelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCamelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCAmelCase : Tuple = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCAmelCase : Optional[Any] = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = SavedModel() __UpperCAmelCase = [] with open(os.path.join(UpperCamelCase__ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __UpperCAmelCase = json.load(UpperCamelCase__ )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(UpperCamelCase__ )] ) with open(UpperCamelCase__ , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __UpperCAmelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __UpperCAmelCase = sorted(UpperCamelCase__ ) __UpperCAmelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(UpperCamelCase__ ) if strict and len(UpperCamelCase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(UpperCamelCase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*UpperCamelCase__ , sep='''\n''' ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __lowerCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
710
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : str = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , ): """simple docstring""" if attention_mask is None: __UpperCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __UpperCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __UpperCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A : def __init__( self : Dict , __a : Any , __a : List[str]=1_3 , __a : List[str]=7 , __a : List[str]=True , __a : List[Any]=False , __a : List[Any]=9_9 , __a : Any=1_6 , __a : Any=2 , __a : Dict=4 , __a : Optional[int]=4 , __a : List[str]="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Optional[int]=3_2 , __a : Union[str, Any]=2 , __a : Dict=1 , __a : Union[str, Any]=0 , __a : int=0.0_2 , ) -> Union[str, Any]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id __UpperCAmelCase = initializer_range def snake_case__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCAmelCase = shift_tokens_right(__a , 1 , 2 ) __UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__a , ) __UpperCAmelCase = prepare_blenderbot_inputs_dict(__a , __a , __a ) return config, inputs_dict def snake_case__ ( self : Tuple ) -> str: __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : str , __a : Optional[Any] , __a : Dict , __a : Union[str, Any] ) -> Tuple: __UpperCAmelCase = 2_0 __UpperCAmelCase = model_class_name(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase , __UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) __UpperCAmelCase = model.decode(__a , __a ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case__ ( self : Optional[Any] , __a : str , __a : List[str] , __a : str ) -> Union[str, Any]: __UpperCAmelCase = 2_0 __UpperCAmelCase = model_class_name(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase , __UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) __UpperCAmelCase = model.decode(__a , __a , decoder_attention_mask=__a ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class A ( unittest.TestCase ): a_ = 9_9 def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case__ ( self : str ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._get_config_and_data() __UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(__a ) __UpperCAmelCase = lm_model(input_ids=__a ) __UpperCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __a ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) __UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(__a ) __UpperCAmelCase = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) __UpperCAmelCase = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) __UpperCAmelCase = lm_model(input_ids=__a , decoder_input_ids=__a ) __UpperCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __a ) def snake_case__ ( self : int ) -> List[Any]: __UpperCAmelCase = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) __UpperCAmelCase = shift_tokens_right(__a , 1 , 2 ) __UpperCAmelCase = np.equal(__a , 1 ).astype(np.floataa ).sum() __UpperCAmelCase = np.equal(__a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A ( UpperCAmelCase , unittest.TestCase , UpperCAmelCase ): a_ = True a_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case__ ( self : Optional[Any] ) -> int: __UpperCAmelCase = FlaxBlenderbotModelTester(self ) def snake_case__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a ) def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a ) def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(__a , __a ) __UpperCAmelCase = model_class(__a ) @jax.jit def encode_jitted(__a : List[Any] , __a : Any=None , **__a : Optional[Any] ): return model.encode(input_ids=__a , attention_mask=__a ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = encode_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = encode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = model_class(__a ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __UpperCAmelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a : Tuple , __a : Tuple , __a : Optional[Any] ): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = decode_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = decode_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : List[Any] ) -> Optional[int]: for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id __UpperCAmelCase = model(__a ) self.assertIsNotNone(__a ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def snake_case__ ( self : Dict ) -> str: __UpperCAmelCase = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 1_5, '''max_length''': 2_5} __UpperCAmelCase = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} __UpperCAmelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=__a ) __UpperCAmelCase = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __UpperCAmelCase = ['''Sam'''] __UpperCAmelCase = tokenizer(__a , return_tensors='''jax''' ) __UpperCAmelCase = model.generate(**__a , **__a ) __UpperCAmelCase = '''Sam is a great name. It means "sun" in Gaelic.''' __UpperCAmelCase = tokenizer.batch_decode(__a , **__a ) assert generated_txt[0].strip() == tgt_text
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class A ( UpperCAmelCase ): a_ = ['''pixel_values'''] def __init__( self : int , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PIL.Image.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : Union[int, float] = 1 / 2_5_5 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Optional[Any] , ) -> None: super().__init__(**__a ) __UpperCAmelCase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} __UpperCAmelCase = get_size_dict(__a ) __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase = get_size_dict(__a , param_name='''crop_size''' ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( __a , size=(size['''height'''], size['''width''']) , resample=__a , data_format=__a , **__a ) def snake_case__ ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a ) def snake_case__ ( self : Union[str, Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> Tuple: return rescale(__a , scale=__a , data_format=__a , **__a ) def snake_case__ ( self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def snake_case__ ( self : Tuple , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : Optional[int]=None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[str] , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(__a ) __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(__a , param_name='''crop_size''' ) __UpperCAmelCase = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(__a ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(__a , __a ) for image in images] __UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a )
713
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
0
import random def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = a[left_index] __UpperCAmelCase = left_index + 1 for j in range(left_index + 1 , UpperCamelCase__ ): if a[j] < pivot: __UpperCAmelCase , __UpperCAmelCase = a[i], a[j] i += 1 __UpperCAmelCase , __UpperCAmelCase = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict ): """simple docstring""" if left < right: __UpperCAmelCase = random.randint(UpperCamelCase__ , right - 1 ) __UpperCAmelCase , __UpperCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCAmelCase = partition(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) quick_sort_random( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( UpperCamelCase__ , pivot_index + 1 , UpperCamelCase__ ) # recursive quicksort to the right of the pivot point def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = input('''Enter numbers separated by a comma:\n''' ).strip() __UpperCAmelCase = [int(UpperCamelCase__ ) for item in user_input.split(''',''' )] quick_sort_random(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) if __name__ == "__main__": main()
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
'''simple docstring''' import cva import numpy as np class A : def __init__( self : Union[str, Any] , __a : float , __a : int ) -> List[str]: if k in (0.0_4, 0.0_6): __UpperCAmelCase = k __UpperCAmelCase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : List[str] ) -> str: return str(self.k ) def snake_case__ ( self : List[str] , __a : str ) -> tuple[cva.Mat, list[list[int]]]: __UpperCAmelCase = cva.imread(__a , 0 ) __UpperCAmelCase , __UpperCAmelCase = img.shape __UpperCAmelCase = [] __UpperCAmelCase = img.copy() __UpperCAmelCase = cva.cvtColor(__a , cva.COLOR_GRAY2RGB ) __UpperCAmelCase , __UpperCAmelCase = np.gradient(__a ) __UpperCAmelCase = dx**2 __UpperCAmelCase = dy**2 __UpperCAmelCase = dx * dy __UpperCAmelCase = 0.0_4 __UpperCAmelCase = self.window_size // 2 for y in range(__a , h - offset ): for x in range(__a , w - offset ): __UpperCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCAmelCase = (wxx * wyy) - (wxy**2) __UpperCAmelCase = wxx + wyy __UpperCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": __lowerCAmelCase : List[str] = HarrisCorner(0.0_4, 3) __lowerCAmelCase : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
715
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
0
from math import factorial def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0 ): """simple docstring""" return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase : List[str] = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : str = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" __lowerCAmelCase : int = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self : int ) -> int: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : int = CHRF.CHAR_ORDER , __a : int = CHRF.WORD_ORDER , __a : int = CHRF.BETA , __a : bool = False , __a : bool = False , __a : bool = False , ) -> Tuple: __UpperCAmelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __UpperCAmelCase = [[refs[i] for refs in references] for i in range(__a )] __UpperCAmelCase = CHRF(__a , __a , __a , __a , __a , __a ) __UpperCAmelCase = sb_chrf.corpus_score(__a , __a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A : a_ = PegasusConfig a_ = {} a_ = '''gelu''' def __init__( self : Tuple , __a : int , __a : List[str]=1_3 , __a : Dict=7 , __a : Dict=True , __a : Dict=False , __a : Dict=9_9 , __a : Tuple=3_2 , __a : Optional[Any]=2 , __a : Optional[int]=4 , __a : str=3_7 , __a : str=0.1 , __a : Optional[Any]=0.1 , __a : List[Any]=4_0 , __a : str=2 , __a : Union[str, Any]=1 , __a : int=0 , ) -> List[str]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase = prepare_pegasus_inputs_dict(__a , __a , __a ) return config, inputs_dict def snake_case__ ( self : Optional[int] , __a : Optional[int] , __a : List[Any] ) -> int: __UpperCAmelCase = TFPegasusModel(config=__a ).get_decoder() __UpperCAmelCase = inputs_dict['''input_ids'''] __UpperCAmelCase = input_ids[:1, :] __UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] __UpperCAmelCase = inputs_dict['''head_mask'''] __UpperCAmelCase = 1 # first forward pass __UpperCAmelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCAmelCase = model(__a , attention_mask=__a )[0] __UpperCAmelCase = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , ): """simple docstring""" if attention_mask is None: __UpperCAmelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a_ = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a_ = True a_ = False a_ = False def snake_case__ ( self : int ) -> Optional[Any]: __UpperCAmelCase = TFPegasusModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a ) def snake_case__ ( self : Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_sentencepiece @require_tokenizers @require_tf class A ( unittest.TestCase ): a_ = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a_ = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a_ = '''google/pegasus-xsum''' @cached_property def snake_case__ ( self : str ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def snake_case__ ( self : Dict ) -> Tuple: __UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def snake_case__ ( self : Optional[int] , **__a : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = self.translate_src_text(**__a ) assert self.expected_text == generated_words def snake_case__ ( self : str , **__a : List[str] ) -> str: __UpperCAmelCase = self.tokenizer(self.src_text , **__a , padding=__a , return_tensors='''tf''' ) __UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__a , ) __UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a ) return generated_words @slow def snake_case__ ( self : int ) -> Tuple: self._assert_generated_batch_equal_expected()
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowerCAmelCase : str = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def snake_case__ ( self : Optional[Any] , __a : Path , __a : Union[str, None] = None , __a : Union[List[str], None] = None , __a : Union[str, List[str], None] = None , __a : bool = True , ) -> Union[str, Any]: __UpperCAmelCase = [file for file in os.listdir(__a ) if os.path.isfile(os.path.join(__a , __a ) )] if identifier is not None: __UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__a , __a ): for n_ in n_identifier: __UpperCAmelCase = [file for file in files if n_ not in file] else: __UpperCAmelCase = [file for file in files if n_identifier not in file] __UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) __UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __a ) if only_modules: __UpperCAmelCase = file.split('''.''' )[0] try: __UpperCAmelCase = getattr(__a , __a ) __UpperCAmelCase = doctest.DocTestSuite(__a ) __UpperCAmelCase = unittest.TextTestRunner().run(__a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: __UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def snake_case__ ( self : List[str] ) -> str: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''modeling''' __UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__a , identifier=__a , ignore_files=__a ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''tokenization''' self.analyze_directory(__a , identifier=__a ) def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''configuration''' self.analyze_directory(__a , identifier=__a ) def snake_case__ ( self : Optional[int] ) -> int: __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__a , n_identifier=__a ) def snake_case__ ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase = Path('''docs/source''' ) __UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__a , ignore_files=__a , only_modules=__a )
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” __lowerCAmelCase : str = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Optional[int] = 0Xe000 __lowerCAmelCase : Optional[int] = 0Xe001 __lowerCAmelCase : Optional[int] = 0Xe002 __lowerCAmelCase : Dict = 0Xe003 __lowerCAmelCase : Optional[int] = 0Xe004 # Maps special codepoints to human-readable names. __lowerCAmelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __lowerCAmelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( UpperCAmelCase ): a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __a : Union[str, Any]=chr(__a ) , __a : Optional[int]=chr(__a ) , __a : Union[str, Any]=chr(__a ) , __a : List[Any]=chr(__a ) , __a : Any=chr(__a ) , __a : Tuple=chr(__a ) , __a : Union[str, Any]=False , __a : Optional[int]=2_0_4_8 , **__a : str , ) -> Tuple: __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , model_max_length=__a , **__a , ) # Creates a mapping for looking up the IDs of special symbols. __UpperCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __UpperCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __UpperCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } __UpperCAmelCase = UNICODE_VOCAB_SIZE __UpperCAmelCase = len(self._special_codepoints ) @property def snake_case__ ( self : Union[str, Any] ) -> int: return self._unicode_vocab_size def snake_case__ ( self : str , __a : str ) -> List[str]: return list(__a ) def snake_case__ ( self : Optional[int] , __a : str ) -> int: try: return ord(__a ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def snake_case__ ( self : List[str] , __a : int ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__a ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def snake_case__ ( self : Any , __a : Union[str, Any] ) -> Optional[int]: return "".join(__a ) def snake_case__ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case__ ( self : int , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __UpperCAmelCase = [1] + ([0] * len(__a )) + [1] if token_ids_a is not None: result += ([0] * len(__a )) + [1] return result def snake_case__ ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def snake_case__ ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Any: return ()
720
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
721
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
0
from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
700
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : Optional[int] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): def snake_case__ ( self : Any , __a : str , __a : bool , __a : str = None , __a : list = None ) -> Tuple: __UpperCAmelCase = None __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(__a ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase = os.path.join(__a , __a ) if os.path.isfile(__a ) and ".py" in item_path: with self.subTest( tested_script=__a , feature_script=__a , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCAmelCase = compare_against_test( os.path.join(__a , __a ) , __a , __a , __a ) __UpperCAmelCase = '''\n'''.join(__a ) if special_strings is not None: for string in special_strings: __UpperCAmelCase = diff.replace(__a , '''''' ) self.assertEqual(__a , '''''' ) def snake_case__ ( self : Optional[Any] ) -> str: self.one_complete_example('''complete_nlp_example.py''' , __a ) self.one_complete_example('''complete_nlp_example.py''' , __a ) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCAmelCase = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) self.one_complete_example('''complete_cv_example.py''' , __a , __a , __a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( UpperCAmelCase ): a_ = False @classmethod def snake_case__ ( cls : Tuple ) -> str: super().setUpClass() __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Dict ) -> int: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() else: __UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) else: self.assertIn('''epoch 0:''' , __a ) self.assertIn('''epoch 1:''' , __a ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=__a ) __UpperCAmelCase = re.findall('''({.+})''' , __a ) __UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCAmelCase = ast.literal_eval(__a ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case__ ( self : Dict ) -> int: __UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__a , '''tracking''' ) ) ) def snake_case__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
654
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" def wrapper(*UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[Any] ): __UpperCAmelCase = timeit.default_timer() __UpperCAmelCase = func(*UpperCamelCase__ , **UpperCamelCase__ ) __UpperCAmelCase = timeit.default_timer() - starttime return delta __UpperCAmelCase = func.__name__ return wrapper def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : str=1_0_0 , UpperCamelCase__ : Union[str, Any]=None ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = seq_shapes or {} for i in range(UpperCamelCase__ ): __UpperCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): __UpperCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": __UpperCAmelCase = '''The small grey turtle was surprisingly fast when challenged.''' else: __UpperCAmelCase = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): __UpperCAmelCase = v.feature __UpperCAmelCase = seq_shapes[k] __UpperCAmelCase = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) __UpperCAmelCase = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=1_0_0 , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" __UpperCAmelCase = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: __UpperCAmelCase = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __UpperCAmelCase = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
701
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : Any = "" __lowerCAmelCase : int = "" __lowerCAmelCase : Union[str, Any] = "" __lowerCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase = get_dataset(UpperCamelCase__ , UpperCamelCase__ ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = update_image_and_anno(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for index, image in enumerate(UpperCamelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase = random_chars(3_2 ) __UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , UpperCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Success {index+1}/{len(UpperCamelCase__ )} with {file_name}""" ) __UpperCAmelCase = [] for anno in new_annos[index]: __UpperCAmelCase = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(UpperCamelCase__ ) with open(f"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] for label_file in glob.glob(os.path.join(UpperCamelCase__ , '''*.txt''' ) ): __UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(UpperCamelCase__ ) as in_file: __UpperCAmelCase = in_file.readlines() __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase = [] for obj_list in obj_lists: __UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase__ ) labels.append(UpperCamelCase__ ) return img_paths, labels def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int = 1 ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for idx in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = [] __UpperCAmelCase = img_list[idx] path_list.append(UpperCamelCase__ ) __UpperCAmelCase = anno_list[idx] __UpperCAmelCase = cva.imread(UpperCamelCase__ ) if flip_type == 1: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase = cva.flip(UpperCamelCase__ , UpperCamelCase__ ) for bbox in img_annos: __UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase__ ) new_imgs_list.append(UpperCamelCase__ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( UpperCamelCase__ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
654
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' __lowerCAmelCase : str = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __lowerCAmelCase : Optional[Any] = [{"type": "code", "content": INSTALL_CONTENT}] __lowerCAmelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
703
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A ( unittest.TestCase ): def __init__( self : Tuple , __a : Dict , __a : Optional[int]=2 , __a : List[Any]=5_6 , __a : int=True , __a : Union[str, Any]=True , __a : str=True , __a : Optional[int]=True , __a : Tuple=9_9 , __a : List[Any]=3_2 , __a : Optional[Any]=2 , __a : str=2 , __a : Any=7 , __a : Union[str, Any]="gelu_new" , __a : str=0.1 , __a : Optional[Any]=0.1 , __a : List[str]=5_1_2 , __a : Union[str, Any]=1_6 , __a : Tuple=2 , __a : Any=0.0_2 , __a : List[str]=4 , __a : Union[str, Any]="block_sparse" , __a : Optional[Any]=True , __a : Any=False , __a : List[Any]=2 , __a : Dict=3 , ) -> Tuple: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_attention_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_choices __UpperCAmelCase = rescale_embeddings __UpperCAmelCase = attention_type __UpperCAmelCase = use_bias __UpperCAmelCase = block_size __UpperCAmelCase = num_random_blocks def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_attention_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class A ( UpperCAmelCase , unittest.TestCase ): a_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a_ = False a_ = False def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Any ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : int ) -> str: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Union[str, Any] ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Any ) -> Tuple: super().test_hidden_states_output() @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__a ) def snake_case__ ( self : List[Any] ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(__a , __a ) __UpperCAmelCase = model_class(__a ) @jax.jit def model_jitted(__a : Any , __a : Any=None , **__a : List[str] ): return model(input_ids=__a , attention_mask=__a , **__a ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = model_jitted(**__a ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Dict , __a : Optional[int] , __a : Tuple=1e-5 , __a : Tuple="outputs" , __a : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__a , __a , __a , __a , __a , __a )
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = u for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = temp * (u - i) return temp def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = int(input('''enter the numbers of values: ''' ) ) __UpperCAmelCase = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) __UpperCAmelCase = 0 print('''enter the values of parameters in a list: ''' ) __UpperCAmelCase = list(map(UpperCamelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = float(input() ) __UpperCAmelCase = int(input('''enter the value to interpolate: ''' ) ) __UpperCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): __UpperCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __UpperCAmelCase = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
654
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __lowerCAmelCase : Any = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __lowerCAmelCase : Dict = { "jukebox": 512, } class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_LYRIC_TOKENS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __a : str , __a : Optional[int] , __a : Tuple , __a : Union[str, Any]=["v3", "v2", "v2"] , __a : List[Any]=5_1_2 , __a : Tuple=5 , __a : List[Any]="<|endoftext|>" , **__a : Optional[Any] , ) -> Any: __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( unk_token=__a , n_genres=__a , version=__a , max_n_lyric_tokens=__a , **__a , ) __UpperCAmelCase = version __UpperCAmelCase = max_n_lyric_tokens __UpperCAmelCase = n_genres with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) __UpperCAmelCase = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: __UpperCAmelCase = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __UpperCAmelCase = regex.compile(__a ) __UpperCAmelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCAmelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCAmelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case__ ( self : Optional[int] ) -> List[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case__ ( self : Dict ) -> Optional[Any]: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case__ ( self : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[int] ) -> List[Any]: __UpperCAmelCase = [self.artists_encoder.get(__a , 0 ) for artist in list_artists] for genres in range(len(__a ) ): __UpperCAmelCase = [self.genres_encoder.get(__a , 0 ) for genre in list_genres[genres]] __UpperCAmelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCAmelCase = [[self.lyrics_encoder.get(__a , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case__ ( self : List[str] , __a : List[Any] ) -> Optional[int]: return list(__a ) def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : str , **__a : Optional[Any] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.prepare_for_tokenization(__a , __a , __a ) __UpperCAmelCase = self._tokenize(__a ) return artist, genre, lyrics def snake_case__ ( self : int , __a : str , __a : str , __a : str , __a : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCAmelCase = artists[idx].lower() __UpperCAmelCase = [genres[idx].lower()] else: __UpperCAmelCase = self._normalize(artists[idx] ) + '''.v2''' __UpperCAmelCase = [ self._normalize(__a ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCAmelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __UpperCAmelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __UpperCAmelCase = {vocab[index]: index + 1 for index in range(len(__a ) )} __UpperCAmelCase = 0 __UpperCAmelCase = len(__a ) + 1 __UpperCAmelCase = self.vocab __UpperCAmelCase = {v: k for k, v in self.vocab.items()} __UpperCAmelCase = '''''' else: __UpperCAmelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __UpperCAmelCase = self._run_strip_accents(__a ) __UpperCAmelCase = lyrics.replace('''\\''' , '''\n''' ) __UpperCAmelCase = self.out_of_vocab.sub('''''' , __a ), [], [] return artists, genres, lyrics def snake_case__ ( self : Optional[int] , __a : Tuple ) -> Optional[int]: __UpperCAmelCase = unicodedata.normalize('''NFD''' , __a ) __UpperCAmelCase = [] for char in text: __UpperCAmelCase = unicodedata.category(__a ) if cat == "Mn": continue output.append(__a ) return "".join(__a ) def snake_case__ ( self : int , __a : str ) -> str: __UpperCAmelCase = ( [chr(__a ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(__a ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(__a ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __UpperCAmelCase = frozenset(__a ) __UpperCAmelCase = re.compile(r'''_+''' ) __UpperCAmelCase = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __UpperCAmelCase = pattern.sub('''_''' , __a ).strip('''_''' ) return text def snake_case__ ( self : Union[str, Any] , __a : List[str] ) -> str: return " ".join(__a ) def snake_case__ ( self : List[str] , __a : Dict , __a : Optional[Union[str, TensorType]] = None , __a : bool = False ) -> Union[str, Any]: # Convert to TensorType if not isinstance(__a , __a ): __UpperCAmelCase = TensorType(__a ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __UpperCAmelCase = tf.constant __UpperCAmelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __UpperCAmelCase = torch.tensor __UpperCAmelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __UpperCAmelCase = jnp.array __UpperCAmelCase = _is_jax else: __UpperCAmelCase = np.asarray __UpperCAmelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCAmelCase = [inputs] if not is_tensor(__a ): __UpperCAmelCase = as_tensor(__a ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Dict , __a : Optional[int] , __a : Union[str, Any] , __a : int="" , __a : Dict="pt" ) -> BatchEncoding: __UpperCAmelCase = [0, 0, 0] __UpperCAmelCase = [artist] * len(self.version ) __UpperCAmelCase = [genres] * len(self.version ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.tokenize(__a , __a , __a ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._convert_token_to_id(__a , __a , __a ) __UpperCAmelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCAmelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__a ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case__ ( self : Tuple , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__a ) ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__a ) ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__a ) ) return (artists_file, genres_file, lyrics_file) def snake_case__ ( self : List[Any] , __a : Dict , __a : str , __a : str ) -> str: __UpperCAmelCase = self.artists_decoder.get(__a ) __UpperCAmelCase = [self.genres_decoder.get(__a ) for genre in genres_index] __UpperCAmelCase = [self.lyrics_decoder.get(__a ) for character in lyric_index] return artist, genres, lyrics
706
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class A ( UpperCAmelCase ): a_ = '''audio-spectrogram-transformer''' def __init__( self : str , __a : Optional[Any]=7_6_8 , __a : List[Any]=1_2 , __a : Optional[Any]=1_2 , __a : int=3_0_7_2 , __a : Optional[Any]="gelu" , __a : Optional[Any]=0.0 , __a : int=0.0 , __a : int=0.0_2 , __a : Optional[Any]=1e-12 , __a : Optional[Any]=1_6 , __a : Optional[int]=True , __a : int=1_0 , __a : Any=1_0 , __a : int=1_0_2_4 , __a : Tuple=1_2_8 , **__a : str , ) -> str: super().__init__(**__a ) __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = patch_size __UpperCAmelCase = qkv_bias __UpperCAmelCase = frequency_stride __UpperCAmelCase = time_stride __UpperCAmelCase = max_length __UpperCAmelCase = num_mel_bins
707
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): def snake_case__ ( self : List[Any] , __a : List[str] , __a : Optional[Any] ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(__a ) for s in shape] )}.npy""" def snake_case__ ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : Optional[Any] , __a : Tuple=0 , __a : List[Any]=(4, 4, 6_4, 6_4) , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def snake_case__ ( self : int , __a : Optional[Any]=False , __a : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> Any: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = '''bf16''' if fpaa else None __UpperCAmelCase , __UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='''unet''' , dtype=__a , revision=__a ) return model, params def snake_case__ ( self : str , __a : int=0 , __a : Tuple=(4, 7_7, 7_6_8) , __a : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : str , __a : Optional[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def snake_case__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__a ) __UpperCAmelCase = self.get_latents(__a , shape=(4, 4, 9_6, 9_6) , fpaa=__a ) __UpperCAmelCase = self.get_encoder_hidden_states(__a , shape=(4, 7_7, 1_0_2_4) , fpaa=__a ) __UpperCAmelCase = model.apply( {'''params''': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __UpperCAmelCase = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
654
0
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = os.path.abspath(UpperCamelCase__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model __UpperCAmelCase = tf.train.list_variables(UpperCamelCase__ ) __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __UpperCAmelCase = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' __UpperCAmelCase = name[1:] # figure out how many levels deep the name is __UpperCAmelCase = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(UpperCamelCase__ ) # read data __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) names.append('''/'''.join(UpperCamelCase__ ) ) arrays.append(UpperCamelCase__ ) logger.info(f"""Read a total of {len(UpperCamelCase__ ):,} layers""" ) # Sanity check if len(set(UpperCamelCase__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(UpperCamelCase__ ) )})""" ) __UpperCAmelCase = list(set(UpperCamelCase__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = full_name.split('''/''' ) __UpperCAmelCase = model __UpperCAmelCase = [] for i, m_name in enumerate(UpperCamelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __UpperCAmelCase = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''encoder''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''layer''' ) __UpperCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''pooler''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''intermediate''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary __UpperCAmelCase = '''.'''.join(UpperCamelCase__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , UpperCamelCase__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , UpperCamelCase__ ): __UpperCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __UpperCAmelCase = array.transpose() if pointer.shape == array.shape: __UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): """simple docstring""" logger.info(f"""Loading model based on config from {config_path}...""" ) __UpperCAmelCase = BertConfig.from_json_file(UpperCamelCase__ ) __UpperCAmelCase = BertModel(UpperCamelCase__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) __lowerCAmelCase : List[str] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase ): def snake_case__ ( self : str ) -> List[str]: __UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __UpperCAmelCase = Rectangle(height=0.2_5 , width=0.2_5 ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''CPU''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __UpperCAmelCase = [mem.copy() for i in range(4 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''GPU''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''Model''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) __UpperCAmelCase = [] __UpperCAmelCase = [] for i, rect in enumerate(__a ): __UpperCAmelCase = fill.copy().set_fill(__a , opacity=0.8 ) target.move_to(__a ) model_arr.append(__a ) __UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__a ) self.add(*__a , *__a ) __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(*__a ).arrange(__a , buff=0 ) __UpperCAmelCase = VGroup(__a , __a ).arrange(__a , buff=0 ) __UpperCAmelCase = Text('''Disk''' , font_size=2_4 ) __UpperCAmelCase = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4, -1.2_5, 0] ) self.add(__a , __a ) __UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) __UpperCAmelCase = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) __UpperCAmelCase = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a ) ) __UpperCAmelCase = Square(0.3 ) input.set_fill(__a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __a , buff=0.5 ) self.play(Write(__a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__a , buff=0.0_2 ) self.play(MoveToTarget(__a ) ) self.play(FadeOut(__a ) ) __UpperCAmelCase = Arrow(start=__a , end=__a , color=__a , buff=0.5 ) a.next_to(model_arr[0].get_left() , __a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCAmelCase = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) __UpperCAmelCase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.0_2} self.play( Write(__a ) , Circumscribe(model_arr[0] , color=__a , **__a ) , Circumscribe(model_cpu_arr[0] , color=__a , **__a ) , Circumscribe(gpu_rect[0] , color=__a , **__a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , __a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) __UpperCAmelCase = AnimationGroup( FadeOut(__a , run_time=0.5 ) , MoveToTarget(__a , run_time=0.5 ) , FadeIn(__a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **__a ) , Circumscribe(cpu_left_col_base[i] , **__a ) , Circumscribe(cpu_left_col_base[i + 1] , color=__a , **__a ) , Circumscribe(gpu_rect[0] , color=__a , **__a ) , Circumscribe(model_arr[i + 1] , color=__a , **__a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__a , **__a ) , Circumscribe(cpu_left_col_base[-1] , color=__a , **__a ) , Circumscribe(gpu_rect[0] , color=__a , **__a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCAmelCase = a_c __UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(__a ) , FadeOut(__a , run_time=0.5 ) , ) __UpperCAmelCase = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) , MoveToTarget(__a ) ) self.wait()
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCAmelCase : List[Any] = "hf-internal-testing/tiny-random-bert" __lowerCAmelCase : int = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __lowerCAmelCase : List[str] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A ( unittest.TestCase ): def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , '''refs''' , '''main''' ) ) as f: __UpperCAmelCase = f.read() self.assertEqual(__a , os.path.join(__a , '''snapshots''' , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. __UpperCAmelCase = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. __UpperCAmelCase = cached_file(__a , __a , revision='''9b8c223''' ) self.assertEqual(__a , os.path.join(__a , '''snapshots''' , __a , __a ) ) def snake_case__ ( self : Tuple ) -> List[Any]: with self.assertRaisesRegex(__a , '''is not a valid model identifier''' ): __UpperCAmelCase = cached_file('''tiny-random-bert''' , __a ) with self.assertRaisesRegex(__a , '''is not a valid git identifier''' ): __UpperCAmelCase = cached_file(__a , __a , revision='''aaaa''' ) with self.assertRaisesRegex(__a , '''does not appear to have a file named''' ): __UpperCAmelCase = cached_file(__a , '''conf''' ) def snake_case__ ( self : List[Any] ) -> Optional[int]: with self.assertRaisesRegex(__a , '''does not appear to have a file named''' ): __UpperCAmelCase = cached_file(__a , '''conf''' ) with open(os.path.join(__a , '''refs''' , '''main''' ) ) as f: __UpperCAmelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , '''.no_exist''' , __a , '''conf''' ) ) ) __UpperCAmelCase = cached_file(__a , '''conf''' , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __UpperCAmelCase = cached_file(__a , '''conf''' , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) __UpperCAmelCase = mock.Mock() __UpperCAmelCase = 5_0_0 __UpperCAmelCase = {} __UpperCAmelCase = HTTPError __UpperCAmelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__a ) as mock_head: __UpperCAmelCase = cached_file(__a , '''conf''' , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __a ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __a ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __a ) ) def snake_case__ ( self : Optional[int] ) -> int: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __a , revision='''ahaha''' ) __UpperCAmelCase = get_file_from_repo('''bert-base-cased''' , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. __UpperCAmelCase = json.loads(open(__a , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = Path(__a ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__a , '''a.txt''' ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , '''b.txt''' ) )
710
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A ( UpperCAmelCase ): def __init__( self : Optional[Any] , __a : int = 1_0_1 ) -> str: __UpperCAmelCase = length def __len__( self : Tuple ) -> List[str]: return self.length def __getitem__( self : List[Any] , __a : Any ) -> int: return i class A : def __call__( self : List[str] , __a : Any ) -> int: return {"input_ids": torch.tensor(__a ), "labels": torch.tensor(__a )} class A ( nn.Module ): def __init__( self : str ) -> Any: super().__init__() # Add some (unused) params otherwise DDP will complain. __UpperCAmelCase = nn.Linear(1_2_0 , 8_0 ) def snake_case__ ( self : int , __a : Union[str, Any] , __a : List[Any]=None ) -> Dict: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A ( UpperCAmelCase ): @require_torch_neuroncore def snake_case__ ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f"""--output_dir {output_dir}""".split() __UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A ( UpperCAmelCase ): @require_torch_multi_gpu def snake_case__ ( self : int ) -> Any: __UpperCAmelCase = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f"""--output_dir {output_dir}""".split() __UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase : Optional[Any] = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase : Dict = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __lowerCAmelCase : List[Any] = DummyDataset(dataset_length) def lowerCAmelCase ( UpperCamelCase__ : EvalPrediction ): """simple docstring""" __UpperCAmelCase = list(range(len(UpperCamelCase__ ) ) ) __UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __lowerCAmelCase : str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase : Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : Union[str, Any] = 2 __lowerCAmelCase : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : str = None
711
'''simple docstring''' from __future__ import annotations from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes __UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __UpperCAmelCase = [] __UpperCAmelCase = -1 for i in range(UpperCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 __UpperCAmelCase = 0 __UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [0] * no_of_processes for i in range(UpperCamelCase__ ): __UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : List[Any] = [2, 5, 3, 7] __lowerCAmelCase : Tuple = [0, 0, 0, 0] __lowerCAmelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Dict = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
654
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase ( UpperCamelCase__ : Tuple="ro" , UpperCamelCase__ : Any="en" , UpperCamelCase__ : Dict="wmt16" , UpperCamelCase__ : Dict=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __UpperCAmelCase = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __UpperCAmelCase = datasets.load_dataset(UpperCamelCase__ , UpperCamelCase__ ) if save_dir is None: __UpperCAmelCase = f"""{dataset}-{pair}""" __UpperCAmelCase = Path(UpperCamelCase__ ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __UpperCAmelCase = '''val''' if split == '''validation''' else split __UpperCAmelCase = save_dir.joinpath(f"""{fn}.source""" ) __UpperCAmelCase = save_dir.joinpath(f"""{fn}.target""" ) __UpperCAmelCase = src_path.open('''w+''' ) __UpperCAmelCase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __UpperCAmelCase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : List[str] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : List[Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Optional[Any] , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Tuple , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : str , **__a : Tuple ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : int ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : List[str] , **__a : Optional[int] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Any ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : List[str] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Optional[int] , **__a : Optional[int] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[str] , **__a : List[str] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[int] , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Tuple , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : str ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : str , **__a : Tuple ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[str] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Optional[int] , **__a : Union[str, Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Union[str, Any] , **__a : Any ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : int , **__a : int ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : str ) -> Dict: requires_backends(cls , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : str , **UpperCamelCase__ : str ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Dict , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Tuple , **UpperCamelCase__ : int ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) def lowerCAmelCase ( *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Tuple ): """simple docstring""" requires_backends(UpperCamelCase__ , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : str , **__a : List[str] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : List[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : Tuple ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : str , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : str ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : int , **__a : Tuple ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Tuple , **__a : str ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Dict ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : str , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : int , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : str , **__a : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : int , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : Optional[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Optional[Any] , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Dict ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : List[str] , **__a : Union[str, Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : int , **__a : Dict ) -> List[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Tuple , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : str , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Optional[Any] , **__a : List[str] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : Optional[int] , **__a : List[Any] ) -> Any: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Any , **__a : str ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[Any] , **__a : int ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : Tuple , **__a : Optional[int] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : List[str] ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : int ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Tuple , **__a : int ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Union[str, Any] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[Any] , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : int ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : int , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : int ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : List[Any] , **__a : Dict ) -> int: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[Any] , *__a : int , **__a : Optional[int] ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[Any] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Tuple , **__a : List[Any] ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Dict , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[Any] , **__a : Dict ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Union[str, Any] , **__a : Optional[int] ) -> Dict: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Any , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[int] , **__a : List[Any] ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Any , *__a : Dict , **__a : int ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Optional[int] , **__a : Union[str, Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : int ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Optional[Any] , **__a : int ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> Tuple: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : str , *__a : Tuple , **__a : Tuple ) -> str: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Dict , **__a : Tuple ) -> Tuple: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : List[str] , **__a : int ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : int , *__a : Tuple , **__a : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : Any , **__a : List[str] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : int , **__a : int ) -> List[Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : Any , **__a : List[Any] ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : str ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : int ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : str , **__a : Optional[Any] ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[Any] , **__a : List[str] ) -> Optional[int]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : str ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : List[Any] , **__a : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Any ) -> int: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Optional[Any] , *__a : List[str] , **__a : Any ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Any , *__a : List[str] , **__a : Dict ) -> List[str]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Dict , **__a : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : str , **__a : Any ) -> Dict: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Dict , **__a : Tuple ) -> Optional[int]: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : str , *__a : Any , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : int , *__a : Any , **__a : Optional[Any] ) -> int: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : Dict , *__a : int , **__a : List[Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[str] , *__a : Dict , **__a : Tuple ) -> Union[str, Any]: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Tuple , *__a : int , **__a : Optional[Any] ) -> List[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> str: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : Tuple , *__a : Any , **__a : Optional[int] ) -> str: requires_backends(cls , ['''torch'''] ) class A ( metaclass=UpperCAmelCase ): a_ = ['''torch'''] def __init__( self : Dict , *__a : List[str] , **__a : List[Any] ) -> Optional[Any]: requires_backends(self , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : int , **__a : Any ) -> Any: requires_backends(cls , ['''torch'''] ) @classmethod def snake_case__ ( cls : List[Any] , *__a : List[str] , **__a : List[str] ) -> List[Any]: requires_backends(cls , ['''torch'''] )
654
0
'''simple docstring''' __lowerCAmelCase : List[Any] = [0, 2, 4, 6, 8] __lowerCAmelCase : Any = [1, 3, 5, 7, 9] def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __UpperCAmelCase = 0 for digit in range(1_0 ): __UpperCAmelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , UpperCamelCase__ , UpperCamelCase__ ) return result __UpperCAmelCase = 0 for digita in range(1_0 ): __UpperCAmelCase = digita if (remainder + digita) % 2 == 0: __UpperCAmelCase = ODD_DIGITS else: __UpperCAmelCase = EVEN_DIGITS for digita in other_parity_digits: __UpperCAmelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , UpperCamelCase__ , UpperCamelCase__ , ) return result def lowerCAmelCase ( UpperCamelCase__ : int = 9 ): """simple docstring""" __UpperCAmelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase__ , 0 , [0] * length , UpperCamelCase__ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
654
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : List[str] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __lowerCAmelCase : List[Any] = {"allegro/herbert-base-cased": 514} __lowerCAmelCase : int = {} class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = HerbertTokenizer def __init__( self : int , __a : Any=None , __a : int=None , __a : Union[str, Any]=None , __a : List[str]="<s>" , __a : Tuple="<unk>" , __a : Any="<pad>" , __a : int="<mask>" , __a : List[str]="</s>" , **__a : Any , ) -> Optional[int]: super().__init__( __a , __a , tokenizer_file=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , sep_token=__a , **__a , ) def snake_case__ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def snake_case__ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = {} class A ( UpperCAmelCase ): a_ = '''llama''' a_ = ['''past_key_values'''] def __init__( self : List[Any] , __a : int=3_2_0_0_0 , __a : Optional[int]=4_0_9_6 , __a : Tuple=1_1_0_0_8 , __a : Optional[Any]=3_2 , __a : List[str]=3_2 , __a : Dict=None , __a : Any="silu" , __a : Tuple=2_0_4_8 , __a : Dict=0.0_2 , __a : Optional[Any]=1e-6 , __a : List[str]=True , __a : List[str]=0 , __a : Optional[Any]=1 , __a : List[str]=2 , __a : List[Any]=1 , __a : List[Any]=False , __a : Optional[int]=None , **__a : Dict , ) -> List[Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = intermediate_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: __UpperCAmelCase = num_attention_heads __UpperCAmelCase = num_key_value_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = initializer_range __UpperCAmelCase = rms_norm_eps __UpperCAmelCase = pretraining_tp __UpperCAmelCase = use_cache __UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def snake_case__ ( self : str ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __UpperCAmelCase = self.rope_scaling.get('''type''' , __a ) __UpperCAmelCase = self.rope_scaling.get('''factor''' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
715
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
0
def lowerCAmelCase ( UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 7 , UpperCamelCase__ : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 for current_denominator in range(1 , limit + 1 ): __UpperCAmelCase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCAmelCase = current_numerator __UpperCAmelCase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__( self : List[Any] , __a : Any , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = 1_3 __UpperCAmelCase = 7 __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = 9_9 __UpperCAmelCase = 3_2 __UpperCAmelCase = 2 __UpperCAmelCase = 4 __UpperCAmelCase = 3_7 __UpperCAmelCase = '''gelu''' __UpperCAmelCase = 0.1 __UpperCAmelCase = 0.1 __UpperCAmelCase = 5_1_2 __UpperCAmelCase = 1_6 __UpperCAmelCase = 2 __UpperCAmelCase = 0.0_2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = None def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Union[str, Any] , __a : List[str] , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : List[Any] , __a : int ) -> Any: __UpperCAmelCase = TFDistilBertModel(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) __UpperCAmelCase = [input_ids, input_mask] __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __a : List[Any] , __a : int , __a : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : List[Any] ) -> int: __UpperCAmelCase = TFDistilBertForMaskedLM(config=__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[int] , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Optional[int] ) -> Dict: __UpperCAmelCase = TFDistilBertForQuestionAnswering(config=__a ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Any , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : Dict , __a : int , __a : List[Any] ) -> Dict: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForSequenceClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , __a : Dict ) -> str: __UpperCAmelCase = self.num_choices __UpperCAmelCase = TFDistilBertForMultipleChoice(__a ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , __a : Optional[Any] , __a : int , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[int] ) -> int: __UpperCAmelCase = self.num_labels __UpperCAmelCase = TFDistilBertForTokenClassification(__a ) __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : str ) -> Any: __UpperCAmelCase = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def snake_case__ ( self : Any ) -> Any: __UpperCAmelCase = TFDistilBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__a , dim=3_7 ) def snake_case__ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def snake_case__ ( self : Tuple ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def snake_case__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def snake_case__ ( self : Optional[Any] ) -> Dict: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def snake_case__ ( self : List[str] ) -> List[Any]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def snake_case__ ( self : Dict ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCAmelCase = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class A ( unittest.TestCase ): @slow def snake_case__ ( self : int ) -> Dict: __UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase = model(__a )[0] __UpperCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __a ) __UpperCAmelCase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
654
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Optional[Any] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class A ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Any , __a : str , __a : Optional[Any] , __a : str=None , __a : Union[str, Any]=1 ) -> List[str]: __UpperCAmelCase = tokenizer __UpperCAmelCase = dataset __UpperCAmelCase = len(__a ) if n_tasks is None else n_tasks __UpperCAmelCase = n_copies def __iter__( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) __UpperCAmelCase = self.tokenizer(__a , padding=__a , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : Optional[int] , __a : Optional[Any] ) -> Tuple: __UpperCAmelCase = start_length __UpperCAmelCase = eof_strings __UpperCAmelCase = tokenizer def __call__( self : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , **__a : List[Any] ) -> Tuple: __UpperCAmelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __UpperCAmelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__a ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = re.split('''(%s)''' % '''|'''.join(UpperCamelCase__ ) , UpperCamelCase__ ) # last string should be "" return "".join(string_list[:-2] ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int=2_0 , **UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = defaultdict(UpperCamelCase__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCamelCase__ ) ): with torch.no_grad(): __UpperCAmelCase = batch['''ids'''].shape[-1] __UpperCAmelCase = accelerator.unwrap_model(UpperCamelCase__ ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=UpperCamelCase__ , **UpperCamelCase__ ) # each task is generated batch_size times __UpperCAmelCase = batch['''task_id'''].repeat(UpperCamelCase__ ) __UpperCAmelCase = accelerator.pad_across_processes( UpperCamelCase__ , dim=1 , pad_index=tokenizer.pad_token_id ) __UpperCAmelCase , __UpperCAmelCase = accelerator.gather((generated_tokens, generated_tasks) ) __UpperCAmelCase = generated_tokens.cpu().numpy() __UpperCAmelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCamelCase__ , UpperCamelCase__ ): gen_token_dict[task].append(UpperCamelCase__ ) __UpperCAmelCase = [[] for _ in range(UpperCamelCase__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __UpperCAmelCase = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) code_gens[task].append(remove_last_block(UpperCamelCase__ ) ) return code_gens def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = HfArgumentParser(UpperCamelCase__ ) __UpperCAmelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __UpperCAmelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __UpperCAmelCase = '''false''' if args.num_workers is None: __UpperCAmelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __UpperCAmelCase = Accelerator() set_seed(args.seed , device_specific=UpperCamelCase__ ) # Load model and tokenizer __UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) __UpperCAmelCase = tokenizer.eos_token __UpperCAmelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __UpperCAmelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase__ , UpperCamelCase__ )] ), } # Load evaluation dataset and metric __UpperCAmelCase = load_dataset('''openai_humaneval''' ) __UpperCAmelCase = load_metric('''code_eval''' ) __UpperCAmelCase = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) __UpperCAmelCase = args.n_samples // args.batch_size __UpperCAmelCase = TokenizedDataset(UpperCamelCase__ , human_eval['''test'''] , n_copies=UpperCamelCase__ , n_tasks=UpperCamelCase__ ) # do not confuse args.batch_size, which is actually the num_return_sequences __UpperCAmelCase = DataLoader(UpperCamelCase__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __UpperCAmelCase = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = complete_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , n_tasks=UpperCamelCase__ , batch_size=args.batch_size , **UpperCamelCase__ , ) if accelerator.is_main_process: __UpperCAmelCase = [] for task in tqdm(range(UpperCamelCase__ ) ): __UpperCAmelCase = human_eval['''test'''][task]['''test'''] __UpperCAmelCase = f"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric __UpperCAmelCase , __UpperCAmelCase = code_eval_metric.compute( references=UpperCamelCase__ , predictions=UpperCamelCase__ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
654
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : str = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): # noqa: E741 """simple docstring""" while r - l > 1: __UpperCAmelCase = (l + r) // 2 if v[m] >= key: __UpperCAmelCase = m else: __UpperCAmelCase = m # noqa: E741 return r def lowerCAmelCase ( UpperCamelCase__ : list[int] ): """simple docstring""" if len(UpperCamelCase__ ) == 0: return 0 __UpperCAmelCase = [0] * len(UpperCamelCase__ ) __UpperCAmelCase = 1 __UpperCAmelCase = v[0] for i in range(1 , len(UpperCamelCase__ ) ): if v[i] < tail[0]: __UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: __UpperCAmelCase = v[i] length += 1 else: __UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCAmelCase : List[str] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = test_results.split(''' ''' ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __UpperCAmelCase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCamelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = {} __UpperCAmelCase = None __UpperCAmelCase = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , UpperCamelCase__ ): __UpperCAmelCase = True __UpperCAmelCase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __UpperCAmelCase = line __UpperCAmelCase = False return failures class A : def __init__( self : Union[str, Any] , __a : str , __a : Dict ) -> str: __UpperCAmelCase = title __UpperCAmelCase = doc_test_results['''time_spent'''].split(''',''' )[0] __UpperCAmelCase = doc_test_results['''success'''] __UpperCAmelCase = doc_test_results['''failures'''] __UpperCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __UpperCAmelCase = doc_test_results @property def snake_case__ ( self : Optional[int] ) -> str: __UpperCAmelCase = [self._time_spent] __UpperCAmelCase = 0 for time in time_spent: __UpperCAmelCase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__a ) == 1: __UpperCAmelCase = [0, 0, time_parts[0]] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return f"""{int(__a )}h{int(__a )}m{int(__a )}s""" @property def snake_case__ ( self : Optional[int] ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case__ ( self : List[str] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def snake_case__ ( self : int ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def snake_case__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase = 4_0 __UpperCAmelCase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__a , __a )} __UpperCAmelCase = '''''' for category, failures in category_failures.items(): if len(__a ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def snake_case__ ( self : str ) -> str: __UpperCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__a ) @staticmethod def snake_case__ ( ) -> Dict: __UpperCAmelCase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(__a )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=__a , ) def snake_case__ ( self : int ) -> Union[str, Any]: print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' __UpperCAmelCase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=__a , ) def snake_case__ ( self : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : str , __a : List[Any] ) -> Tuple: __UpperCAmelCase = '''''' for key, value in failures.items(): __UpperCAmelCase = value[:2_0_0] + ''' [Truncated]''' if len(__a ) > 2_5_0 else value failures_text += f"""*{key}*\n_{value}_\n\n""" __UpperCAmelCase = job_name __UpperCAmelCase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __UpperCAmelCase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case__ ( self : str ) -> List[str]: if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __UpperCAmelCase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __a : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __UpperCAmelCase = f"""*Num failures* :{len(job_result['failed'] )} \n""" __UpperCAmelCase = job_result['''failures'''] __UpperCAmelCase = self.get_reply_blocks(__a , __a , __a , text=__a ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=f"""Results for {job}""" , blocks=__a , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = os.environ['''GITHUB_RUN_ID'''] __UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" __UpperCAmelCase = requests.get(UpperCamelCase__ ).json() __UpperCAmelCase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , UpperCamelCase__ ) return {} def lowerCAmelCase ( UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = {} if os.path.exists(UpperCamelCase__ ): __UpperCAmelCase = os.listdir(UpperCamelCase__ ) for file in files: try: with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , encoding='''utf-8''' ) as f: __UpperCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(UpperCamelCase__ , UpperCamelCase__ )}.""" ) from e return _artifact def lowerCAmelCase ( ): """simple docstring""" class A : def __init__( self : Union[str, Any] , __a : str ) -> int: __UpperCAmelCase = name __UpperCAmelCase = [] def __str__( self : str ) -> List[str]: return self.name def snake_case__ ( self : Optional[Any] , __a : str ) -> List[Any]: self.paths.append({'''name''': self.name, '''path''': path} ) __UpperCAmelCase = {} __UpperCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: __UpperCAmelCase = directory if artifact_name not in _available_artifacts: __UpperCAmelCase = Artifact(UpperCamelCase__ ) _available_artifacts[artifact_name].add_path(UpperCamelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCAmelCase : Optional[int] = get_job_links() __lowerCAmelCase : Any = retrieve_available_artifacts() __lowerCAmelCase : List[Any] = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCAmelCase : Dict = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCAmelCase : str = github_actions_job_links.get("run_doctests") __lowerCAmelCase : Dict = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __lowerCAmelCase : Tuple = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __lowerCAmelCase : int = handle_test_results(artifact["stats"]) __lowerCAmelCase : Dict = failed __lowerCAmelCase : str = success __lowerCAmelCase : Optional[Any] = time_spent[1:-1] + ", " __lowerCAmelCase : Dict = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __lowerCAmelCase : Any = line.replace("FAILED ", "") __lowerCAmelCase : Optional[Any] = line.split()[0].replace("\n", "") if "::" in line: __lowerCAmelCase : Optional[int] = line.split("::") else: __lowerCAmelCase : Any = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCAmelCase : Optional[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCAmelCase : Optional[int] = all_failures[test] if test in all_failures else "N/A" __lowerCAmelCase : Union[str, Any] = failure break __lowerCAmelCase : int = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
720
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
0
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=1E-1_2 ): """simple docstring""" __UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase__ , axis=1 ) , a_min=UpperCamelCase__ ) ).T __UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase__ , axis=1 ) , a_min=UpperCamelCase__ ) ).T return jnp.matmul(UpperCamelCase__ , norm_emb_a.T ) class A ( nn.Module ): a_ = 4_2 a_ = jnp.floataa def snake_case__ ( self : int ) -> str: __UpperCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__a , dtype=self.dtype ) __UpperCAmelCase = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) __UpperCAmelCase = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) __UpperCAmelCase = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Tuple , __a : Any ) -> str: __UpperCAmelCase = self.vision_model(__a )[1] __UpperCAmelCase = self.visual_projection(__a ) __UpperCAmelCase = jax_cosine_distance(__a , self.special_care_embeds ) __UpperCAmelCase = jax_cosine_distance(__a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase = 0.0 __UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase = jnp.round(__a , 3 ) __UpperCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__a ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase = is_special_care * 0.0_1 __UpperCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase = jnp.round(__a , 3 ) __UpperCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A ( UpperCAmelCase ): a_ = CLIPConfig a_ = '''clip_input''' a_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[int] , __a : CLIPConfig , __a : Optional[Tuple] = None , __a : int = 0 , __a : jnp.dtype = jnp.floataa , __a : bool = True , **__a : Optional[Any] , ) -> Optional[Any]: if input_shape is None: __UpperCAmelCase = (1, 2_2_4, 2_2_4, 3) __UpperCAmelCase = self.module_class(config=__a , dtype=__a , **__a ) super().__init__(__a , __a , input_shape=__a , seed=__a , dtype=__a , _do_init=_do_init ) def snake_case__ ( self : List[Any] , __a : jax.random.KeyArray , __a : Tuple , __a : FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase = jax.random.normal(__a , __a ) __UpperCAmelCase , __UpperCAmelCase = jax.random.split(__a ) __UpperCAmelCase = {'''params''': params_rng, '''dropout''': dropout_rng} __UpperCAmelCase = self.module.init(__a , __a )['''params'''] return random_params def __call__( self : int , __a : List[str] , __a : dict = None , ) -> Dict: __UpperCAmelCase = jnp.transpose(__a , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__a , dtype=jnp.floataa ) , rngs={} , )
721
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : int=13 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : Tuple=3 , lowerCamelCase : Dict=16 , lowerCamelCase : Union[str, Any]=[1, 2, 1] , lowerCamelCase : List[Any]=[2, 2, 4] , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Any=2.0 , lowerCamelCase : List[str]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : int=0.0 , lowerCamelCase : str=0.1 , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : List[Any]=False , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[str]=1e-5 , lowerCamelCase : Any=True , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : str=True , lowerCamelCase : str=10 , lowerCamelCase : List[Any]=8 , lowerCamelCase : str=["stage1", "stage2", "stage3"] , lowerCamelCase : Dict=[1, 2, 3] , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = patch_norm __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = is_training __lowercase = scope __lowercase = use_labels __lowercase = type_sequence_label_size __lowercase = encoder_stride __lowercase = out_features __lowercase = out_indices def _snake_case ( self : Any ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _snake_case ( self : Optional[int] ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = MaskFormerSwinModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) __lowercase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = MaskFormerSwinBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCamelCase ): __lowercase = ["stem"] __lowercase = MaskFormerSwinBackbone(config=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _snake_case : str = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} _snake_case : List[str] = False _snake_case : List[str] = False _snake_case : Any = False _snake_case : Tuple = False _snake_case : Dict = False def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = MaskFormerSwinModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def _snake_case ( self : Tuple ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : List[Any] ): '''simple docstring''' return def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass def _snake_case ( self : Dict ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def _snake_case ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # Swin has a different seq_length __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _snake_case ( self : str ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def _snake_case ( self : int ): '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def _snake_case ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def _snake_case ( self : Dict ): '''simple docstring''' pass def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase : Optional[Any] ): __lowercase = 0 return t def check_equivalence(lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int={} ): with torch.no_grad(): __lowercase = model(**lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ) __lowercase = model(**lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ).to_tuple() def recursive_check(lowerCamelCase : Any , lowerCamelCase : int ): if isinstance(lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase , lowerCamelCase ): recursive_check(lowerCamelCase , lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCamelCase , lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCamelCase ) , set_nan_tensor_to_zero(lowerCamelCase ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(lowerCamelCase ).any()} and `inf`: {torch.isinf(lowerCamelCase )}. Dict has""" f""" `nan`: {torch.isnan(lowerCamelCase ).any()} and `inf`: {torch.isinf(lowerCamelCase )}.""" ) , ) recursive_check(lowerCamelCase , lowerCamelCase ) for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"output_hidden_states": True} ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"output_hidden_states": True} ) @require_torch class _A ( unittest.TestCase , _lowercase ): '''simple docstring''' _snake_case : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _snake_case : Tuple = MaskFormerSwinConfig def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = MaskFormerSwinModelTester(self ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: __lowercase = backbone_class(lowerCamelCase ) backbone.to(lowerCamelCase ) backbone.eval() __lowercase = backbone(**lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase = backbone(**lowerCamelCase , output_hidden_states=lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase , __lowercase , __lowercase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase = backbone(**lowerCamelCase , output_attentions=lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : str = KandinskyVaaPipeline _snake_case : List[Any] = [ """image_embeds""", """negative_image_embeds""", ] _snake_case : Optional[int] = ["""image_embeds""", """negative_image_embeds"""] _snake_case : List[str] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _snake_case : str = False @property def _snake_case ( self : Dict ): '''simple docstring''' return 32 @property def _snake_case ( self : int ): '''simple docstring''' return 32 @property def _snake_case ( self : int ): '''simple docstring''' return self.time_input_dim @property def _snake_case ( self : int ): '''simple docstring''' return self.time_input_dim * 4 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 100 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowercase = UNetaDConditionModel(**lowerCamelCase ) return model @property def _snake_case ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.dummy_unet __lowercase = self.dummy_movq __lowercase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCamelCase , ) __lowercase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Tuple=0 ): '''simple docstring''' __lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) __lowercase = output.images __lowercase = pipe( **self.get_dummy_inputs(lowerCamelCase ) , return_dict=lowerCamelCase , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : int ): '''simple docstring''' __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) __lowercase = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) __lowercase = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) __lowercase = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = "red cat, 4k photo" __lowercase = torch.Generator(device="cuda" ).manual_seed(0 ) __lowercase , __lowercase = pipe_prior( lowerCamelCase , generator=lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __lowercase = torch.Generator(device="cuda" ).manual_seed(0 ) __lowercase = pipeline( image_embeds=lowerCamelCase , negative_image_embeds=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=100 , output_type="np" , ) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
655
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Dict = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = """roc_bert""" def __init__( self : int , lowerCamelCase : int=30_522 , lowerCamelCase : str=768 , lowerCamelCase : List[str]=12 , lowerCamelCase : str=12 , lowerCamelCase : Tuple=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Dict=512 , lowerCamelCase : Tuple=2 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Dict=1e-12 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Dict="absolute" , lowerCamelCase : str=None , lowerCamelCase : Any=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Optional[Any]=768 , lowerCamelCase : int=910 , lowerCamelCase : Union[str, Any]=512 , lowerCamelCase : Dict=24_858 , lowerCamelCase : Any=True , **lowerCamelCase : Dict , ): '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = use_cache __lowercase = enable_pronunciation __lowercase = enable_shape __lowercase = pronunciation_embed_dim __lowercase = pronunciation_vocab_size __lowercase = shape_embed_dim __lowercase = shape_vocab_size __lowercase = concat_input __lowercase = position_embedding_type __lowercase = classifier_dropout super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase )
655
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModel.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModel.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForPreTraining.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) __lowercase , __lowercase = TFAutoModelForCausalLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) __lowercase , __lowercase = AutoModelForCausalLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelWithLMHead.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) __lowercase , __lowercase = TFAutoModelForMaskedLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForMaskedLM.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) __lowercase , __lowercase = AutoModelForMaskedLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : str ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) __lowercase , __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) __lowercase , __lowercase = AutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase , output_loading_info=lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) __lowercase = AutoModelForQuestionAnswering.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) __lowercase = AutoModelWithLMHead.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 ) __lowercase = AutoModelWithLMHead.from_pretrained(lowerCamelCase , from_tf=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase ) , 14_410 )
655
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _A : '''simple docstring''' _snake_case : CommonSchedulerState # setable values _snake_case : jnp.ndarray _snake_case : jnp.ndarray _snake_case : Optional[int] = None @classmethod def _snake_case ( cls : Tuple , lowerCamelCase : CommonSchedulerState , lowerCamelCase : jnp.ndarray , lowerCamelCase : jnp.ndarray ): '''simple docstring''' return cls(common=lowerCamelCase , init_noise_sigma=lowerCamelCase , timesteps=lowerCamelCase ) @dataclass class _A ( _lowercase ): '''simple docstring''' _snake_case : DDPMSchedulerState class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] _snake_case : jnp.dtype @property def _snake_case ( self : str ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , lowerCamelCase : int = 1_000 , lowerCamelCase : float = 0.0001 , lowerCamelCase : float = 0.02 , lowerCamelCase : str = "linear" , lowerCamelCase : Optional[jnp.ndarray] = None , lowerCamelCase : str = "fixed_small" , lowerCamelCase : bool = True , lowerCamelCase : str = "epsilon" , lowerCamelCase : jnp.dtype = jnp.floataa , ): '''simple docstring''' __lowercase = dtype def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: __lowercase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowercase = jnp.array(1.0 , dtype=self.dtype ) __lowercase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase , init_noise_sigma=lowerCamelCase , timesteps=lowerCamelCase , ) def _snake_case ( self : List[Any] , lowerCamelCase : DDPMSchedulerState , lowerCamelCase : jnp.ndarray , lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def _snake_case ( self : Union[str, Any] , lowerCamelCase : DDPMSchedulerState , lowerCamelCase : int , lowerCamelCase : Tuple = () ): '''simple docstring''' __lowercase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowercase = (jnp.arange(0 , lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase , timesteps=lowerCamelCase , ) def _snake_case ( self : Tuple , lowerCamelCase : DDPMSchedulerState , lowerCamelCase : int , lowerCamelCase : int=None , lowerCamelCase : Tuple=None ): '''simple docstring''' __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowercase = jnp.clip(lowerCamelCase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowercase = jnp.log(jnp.clip(lowerCamelCase , a_min=1e-20 ) ) elif variance_type == "fixed_large": __lowercase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowercase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowercase = variance __lowercase = state.common.betas[t] __lowercase = (predicted_variance + 1) / 2 __lowercase = frac * max_log + (1 - frac) * min_log return variance def _snake_case ( self : Dict , lowerCamelCase : DDPMSchedulerState , lowerCamelCase : jnp.ndarray , lowerCamelCase : int , lowerCamelCase : jnp.ndarray , lowerCamelCase : Optional[jax.random.KeyArray] = None , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase = timestep if key is None: __lowercase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = jnp.split(lowerCamelCase , sample.shape[1] , axis=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase = model_output elif self.config.prediction_type == "v_prediction": __lowercase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase = jnp.clip(lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowercase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowercase = jax.random.split(lowerCamelCase , num=1 ) __lowercase = jax.random.normal(lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCamelCase , lowerCamelCase , predicted_variance=lowerCamelCase ) ** 0.5) * noise __lowercase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase , state=lowerCamelCase ) def _snake_case ( self : Optional[int] , lowerCamelCase : DDPMSchedulerState , lowerCamelCase : jnp.ndarray , lowerCamelCase : jnp.ndarray , lowerCamelCase : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple , lowerCamelCase : DDPMSchedulerState , lowerCamelCase : jnp.ndarray , lowerCamelCase : jnp.ndarray , lowerCamelCase : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __len__( self : Tuple ): '''simple docstring''' return self.config.num_train_timesteps
655
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) snake_case__ : Optional[Any] = logging.getLogger(__name__) snake_case__ : str = """Hello world! cécé herlolip""" snake_case__ : str = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = BertAbsConfig( temp_dir="." , finetune_bert=_SCREAMING_SNAKE_CASE , large=_SCREAMING_SNAKE_CASE , share_emb=_SCREAMING_SNAKE_CASE , use_bert_emb=_SCREAMING_SNAKE_CASE , encoder="bert" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) __lowercase = torch.load(_SCREAMING_SNAKE_CASE , lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : storage ) __lowercase = AbsSummarizer(_SCREAMING_SNAKE_CASE , torch.device("cpu" ) , _SCREAMING_SNAKE_CASE ) original.eval() __lowercase = BertAbsSummarizer(_SCREAMING_SNAKE_CASE , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) __lowercase = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs __lowercase = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_SCREAMING_SNAKE_CASE )) ) __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) __lowercase = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_SCREAMING_SNAKE_CASE )) ) __lowercase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowercase = encoder_input_ids __lowercase = decoder_input_ids __lowercase = __lowercase = None __lowercase = None __lowercase = __lowercase = None __lowercase = __lowercase = None __lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowercase = original(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] __lowercase = original.generator(_SCREAMING_SNAKE_CASE ) __lowercase = new_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] __lowercase = new_model.generator(_SCREAMING_SNAKE_CASE ) __lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_SCREAMING_SNAKE_CASE ) ) __lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_SCREAMING_SNAKE_CASE ) ) __lowercase = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) snake_case__ : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
655
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ : int = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def snake_case_ ( _SCREAMING_SNAKE_CASE ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def snake_case_ ( _SCREAMING_SNAKE_CASE ): class _A : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = metric_id class _A : '''simple docstring''' _snake_case : str = [MetricMock(_lowercase ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def _snake_case ( self : List[Any] ): '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if "tmp_path" in args: __lowercase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(_SCREAMING_SNAKE_CASE , match="https://huggingface.co/docs/evaluate" ): func(*_SCREAMING_SNAKE_CASE )
655
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _A ( _lowercase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : TransformeraDModel , lowerCamelCase : AutoencoderKL , lowerCamelCase : KarrasDiffusionSchedulers , lowerCamelCase : Optional[Dict[int, str]] = None , ): '''simple docstring''' super().__init__() self.register_modules(transformer=lowerCamelCase , vae=lowerCamelCase , scheduler=lowerCamelCase ) # create a imagenet -> id dictionary for easier use __lowercase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __lowercase = int(lowerCamelCase ) __lowercase = dict(sorted(self.labels.items() ) ) def _snake_case ( self : int , lowerCamelCase : Union[str, List[str]] ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = list(lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Any , lowerCamelCase : List[int] , lowerCamelCase : float = 4.0 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : int = 50 , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = self.transformer.config.sample_size __lowercase = self.transformer.config.in_channels __lowercase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCamelCase , device=self.device , dtype=self.transformer.dtype , ) __lowercase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __lowercase = torch.tensor(lowerCamelCase , device=self.device ).reshape(-1 ) __lowercase = torch.tensor([1_000] * batch_size , device=self.device ) __lowercase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __lowercase = latent_model_input[: len(lowerCamelCase ) // 2] __lowercase = torch.cat([half, half] , dim=0 ) __lowercase = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) __lowercase = t if not torch.is_tensor(lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __lowercase = latent_model_input.device.type == "mps" if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = torch.floataa if is_mps else torch.floataa else: __lowercase = torch.intaa if is_mps else torch.intaa __lowercase = torch.tensor([timesteps] , dtype=lowerCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __lowercase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __lowercase = self.transformer( lowerCamelCase , timestep=lowerCamelCase , class_labels=lowerCamelCase ).sample # perform guidance if guidance_scale > 1: __lowercase , __lowercase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __lowercase , __lowercase = torch.split(lowerCamelCase , len(lowerCamelCase ) // 2 , dim=0 ) __lowercase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __lowercase = torch.cat([half_eps, half_eps] , dim=0 ) __lowercase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __lowercase , __lowercase = torch.split(lowerCamelCase , lowerCamelCase , dim=1 ) else: __lowercase = noise_pred # compute previous image: x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample if guidance_scale > 1: __lowercase , __lowercase = latent_model_input.chunk(2 , dim=0 ) else: __lowercase = latent_model_input __lowercase = 1 / self.vae.config.scaling_factor * latents __lowercase = self.vae.decode(lowerCamelCase ).sample __lowercase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCamelCase )
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): __lowercase = None if token is not None: __lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} __lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() __lowercase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) __lowercase = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = requests.get(url + F"""&page={i + 2}""" , headers=_SCREAMING_SNAKE_CASE ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): __lowercase = None if token is not None: __lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} __lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() __lowercase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) __lowercase = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = requests.get(url + F"""&page={i + 2}""" , headers=_SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = None if token is not None: __lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} __lowercase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) __lowercase = result.headers["Location"] __lowercase = requests.get(_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) __lowercase = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) with open(_SCREAMING_SNAKE_CASE , "wb" ) as fp: fp.write(response.content ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): __lowercase = [] __lowercase = [] __lowercase = None with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_SCREAMING_SNAKE_CASE ) as f: for line in f: __lowercase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __lowercase = line[: line.index(": " )] __lowercase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed __lowercase = line[len("FAILED " ) :] failed_tests.append(_SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": __lowercase = line if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_SCREAMING_SNAKE_CASE )} for `errors` """ F"""and {len(_SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" " problem." ) __lowercase = None if job_name and job_links: __lowercase = job_links.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) __lowercase = [x + [y] + [job_link] for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return result def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): __lowercase = [] __lowercase = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(_SCREAMING_SNAKE_CASE , job_links=_SCREAMING_SNAKE_CASE ) ) return errors def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): __lowercase = Counter() counter.update([x[1] for x in logs] ) __lowercase = counter.most_common() __lowercase = {} for error, count in counts: if error_filter is None or error not in error_filter: __lowercase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} __lowercase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = test.split("::" )[0] if test.startswith("tests/models/" ): __lowercase = test.split("/" )[2] else: __lowercase = None return test def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): __lowercase = [(x[0], x[1], get_model(x[2] )) for x in logs] __lowercase = [x for x in logs if x[2] is not None] __lowercase = {x[2] for x in logs} __lowercase = {} for test in tests: __lowercase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __lowercase = counter.most_common() __lowercase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __lowercase = sum(error_counts.values() ) if n_errors > 0: __lowercase = {"count": n_errors, "errors": error_counts} __lowercase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = "| no. | error | status |" __lowercase = "|-:|:-|:-|" __lowercase = [header, sep] for error in reduced_by_error: __lowercase = reduced_by_error[error]["count"] __lowercase = F"""| {count} | {error[:1_0_0]} | |""" lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = "| model | no. of errors | major error | count |" __lowercase = "|-:|-:|-:|-:|" __lowercase = [header, sep] for model in reduced_by_model: __lowercase = reduced_by_model[model]["count"] __lowercase , __lowercase = list(reduced_by_model[model]["errors"].items() )[0] __lowercase = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") snake_case__ : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) snake_case__ : List[Any] = get_job_links(args.workflow_run_id, token=args.token) snake_case__ : Optional[int] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: snake_case__ : Dict = k.find(""" / """) snake_case__ : Optional[int] = k[index + len(""" / """) :] snake_case__ : Optional[Any] = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) snake_case__ : str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) snake_case__ : int = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error snake_case__ : Optional[int] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors snake_case__ : Tuple = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) snake_case__ : Union[str, Any] = reduce_by_error(errors) snake_case__ : Optional[int] = reduce_by_model(errors) snake_case__ : Optional[Any] = make_github_table(reduced_by_error) snake_case__ : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
from __future__ import annotations def snake_case_ ( _SCREAMING_SNAKE_CASE ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
655
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
1